Abstract

The increasing prominence of wireless applications exacerbates the problem of radio spectrum scarcity and promotes the usage of Cognitive Radio (CR) in wireless networks. With underlay dynamic spectrum access, CRs can operate alongside Primary Users, the incumbent of a spectrum band, as long as they limit the interference to the Primary Users below a certain threshold. Multimedia streaming transmissions face stringent Quality of Services constraints on top of the CR interference constraints, as some packets in the data stream have higher levels of importance and are the most vulnerable to packet loss over the channel. This raises a need for Unequal Error Protection (ULP) for multimedia streams transmissions, in which the channel encoder assigns different amount of error correction to different parts of the data stream, thereby protecting more the most valuable parts of the stream from packet loss problems. This research presents an end-to-end system setup for image transmission, utilizing ULP as part of a Joint Source-Channel Coding scheme over a multichannel CR network operating through underlay dynamic spectrum access. The setup features a Set Partitioning in Hierarchical Trees (SPIHT) source encoder, and Reed-Solomon forward error correction channel coding, and uses their properties to devise an ULP framework that maximizes the quality of the received image.

Publication Date

7-2019

Document Type

Thesis

Student Type

Graduate

Degree Name

Computer Engineering (MS)

Department, Program, or Center

Computer Engineering (KGCOE)

Advisor

Andres Kwasinski

Advisor/Committee Member

Shanchieh Yang

Advisor/Committee Member

Panos Markopoulos

Campus

RIT – Main Campus

Share

COinS