Abstract

CMOS and sCMOS image sensors are a cost-effective alternative to the more common CCD based experimental sensors. While often being less favored than CCDs at room temperature, CMOS image sensors have a better performance at lower temperatures and are the only of the two highly used technologies that is viable at cryogenic temperatures. This paper discusses development iterations of the star tracking rocket attitude regulation system (CSTARS). This includes discussions of the cryogenic operation of CMOS sensors as well as operating in and interfacing with a NASA sounding rocket as a star tracking system. Both iterations of the project have proved effective in operating sCMOS image sensors at cryogenic temperatures with low read noise. Star tracking has also been successful in the second iteration of the system, which is scheduled to fly with the CIBER-2 sounding rocket experiment. A successful flight with CIBER-2 would prove the readiness of sCMOS sensors for cryogenic operation in a real world application.

Library of Congress Subject Headings

Star trackers--Design and construction; Image converters--Design and construction; Metal oxide semiconductors, Complementary--Design and construction; Metal oxide semiconductors, Complementary--Thermal properties

Publication Date

12-2020

Document Type

Thesis

Student Type

Graduate

Degree Name

Electrical Engineering (MS)

Department, Program, or Center

Electrical Engineering (KGCOE)

Advisor

Dorin Patru

Advisor/Committee Member

Michael Zemcov

Advisor/Committee Member

Mark Indovina

Campus

RIT – Main Campus

Plan Codes

EEEE-MS

Share

COinS