Abstract

With the ever improving progress of technology, Software Defined Radio (SDR) has become a more widely available technique for implementing radio communication. SDRs are sought after for their advantages over traditional radio communication mostly in flexibility, and hardware simplification. The greatest challenges SDRs face are often with their real time performance requirements. Forward error correction is an example of an SDR block that can exemplify these challenges as the error correction can be very computationally intensive. Due to these constraints, SDR implementations are commonly found in or alongside Field Programmable Gate Arrays (FPGAs) to enable performance that general purpose processors alone cannot achieve. The main challenge with FPGAs however, is in Register Transfer Level (RTL) development. High Level Synthesis (HLS) tools are a method of creating hardware descriptions from high level code, in an effort to ease this development process. In this work a turbo code decoder, a form of computationally intensive error correction codes, was accelerated with the help of FPGAs, using HLS tools. This accelerator was implemented on a Xilinx Zynq platform, which integrates a hard core ARM processor alongside programmable logic on a single chip.

Important aspects of the design process using HLS were identified and explained. The design process emphasizes the idea that for the best results the high level code should be created with a hardware mindset, and written in an attempt to describe a hardware design. The power of the HLS tools was demonstrated in its flexibility by providing a method of tailoring the hardware parameters through simply changing values in a macro file, and by exploration the design space through different data types and three different designs, each one improving from what was learned in the previous implementation. Ultimately, the best hardware implementation was over 56 times faster than the optimized software implementation. Comparing the HLS to a manually optimized design shows that the HLS implementation was able to achieve over a 19% throughput, with many areas for further improvement identified, demonstrating the competitiveness of the HLS tools.

Publication Date

7-2018

Document Type

Thesis

Student Type

Graduate

Degree Name

Computer Engineering (MS)

Department, Program, or Center

Computer Engineering (KGCOE)

Advisor

Sonia Lopez Alarcon

Advisor/Committee Member

Marcin Lukowiak

Advisor/Committee Member

Andres Kwasinski

Campus

RIT – Main Campus

Share

COinS