Abstract

Cardiacvascular disease is the top death causing disease worldwide. In recent years, high-fidelity personalized models of the heart have shown an increasing capability to supplement clinical cardiology for improved patient-specific diagnosis, prediction, and treatment planning. In addition, they have shown promise to improve scientific understanding of a variety of disease mechanisms.

However, model personalization by estimating the patient-specific tissue properties that are in the form of parameters of a physiological model is challenging. This is because tissue properties, in general, cannot be directly measured and they need to be estimated from measurements that are indirectly related to them through a physiological model. Moreover, these unknown tissue properties are heterogeneous and spatially varying throughout the heart volume presenting a difficulty of high-dimensional (HD) estimation from indirect and limited measurement data. The challenge in model personalization, therefore, summarizes to solving an ill-posed inverse problem where the unknown parameters are HD and the forward model is complex with a non-linear and computationally expensive physiological model.

In this dissertation, we address the above challenge with following contributions. First, to address the concern of a complex forward model, we propose the surrogate modeling of the complex target function containing the forward model – an objective function in deterministic estimation or a posterior probability density function in probabilistic estimation – by actively selecting a set of training samples and a Bayesian update of the prior over the target function. The efficient and accurate surrogate of the expensive target function obtained in this manner is then utilized to accelerate either deterministic or probabilistic parameter estimation. Next, within the framework of Bayesian active learning we enable active surrogate learning over a HD parameter space with two novel approaches: 1) a multi-scale optimization that can adaptively allocate higher resolution to heterogeneous tissue regions and lower resolution to homogeneous tissue regions; and 2) a generative model from low-dimensional (LD) latent code to HD tissue properties. Both of these approaches are independently developed and tested within a parameter optimization framework. Furthermore, we devise a novel method that utilizes the surrogate pdf learned on an estimated LD parameter space to improve the proposal distribution of Metropolis Hastings for an accelerated sampling of the exact posterior pdf. We evaluate the presented methods on estimating local tissue excitability of a cardiac electrophysiological model in both synthetic data experiments and real data experiments. Results demonstrate that the presented methods are able to improve the accuracy and efficiency in patient-specific model parameter estimation in comparison to the existing approaches used for model personalization.

Library of Congress Subject Headings

Heart--Models; Heart--Electric properties; Machine learning

Publication Date

2-3-2020

Document Type

Dissertation

Student Type

Graduate

Degree Name

Computing and Information Sciences (Ph.D.)

Advisor

Linwei Wang

Advisor/Committee Member

Daniel Ornt

Advisor/Committee Member

Christopher Kanan

Campus

RIT – Main Campus

Plan Codes

COMPIS-PHD

Share

COinS