In this thesis, we explore several novel data augmentation methods for improving the performance of automatic speech recognition (ASR) on low-resource languages. Using a 100-hour subset of English LibriSpeech to simulate a low-resource setting, we compare the well-known SpecAugment augmentation approach to these new methods, along with several other competitive baselines. We then apply the most promising combinations of models and augmentation methods to three genuinely under-resourced languages using the 40-hour Gujarati, Tamil, Telugu datasets from the 2021 Interspeech Low Resource Automatic Speech Recognition Challenge for Indian Languages. Our data augmentation approaches, coupled with state-of-the-art acoustic model architectures and language models, yield reductions in word error rate over SpecAugment and other competitive baselines for the LibriSpeech-100 dataset, showing a particular advantage over prior models for the ``other'', more challenging, dev and test sets. Extending this work to the low-resource Indian languages, we see large improvements over the baseline models and results comparable to large multilingual models.

Publication Date


Document Type


Student Type


Degree Name

Computer Science (MS)

Department, Program, or Center

Computer Science (GCCIS)


Christopher M. Homan

Advisor/Committee Member

Raymond Ptucha

Advisor/Committee Member

Emily Prud'hommeaux


RIT – Main Campus