Land-use classification from multiple data sources is an important problem in remote sensing. Data fusion algorithms like Semi-Supervised Manifold Alignment (SSMA) and Manifold Alignment with Schroedinger Eigenmaps (SEMA) use spectral and/or spatial features from multispectral, multimodal imagery to project each data source into a common latent space in which classification can be performed. However, in order for these algorithms to be well-posed, they require an expert user to either directly identify pairwise dissimilarities in the data or to identify class labels for a subset of points from which pairwise dissimilarities can be derived. In this paper, we propose a related data fusion technique, which we refer to as Semi-Supervised Normalized Embeddings (SSNE). SSNE is defined by modifying the SSMA/SEMA objective functions to incorporate an extra normalization term that enables a latent space to be well-defined even when no pairwise-dissimilarities are provided. Using publicly available data from the 2017 IEEE GRSS Data Fusion Contest, we show that SSNE enables similar land-use classification performance to SSMA/SEMA in scenarios where pairwise dissimilarities are available, but that unlike SSMA/SEMA, it also enables land-use classification in other scenarios. We compare the effect of applying different classification algorithms including a support vector machine (SVM), a linear discriminant analysis classifier (LDA), and a random forest classifier (RF); we show that SSMA/SEMA and SSNE robust to the use of different classifiers. In addition to comparing the classification performance of SSNE to SSMA/SEMA and comparing classification algorithm, we utilize manifold alignment to classify unknown views.

Publication Date


Document Type


Student Type


Degree Name

Computer Science (MS)

Department, Program, or Center

Computer Science (GCCIS)


Nathan Cahill

Advisor/Committee Member

Zachary Butler

Advisor/Committee Member

Richard Zanibbi


RIT – Main Campus