Abstract

Cardiovascular diseases (CVD) are the number one cause of death of humans in the United States and worldwide. Accurate, non-invasive, and cheaper diagnosis methods have always been on demand as cardiovascular monitoring increase in prevalence. The primary causes of the various forms of these CVDs are atherosclerosis and aneurysms in the blood vessels. Current noninvasive methods (i.e., statistical/medical) permit fairly accurate detection of the disease once clinical symptoms are suggestive of the existence of hemodynamic disorders. Therefore, the recent surge of hemodynamics models facilitated the prediction of cardiovascular conditions.

The hemodynamic modeling of a human circulatory system involves varying levels of complexity which must be accounted for and resolved. Pulse-wave propagation effects and high aspect-ratio segments of the vasculature are represented using a quasi-one-dimensional (1D), non-steady, averaged over the cross-section models. However, these reduced 1D models do not account for the blood flow patterns (recirculation zones), vessel wall shear stresses and quantification of repetitive mechanical stresses which helps to predict a vessel life. Even a whole three-dimensional (3D) modeling of the vasculature is computationally intensive and do not fit the timeline of practical use. Thus the intertwining of a quasi 1D global vasculature model with a specific/risk-prone 3D local vessel ones is imperative.

This research forms part of a multiphysics project that aims to improve the detailed understanding of the hemodynamics by investigating a computational model of fluid-structure interaction (FSI) of in vivo blood flow. First idealized computational a 3D FSI artery model is configured and executed in ANSYS Workbench, forming an implicit coupling of the blood flow and vessel walls. Then the thesis focuses on an approach developed to employ commercial tools rather than in-house mathematical models in achieving multiscale simulations. A robust algorithm is constructed to combine stabilization techniques to simultaneously overcome the added-mass effect in 3D FSI simulation and mathematical difficulties such as the assignment of boundary conditions at the interface between the 3D-1D coupling. Applications can be of numerical examples evaluating the change of hemodynamic parameters and diagnosis of an abdominal aneurysm, deep vein thrombosis, and bifurcation areas.

Publication Date

4-26-2019

Document Type

Thesis

Student Type

Graduate

Degree Name

Mechanical Engineering (MS)

Department, Program, or Center

Mechanical Engineering (KGCOE)

Advisor

Alexander Liberson

Advisor/Committee Member

Hany Ghoneim

Advisor/Committee Member

Ali Ogut

Campus

RIT – Main Campus

Share

COinS