Abstract
Over the past decade, deep neural networks have enormously advanced machine perception, especially object classification, object detection, and multimodal scene understanding. But, a major limitation of these systems is that they assume a closed-world setting, i.e., the train and the test distribution match exactly. As a result, any input belonging to a category that the system has never seen during training will not be recognized as unknown. However, many real-world applications often need this capability. For example, self-driving cars operate in a dynamic world where the data can change over time due to changes in season, geographic location, sensor types, etc. Handling such changes requires building models with open-world learning capabilities. In open-world learning, the system needs to detect novel examples which are not seen during training and update the system with new knowledge, without retraining from scratch. In this dissertation, we address gaps in the open-world learning literature and develop methods that enable efficient multimodal open-world learning in deep neural networks.
Library of Congress Subject Headings
Neural networks (Computer science); Machine learning
Publication Date
6-28-2022
Document Type
Dissertation
Student Type
Graduate
Degree Name
Imaging Science (Ph.D.)
Department, Program, or Center
Chester F. Carlson Center for Imaging Science (COS)
Advisor
Christopher Kanan
Advisor/Committee Member
Ferat Sahin
Advisor/Committee Member
Nathan Cahill
Recommended Citation
Acharya, Manoj, "Towards Multimodal Open-World Learning in Deep Neural Networks" (2022). Thesis. Rochester Institute of Technology. Accessed from
https://scholarworks.rit.edu/theses/11233
Campus
RIT – Main Campus
Plan Codes
IMGS-PHD