Abstract

Multi-step manipulation tasks in unstructured environments are extremely challenging for a robot to learn. Such tasks interlace high-level reasoning that consists of the expected states that can be attained to achieve an overall task and low-level reasoning that decides what actions will yield these states. A model-free deep reinforcement learning method is proposed to learn multi-step manipulation tasks. This work introduces a novel Generative Residual Convolutional Neural Network (GR-ConvNet) model that can generate robust antipodal grasps from n-channel image input at real-time speeds (20ms). The proposed model architecture achieved a state-of-the-art accuracy on three standard grasping datasets. The adaptability of the proposed approach is demonstrated by directly transferring the trained model to a 7 DoF robotic manipulator with a grasp success rate of 95.4% and 93.0% on novel household and adversarial objects, respectively. A novel Robotic Manipulation Network (RoManNet) is introduced, which is a vision-based model architecture, to learn the action-value functions and predict manipulation action candidates. A Task Progress based Gaussian (TPG) reward function is defined to compute the reward based on actions that lead to successful motion primitives and progress towards the overall task goal. To balance the ratio of exploration/exploitation, this research introduces a Loss Adjusted Exploration (LAE) policy that determines actions from the action candidates according to the Boltzmann distribution of loss estimates. The effectiveness of the proposed approach is demonstrated by training RoManNet to learn several challenging multi-step robotic manipulation tasks in both simulation and real-world. Experimental results show that the proposed method outperforms the existing methods and achieves state-of-the-art performance in terms of success rate and action efficiency. The ablation studies show that TPG and LAE are especially beneficial for tasks like multiple block stacking.

Publication Date

4-2022

Document Type

Dissertation

Student Type

Graduate

Degree Name

Engineering (Ph.D.)

Department, Program, or Center

Engineering (KGCOE)

Advisor

Ferat Sahin

Advisor/Committee Member

Andres Kwasinski

Advisor/Committee Member

Christopher Kanan

Campus

RIT – Main Campus

Share

COinS