Abstract

Vertical van der Waals heterostructures created from two chemically different two-dimensional (2D) materials have made significant headway in the current electronic manufacturing landscape. They demonstrate enhanced electronic properties and have the potential to be used in high performance electronic devices. Among the various van der Waals heterostructures, molybdenum disulfide (MoS2) thin film on an indium arsenide (InAs) substrate has shown promising opto-electronic properties. This hybrid heterostructure gives stronger optical absorption properties than a 2D layer of graphene on InAs due to smaller equilibrium spacing. To realize the true potential of these heterostructures, it is imperative to understand not only their stability, but also the thermodynamic stability of various defects at the heterointerface. We have performed first principles density functional theory calculations to study MoS2(100)/InAs(111) heterostructures with two different terminations of the substrate. We will discuss the thermodynamic stabilities of In-terminated and As-terminated heterostructures and shed light on the stabilities of S, In, and As vacancy defects at the heterointerface. Overall, our results offer insights into the fundamental role of defects in van der Waals heterostructures.

Publication Date

5-13-2019

Document Type

Thesis

Student Type

Graduate

Degree Name

Materials Science and Engineering (MS)

Department, Program, or Center

School of Physics and Astronomy (COS)

Advisor

Pratik Dholabhai

Advisor/Committee Member

Michael Pierce

Advisor/Committee Member

Dawn Hollenbeck

Campus

RIT – Main Campus

Share

COinS