Abstract

A model-free control algorithm based on the sliding mode control method for unmanned aircraft systems is proposed. The mathematical model of the dynamic system is not required to derive the sliding mode control law for this proposed method. The knowledge of the system’s order, state measurements and control input gain matrix shape and bounds are assumed to derive the control law to track the required trajectories. Lyapunov’s Stability criteria is used to ensure closed-loop asymptotic stability and the error estimate between previous control inputs is used to stabilize the system. A smoothing boundary layer is introduced into the system to eliminate the high frequency chattering of the control input and the higher order states. The [B] matrix used in the model-free algorithm based on the sliding mode control is derived for a quadcopter system. A simulation of a quadcopter is built in Simulink and the model-free control algorithm based on sliding mode control is implemented and a PID control law is used to compare the performance of the model-free control algorithm based off of the RMS (Root-Mean-Square) of the difference between the actual state and the desired state as well as average power usage. The model-free algorithm outperformed the PID controller in all simulations with the quadcopter’s original parameters, double the mass, double the moments of inertia, and double both the mass and the moments of inertia while keep both controllers exactly the same for each simulation.

Library of Congress Subject Headings

Drone aircraft--Control systems; Sliding mode control; Algorithms

Publication Date

7-28-2020

Document Type

Thesis

Student Type

Graduate

Degree Name

Mechanical Engineering (MS)

Department, Program, or Center

Mechanical Engineering (KGCOE)

Advisor

Agamemnon Crassidis

Advisor/Committee Member

Daniel Kaputa

Advisor/Committee Member

Jason Kolodziej

Campus

RIT – Main Campus

Plan Codes

MECE-MS

Share

COinS