Abstract

The advancements in manufacturing have always played a vital role in human life. One of the most recent and growing manufacturing methods is additive manufacturing (AM). AM has been in focus for its ability to manufacture intricate parts with internal features which are not possible with traditional manufacturing processes. Making parts lighter and stronger has been the goal for most AM processes. The advancements in AM have made it possible to produce parts with high strength internal structures. The overall strength of the manufactured plastic parts depends on several variables. The part’s strength is determined by the material, the build direction, the infill settings, and the printing parameters. Optimization of each of these variables is critical for obtaining the desired result for the intended application of the printed part. One of the major drawbacks of these parts is the weak interlayer bonding within parts which are susceptible to failure under high loads. Similarly, the stair stepping effect compromises the surface finish of a part. This is prominently seen when the angle of inclination is less than 30 degrees. Previous research shows that the mixture of non-planar and planar layers in a 3DP part can improve its surface finish. Non-Planar 3D printing done using a 3-axis machine is limited by the angle of the nozzle with respect to the previously printed layers. This study will focus on incorporating 5-axis 3D printer toolpath motions to print nonplanar surfaces. It will also shed some light on the enhanced mechanical properties of the parts which have non-planar layers as compared to conventionally 3D printed parts.

Publication Date

7-13-2022

Document Type

Thesis

Student Type

Graduate

Degree Name

Mechanical Engineering (MS)

Department, Program, or Center

Industrial and Systems Engineering (KGCOE)

Advisor

Denis R. Cormier

Advisor/Committee Member

Rui Li

Advisor/Committee Member

Yunbo Zhang

Campus

RIT – Main Campus

Share

COinS