Abstract

Virtualization can be accomplished at different layers in the computational stack and with different goals (servers, desktops, applications, storage and network). This research focuses on server-based desktop virtualization. According to the Gartner group, the main business drivers for adopting desktop virtualization are: application compatibility, business continuity, security and compliance, mobility and improved productivity [15]. Despite these business drivers, desktop virtualization has not been widely adopted. According to a survey conducted by Matrix42, only 5% of desktop computers are virtualized [37]. The research deals with the challenges preventing the wider adoption of server-based desktop virtualization while focusing on two of the main virtualization architectures: session-based desktop virtualization (SBDV) and virtual desktop infrastructure (VDI).

The first chapter introduces some of the challenges faced by large organizations in their efforts to create a cost effective and manageable desktop computing environment. The second chapter discusses two of the main server-based desktop virtualizations (VDI and SBDV), illustrating some of the advantages and disadvantages in these different architectures. The third chapter focuses on some of the technical challenges and provides recommendations regarding server-based desktop virtualization. In the fourth chapter, measurements are conducted for the utilization and performance of SBDV on different 3 user profiles (light, heavy and multimedia). Data and results collected from desktop assessment and lab are used to formulate baselines and metrics for capacity planning. According to the conducted measurements, it is concluded that light and heavy profiles can be virtualized using SBDV, while for multimedia profiles, additional capacity planning and resource allocation are required. Multimedia profiles can be virtualized with VDI considering client-side rendering to avoid network bandwidth congestion.

While the research focuses on VDI and SBDV, it highlights few points related to client access devices (CADs). CADs are one of the main components in the desktop virtualization stack (OS virtualization, session virtualization, application virtualization, connection broker, CADs and user data and profiles). The latter chapter of the research focuses on conclusions and future work toward greater levels of adoption of VDI and SBDV.

Library of Congress Subject Headings

Virtual computer systems--Design; Client-server computing

Publication Date

1-2014

Document Type

Thesis

Student Type

Graduate

Degree Name

Networking and System Administration (MS)

Department, Program, or Center

Information Sciences and Technologies (GCCIS)

Advisor

Charles Border

Advisor/Committee Member

Khalid Khawaja

Advisor/Committee Member

Muhieddin Amer

Comments

Physical copy available from RIT's Wallace Library at QA76.9.V5 S43 2014

Campus

RIT Dubai

Plan Codes

NETSYS-MS

Share

COinS