FPGA implementation and performance comparison of a Bayesian face detection system

Christopher J. Rericha

Follow this and additional works at: http://scholarworks.rit.edu/theses

Recommended Citation
FPGA Implementation and Performance Comparison of a Bayesian Face Detection System

by

Christopher J. Rericha

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Engineering

Supervised by

Associate Professor, Department of Computer Engineering Dr. Juan Cockburn
Department of Computer Engineering
Kate Gleason College of Engineering
Rochester Institute of Technology
Rochester, New York
March 2006

Approved By:

Juan Cockburn
Dr. Juan Cockburn
Associate Professor, Department of Computer Engineering
Primary Adviser

Andreas Savakis
Dr. Andreas Savakis
Professor, Department of Computer Engineering

Marcin Lukowiak
Dr. Marcin Lukowiak
Assistant Professor, Department of Computer Engineering
Thesis Release Permission Form

Rochester Institute of Technology
Kate Gleason College of Engineering

Title: FPGA Implementation and Performance Comparison of a Bayesian Face Detection System

I, Christopher J. Rericha, hereby grant permission to the Wallace Memorial Library to reproduce my thesis in whole or part.

Chris Rericha
Christopher J. Rericha

03/08/2006
Date
Dedication

To my wife, for her loving support,
to my parents, for teaching me to work hard,
and to Jesus Christ, without whom I would be nothing.
Acknowledgments

Special thanks to my advisors for giving me their time, knowledge, and especially their patience. Thanks to Tom Warsaw for sharing his VHDL knowledge. Thanks also to those who helped me create mappings for the images used; I would still be creating maps today without their help. Portions of the research in this paper use the Color FERET database of facial images collected under the FERET program [10].
Abstract

Face detection has primarily been a software-based effort. A hardware-based approach can provide significant speed-up over its software counterpart. Advances in transistor technology have made it possible to produce larger and faster FPGAs at more affordable prices. Through VHDL and synthesis tools it is possible to rapidly develop a hardware-based solution to face detection on an FPGA.

This work analyzes and compares the performance of a feature-invariant face detection method implemented in software and an FPGA. The primary components of the face detector were a Bayesian classifier used to segment the image into skin and nonskin pixels, and a direct least square elliptical fitting technique to determine if the skin region’s shape has elliptical characteristics similar to a face. The C++ implementation was benchmarked on several high performance workstations, while the VHDL implementation was synthesized for FPGAs from several Xilinx product lines.

The face detector used to compare software and hardware performance had a modest correct detection rate of 48.6% and a false alarm rate of 29.7%. The elliptical-shape of the region was determined to be an inaccurate approach for filtering out non-face skin regions. The software-based face detector was capable of detecting faces within images of approximately 378x567 pixels or less at 20 frames per second on Pentium 4 and Pentium D systems. The FPGA-based implementation was capable of faster detection speeds; a speed-up of 3.33 was seen on a Spartan 3 and 4.52 on a Virtex 4. The comparison shows that an FPGA-based face detector could provide a significant increase in computational speed.
Contents

Dedication ... iii

Acknowledgments ... iv

Abstract .. v

Glossary .. xi

1 Introduction ... 1
 1.1 Thesis objective .. 2

2 Background ... 3
 2.1 Face detection overview 3
 2.2 Feature-invariant approaches 8
 2.2.1 Skin Pixel Classification 8
 2.2.2 Face localization 11
 2.3 FPGA architectures .. 13
 2.3.1 Morphological implementations 13
 2.3.2 Connected components implementations 16

3 Design .. 20
 3.1 YCrCb conversion ... 21
 3.2 Color correction ... 21
 3.3 Bayesian classification 22
 3.4 Gap closing ... 24
 3.5 Object detection .. 26
 3.6 Preliminary filtering 28
 3.7 Elliptical fitting .. 28
 3.8 Elliptical filtering ... 29
 3.9 Face extraction ... 29
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.1</td>
<td>Change filtering method</td>
<td>71</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Improve parallelism in connected components algorithm</td>
<td>71</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Fully implemented FPGA-based face detector</td>
<td>72</td>
</tr>
</tbody>
</table>

Bibliography ... 73
List of Figures

2.1 Morphological filter chip .. 14
2.2 Processing element .. 16

3.1 Face detector flowchart ... 20
3.2 Morphological closing example .. 25
3.3 Connected Components example .. 26

4.1 Example image map .. 36
4.2 Bayesian mapping .. 38
4.3 Face Detector UML Diagram .. 40
4.4 Image broken into 32x32 pixel blocks 42
4.5 Filtering flowchart .. 43
4.6 Dilation/Erosion filtering circuit diagram 44
4.7 Connected components neighbors ... 46
4.8 Connected components flowchart .. 47
4.9 Connected components circuit diagram 49

5.1 Example mapping test .. 53
5.2 Sample input for object detection .. 54

6.1 Bayesian classifier receiver-operator curves 58
6.2 Face detector execution time .. 61
6.3 Software execution time breakdown by component 63
6.4 Software execution time breakdown by function 64
6.5 FPGA speed-ups over software executed on Pentium D 67
List of Tables

6.1 Face detection results .. 59
6.2 Test systems .. 60
6.3 Test image dimensions .. 60
6.4 Execution time ... 62
6.5 FPGA devices .. 64
6.6 FPGA speeds and utilization 66
6.7 Approximate FPGA execution times 67
6.8 Approximate Speed-up over Pentium D system 68
Glossary

A

a priori Knowledge, judgments, and principles known to be true without testing or verification.

ASIC Application specific integrated circuit: A microchip custom designed with fixed-functionality for a specific application.

C

conflict table Used in the connected components algorithm to map the object value to the conflict resolved value.

F

FERET Facial Recognition Technology.

FPGA Field programmable gate array: A programmable integrated circuit.

G

GNU A Unix compatible software system.

I

interpreted languages Languages executed through a middle-layer that interacts with the computer.
K

kmeans A commonly used clustering algorithm.

M

machine code The most basic language of the computer.

N

NIST National Institute of Standards and Technology.

R

receiver operating curve Plot of correct detections against false alarms.

run-time The time during which the program executes.

T

Test vector Sample input used to in testing.

TIFF Tag Image File Format.

training The process of building the knowledge-base used by the classifier.

training set Set of images used to train the classifier.

V

VHDL Very high speed integrated circuit hardware description language.
Chapter 1

Introduction

Face detection has received much attention over the past decade; a wide variety of detection strategies have been proposed and scrutinized. Although significant effort has been spent analyzing the overall accuracy of face detectors, far less focus has been put on analyzing their performance; many face detection methods are extremely computationally intensive.

Primarily face detection methods have been used in software solutions. Continued improvements in processor technology as well as the reduction in the size of transistors have aided in the performance of these methods. However, custom hardware implementations such as ASICs, application specific integrated circuits, are still generally faster, although they are expensive and suffer from slow development cycles. As such, ASICs are not a viable alternative for the researcher, but may be a more cost effective option if mass produced.

FPGAs, field programmable gate arrays, have gained popularity as another means for hardware development without the drawbacks associated with ASICs. Unlike the ASICs, FPGAs are capable of rapid development of custom circuits through a combination of VHDL, very high speed integrated circuit hardware description language, or Verilog and synthesis tools. FPGAs also benefit from advances in transistor technology; larger and faster FPGAs can be produced at more affordable prices. FPGA-based face detection may be able to provide a performance boost over the current software-based approaches. Not all face detection methods are suited for an FPGA; high-level detection methods, such as analysis of eyes, nose, and ears, are memory intensive and would be difficult to implement.
however, low-level detection methods, such as skin color or texture, are possible.

1.1 Thesis objective

This work analyzed and compare the performance of both a software and hardware implementation of a feature-invariant face detector. The face detector was initially prototyped in Matlab, which served as an environment to tweak and analyze the accuracy of the detector. The completed detector will then be implemented in C++ and partially implemented in VHDL for analysis of performance. The C++ implementation of the face detector will be benchmarked on several high performance consumer-level computer systems. The VHDL implementation will be synthesized for FPGAs from several Xilinx product lines.

The face detection method will consist of Bayesian classification in the YC\(_r\)C\(_b\) color space to segment the image into skin and nonskin pixels. The skin regions will be analyzed by a direct least square elliptical fitting method to determine if the region has a face-like shape. The face detection method contains many pixel-level operations that should be extremely fast in both software and hardware. Finally, the two implementations will be compared.

The layout of the thesis is described here. An overview of face detection techniques as well as other research within this area that specifically pertains to this work appears in Chapter 2. The overall design of the face detector is presented in chapter three. The implementation in Matlab, C++, and VHDL is further discussed in chapter four. Chapter five covers the testing performed. The accuracy and performance results of the face detector are presented in chapter six. Finally, chapter seven provides a conclusion and suggest further research.

A lot of research has been done in the area of face detection. This research lays the foundation for the work presented in this thesis. The next chapter presents an overview of face detection research followed by an in-depth look at methods similar to the approach used in this thesis.
Chapter 2

Background

This chapter has three sections. The first provides an overview of approaches that have been taken in face detection. The next looks at the feature-invariant approach in further detail, particularly focusing on skin pixel classification methods and face localization through an elliptical fitting method. Finally, architectures that pertain to the face detection implementation are presented.

2.1 Face detection overview

The goal of face detection is to categorize objects within an image into face and non-face segments. Face detection should not be confused with face recognition, whose purpose is to identify and verify the identity of a particular person. Face detectors use a wide variety of information to locate faces such as facial features, shapes, color, and texture. Face detection is a difficult problem because of the wide range of differences in images, some of which are the pose of the person, facial expressions, the presence of non-skin objects on the face (such as glasses, jewelry, and facial hair), partial occlusion of parts of the face, the orientation of the face, and the image condition, which includes lighting, intensity, and resolution [16].

Yang, Kriegman, and Ahuja organized face detection into four categories [17][16].
Those four categories include knowledge-based methods, template matching, appearance-based methods, and feature-invariant approaches [17]. Each of these categories are discussed within this section as well as their potential within an FPGA implementation.

Knowledge-based methods rely on a set of devised rules that characterize qualities a face has. An advantage of knowledge-based methods is that they are straightforward in that it is relatively easy to come up with these rules; for example, a face usually contains two eyes which are symmetric to each other, a mouth and a nose, and two ears. An example of a rule could be the distance between detected eyes or the presence of a nose (the presence of a nose could be detected by its relative distance and position in reference to the eyes, for example) [17]. Knowledge-based methods primarily use high-level information within the image to detect faces.

Yang and Huang [17] used a hierarchical model to detect faces, which consists of three levels of rules; each layer of image information has a different set of rules applied to it, giving a more general to more detailed strategy which, although it reduces computation time needed, does not return a high detection rate. Kotropoulos and Pitas [17] used a rule-based localization method which is somewhat similar to Yang and Huang’s approach, although their strategy focuses more on using a projection method to locate the boundary of a face and then using the horizontal and vertical projections of the image to find the head, and so on. However, although there is a much higher return on successful face detection using this method, the method does not readily detect multiple faces, and it is hard to apply to images with complex backgrounds.

Difficulties with knowledge-based face detection are that it is difficult to adapt to new circumstances as rules would need to be changed or added which could present new problems. Also, it is difficult to translate initially easily-defined knowledge into rules that the face detector can use. For example, if the rules are too general, many false face detections may occur. Or on the other hand, if the rules are too detailed, the face detector might fail to detect faces which are indeed faces but do not pass all the specific rules. Also, as discussed in [17] Kotropoulos and Pitas’s approach does not work well when complex backgrounds
are present.

Knowledge-based methods focus on analyzing high-level features, which can be memory intensive and thus difficult to express within hardware. While it may be possible to prototype knowledge-based methods within an FPGA, it does not seem like a good match.

Template matching methods take the opposite approach of knowledge-based methods; they attempt to use templates, or facial patterns manually predefined by a function [17], containing facial features to locate the facial region. The templates are compared to areas of an image (correlations with the templates are independently computed for the face contour, nose, and eyes, for example); areas of high correlation are then used to determine whether or not there is a face present [17]. Advantages in using template matching are that the method allows the computer to make matches that humans might not realize, and also that it is simple to implement the initial templates.

Craw [17] proposed a localization method which was based on a shape template of a simple front view of a face. A filter is used to extract the edges first, and then edges are grouped together to search for a similar template based on several rules. After the outline of the head is found, the same process is then repeated in greater levels of detail for the smaller facial features. Related to this approach, Govindaraju [17] proposed a two-stage face detection method where face hypotheses are generated. A facial model is created in terms of features defined by the edges, and then an edge map is generated upon which a filter is used to remove objects whose contours are not likely to be a face [17]. Corners are detected to segment the contours into feature curves, which are then labeled based on their geometric properties and positions on the map. Pairs of feature curves are joined by the already established edges if they have compatible attributes, and then ratios and costs are assigned to the edges. If the cost of a group of three feature curves is low, the group is said to be a hypothesis [17]. This method returns a detection rate of approximately 70 percent; however, the faces must all be upright, unobstructed, and frontal [17].

Difficulties with template-based face detection are that it is impossible to effectively handle variations in pose, shape, and scale. Also, this approach is only able to use a few
templates and can not possibly cover all face types.

Template matching can match templates to regions within an images very rapidly in a parallel hardware implementation, which would make a VHDL implementation of template matching appealing. However, only a few templates could be used in the limited memory available on an FPGA unless external memory is used.

Appearance-based methods attempt to generalize facial features to compensate for variations in faces. Unlike the previously discussed template-based method, where the templates which describe what a face should look like are predefined, these algorithms use a wide variety of training images to "learn" what a face generally looks like. They can thus handle variations without too much difficulty, as much statistical analysis (usually understood in a probabilistic framework [17]) is performed on these example images to attempt to describe the characteristics of both face and nonface segments which compose an image.

Agui [17] presented a method using hierarchical neural networks which consisted of two parallel subnetworks where the inputs are intensity values from both an original image and from a filtered image. The advantage of using this network is that having a training set of images to capture the many complexities of faces in images is quite effective with this method. However, in order to attain accurate face detection, a large training set would need to be run through the system before fine-tuned and highly accurate results could be obtained. Another approach using Support Vector Machines (SVMs) was proposed by Osuna [17]. Instead of minimizing the training error, SVMs utilize a different induction principle called structural risk minimization. This principle's aim is to minimize an upper bound on the expected error [17]. However, the computation used for minimizing this error, which involves the solution of a very large quadratic programming problem, is both memory and time intensive.

Difficulties with appearance-based methods have already been discussed; they are time and memory intensive [17], which limits their real-time capabilities. The amount of memory needed would make it difficult to design an efficient FPGA implementation where much less memory is available within the circuit.
Lastly, feature-invariant approaches focus on the features that remain constant regardless of pose, facial features and expressions, or lighting conditions. These methods use skin color, face shape, and skin texture to determine facial candidates. Many feature invariant methods can be performed at the pixel-level, which is very fast [1].

In feature-invariant methods, facial features such as the eyes, nose, and mouth are commonly extracted using edge detectors, as discussed previously [17]. Then, based on these extracted features, a statistical model is created which describes the relationships of the features to each other and which can also ultimately verify the existence of a face. Advantages of using feature-invariant methods are that they do not rely on the features themselves, orientation of the image or face in the image, or anything related to pose or shape. Also, processes are handled on the pixel-level rather than the object level, which is much quicker than the other alternatives previously discussed.

Similarly, pixel-level skin segmentation predominately uses color information from the pixels to segment images into skin and nonskin. A variety of methods have been devised to use this color information in different ways. Many of these methods are described in [14], [1] and [19]. Some of these methods are analyzed in this section. It is important that the color information is displayed accurately for the pixel segmentation to perform well. Different color spaces are also be analyzed to see which ones are better suited for skin pixel segmentation.

Yachida et al. [17] proposed a method to detect faces in color images using fuzzy logic; two fuzzy models were used to describe the distribution of skin and hair color in the CIE XYZ color space [17]. Also, Sobottka and Pitas [17] presented a method for face localization and facial feature extraction using both shape and color [17]. They used ideas such as including using a color space to locate skin-like regions and using a best fit ellipse. A similar approach is used within this thesis.

Difficulties in using feature-invariant methods are that image features can be corrupted due to lighting, occlusion, and other common problems with facial detection in images. Feature boundaries can thus be weakened in faces, while shadows can cause numerous and
stronger edges which render perceptual grouping algorithms useless [17].

The feature-invariant method's bottom-up approach would be a good method to be prototyped within an FPGA. The pixel-level operations could be accomplished within an FPGA, while the possible face regions could be analyzed in software to search for facial features.

2.2 Feature-invariant approaches

Feature-invariant methods generally consist of multiple components. One component is used to find the skin regions, and another to filter the skin region for faces. Various methods to find skin regions at the pixel level have been proposed; an overview of such methods is briefly discussed. Face regions need to be found within the skin regions. One way to find the face regions is to fit an ellipse to the region and compare the shape of the ellipse to the elliptical shape a human face is expected to have. An elliptical fitting method developed by [3] follows the pixel-level classification overview.

2.2.1 Skin Pixel Classification

Skin pixel classification is at the heart of feature-invariant methods, which take a bottom-up approach to detecting faces. The classification of skin regions is the first stage and is followed by the filtering of these skin regions. This section provides an overview of various skin pixel classification methods.

A relatively simplistic classifier is based on a normalized R/G ratio. It has been observed that skin pixels generally contain a higher level of red than green or blue. Analysis of a sample set of skin pixels where the red components are divided by the green components shows that the majority of skin pixels are found on the red side of the unity gain line. A Normalized R/G ratio skin classification method could be modeled as

\[L_{\text{thresh}} < R/G < U_{\text{thresh}} \] (2.1)
where L_{thresh} and U_{thresh} are lower and upper boundaries of the region, respectively. While skin pixels can be readily detected using this method, analysis of nonskin pixels using the same method shows that nonskin pixels are evenly distributed on the red and green sides of the unity gain line. Normalized R/G ratio is hampered by the large amount of false detections it generates[1].

Observations made concerning the appearance of skin pixels can only take segmentation so far. Probabilistic methods do not rely on patterns to detect skin. These methods use a set of skin pixels to determine the probability that a pixel is skin for every possible color [14]. A simple probabilistic method is the lookup table, which compares the probability to a skin threshold as shown below

$$P(x|skin) > \text{Thresh}$$

(2.2)

where x represents a particular pixel, and Thresh the minimum value at which pixels are classified as skin [19]. Unlike methods that need to define specific regions, this method can detect skin pixels regardless of where they appear in the color space. The training set of skin pixels used is critical in such approaches as the success of the method is dependent on the accuracy of the probability table created from the training sets. It is important that the training set covers the whole range of skin pixels for all kinds of lighting conditions [14]. This is to provide the classifier a certain level of invariance to illumination, which is one of the major difficulties pixel-based classifiers face. While the lookup table approach is an improvement, it does not consider the likelihood of a pixel being nonskin. A pixel may have a probability of being skin that is below the threshold, but its probability of being nonskin would be even less. The lookup table would classify this pixel as nonskin when it should really be classified as skin. The lookup table also requires a large amount of memory to store the probabilities.

Other methods analyze the probability tables and attempt to fit a parametric model to the data in an effort to reduce the space needed. In some color spaces the region with a high probability of being skin looks roughly like an ellipse and can be fit to a Gaussian model.
An elliptical Gaussian joint probability density function is shown below

\[
P(x|\text{skin}) = \frac{1}{2\pi|\Sigma^s_l|^{\frac{1}{2}}} e^{-\frac{1}{2}(x-u_s)^\top \Sigma_s^{-1}(x-u_s)}
\]

(2.3)

where \(x \) is the pixel, \(u_s \) is the mean vector and \(\Sigma_s \) is the covariance matrix. The latter two are obtained from probabilities. Other parametric models have also been proposed to model skin regions. While parametric methods require little space, the trade-off is in the computational intensity. For each pixel, a calculation is made to determine whether or not it resides within the model [14]. The classification time would take much longer than that of the lookup table. Besides increased computational costs, [17] also found that histogram-based methods are able to achieve better accuracy.

The Bayesian classifier method builds upon the lookup table. It utilizes Bayes’ Theorem of conditional probability to perform the segmentation. Bayes’ theorem can be put in terms of the conditional probability that a pixel is skin as shown below.

\[
P(\text{skin}|x) = \frac{P(x|\text{skin})P(\text{skin})}{P(x|\text{skin})P(\text{skin}) + P(x|\text{skin})P(\bar{\text{skin}})}
\]

(2.4)

Besides using a Bayesian classifier for the probability that a pixel is skin, one can also be created for the probability that a pixel is nonskin. The probability obtained by the skin and nonskin classifiers can be compared to produce an accurate segmentation without having to meet a certain threshold. The ratio of skin probability to nonskin probability can be found by dividing the skin classifier by the nonskin classifier to get

\[
\frac{P(\text{skin}|x)}{P(\bar{\text{skin}}|x)} = \frac{P(x|\text{skin})P(\text{skin})}{P(x|\text{skin})P(\bar{\text{skin}})}
\]

(2.5)

where any value greater than one are classified as skin and any value less than one would be classified as nonskin [14].

While the lookup table attempts to maximize the likelihood that a pixel is skin, the Bayesian classifiers attempts to maximize the a posteriori (MAP). The MAP method considers the frequency of skin and nonskin pixels in an image when determining the classification. Using the probability of the occurrence of skin and nonskin pixels enables a safer
classification of pixels than when their skin and nonskin probability are similar. For example, if it was calculated that 75\% of the pixels in the training images were nonskin, then given nearly equal probabilities for a pixel, there is a better chance that the pixel is nonskin. The ML method used for the lookup table assumes $P(\text{skin}) = P(\overline{\text{skin}})$ [19] and could not make this adjustment.

2.2.2 Face localization

The classification of pixels as skin and nonskin is only one component of the face detector. Feature-invariant methods are typically bottom-up approaches. Once the classified image is divided into skin and nonskin regions, the skin regions can be analyzed for facial features. Features such as eyes, nose, and lips can be searched for to differentiate the faces from hands and other skin areas. Another approach would be to look at the shape of the region and compare it to the shape of a face. Since faces are generally elliptical in shape, each object can be examined for elliptical-like qualities. Fitting an ellipse to an object is a much simpler and less time consuming approach than trying to find multiple features and analyzing their location in the image. Geometric moments could also be used to determine the ellipse-like qualities of each object. A least square fitting algorithm for fitting ellipses was proposed in [3] which improves upon the time needed to find the ellipse, and is used here.

The direct least square fitting of ellipses uses an algebraic model for a conic to fit the ellipse to the data points. The equation for a general conic is

$$F(a, x) = a \cdot x = ax^2 + bxy + cy^2 + dx + ey + f = 0 \quad (2.6)$$

where $a = [a \ b \ c \ d \ e \ f]^T$ and $x = [x^2 \ xy \ y^2 \ x \ y \ 1]^T$. The fitting for a conic can be accomplished by minimizing the sum of squared algebraic distances, which can be viewed as
for \(N \) data points. Adding a quadratic constraint to the parameters allows the minimization to be solved by the following rank-deficient generalized eigenvalue problem

\[
D_T D a = S a = \lambda C a
\]

(2.8)

where \(D = [x_1 \ x_2 \ \cdots \ x_N]^T \), which is the design matrix, \(S = D^T D \) is then the scatter matrix, and \(C \) is the quadratic constraint.

A conic is elliptical if the discriminant \(b^2 - 4ac < 0 \). Since an elliptical region is desired, using this restriction on the discriminant as the constraint would result in an ellipse. However, the Kuhn-Tucker conditions do not guarantee a solution for minimization of quadratic forms that are subject to this type of non-convex inequality constraint. This problem can be circumvented by arbitrarily scaling the parameters and include the scaling as part of the constraint. The constraining \(C \) was chosen to be \(4ac - b^2 = 1 \).

Using the Lagrange multiplier \(\lambda \) and differentiating, the following system of simultaneous equations is obtained as a necessary condition for a solution to be a minimum.

\[
Sa = \lambda Ca
\]

(2.9)

\[
a^T Ca = 1
\]

(2.10)

Assuming \((\lambda_i, u)\) solves the above equations, then so does \((\lambda_i, \mu u_i)\) for any real scalar \(\mu \). Using the constraint equation, the value of \(\mu_i \) can be solved for in the constraint as \(\mu_i^2 u_i^T C u_i = 1 \). Through substitution of the minimization equation, \(\mu_i \) can be found to be

\[
\mu_i = \sqrt{\frac{\lambda_i}{u_i^T S u_i}}
\]

(2.11)

The ellipse fitting can finally be solved by setting \(a_i = \mu_i u_i \). Fitzgibbon, Pilu, and Fisher [3] go on to show through a series of proofs that there is exactly one negative generalized eigenvalue in the solution, and it is the elliptical solution.
The direct least square fitting algorithm for the ellipses discussed fits well into the system as the equation is relatively simple, efficient, robust, and guarantees an elliptical result. Fitzgibbon, Pilu, and Fisher [3] also claim that this method is less computationally expensive than its predecessors.

2.3 FPGA architectures

Morphological dilation and erosion as well as the connected components algorithm were implemented in VHDL. The rational used to select these operations is discussed in section 4.2 on page 41. Similar work in these areas is presented in this section.

2.3.1 Morphological implementations

Morphological dilation and erosion are used to expand(dilation) or contract(erosion) the edges of objects within an image. A structuring element is used to determine how far the edges are dilated or eroded. Further details on these operations are provided in section 3.4 on page 24 in the design section of the paper.

Ong and Sunwoo [9] investigated a cost-effective morphological filter chip. The chip uses multiple steps to compute the morphological result. Using dilation as an example, each column of the image being input into the system is of course loaded into input registers. Three pixels of the structuring element are retrieved from three circular buffers. The first step consists of storing the results of additions in the partial results registers provided for by the feedback loop. Comparisons are then performed as well as the detecting of the maximum value for the dilation to be performed. The second step consists of the maximum value being given back to the comparator and evaluated again, and the third step consists of giving the maximum value to be stored in the partial results register and then given back to the comparator once again; when the third step has been completed, the dilation operation has finished and the final result is stored in the output register. After the dilation operation has been completed, the last partial results register is cleared back to zero. Figure 2.1 shows
the architecture used for implementation.

![Diagram](image)

Figure 2.1: Morphological filter chip

This chip contains a feedback loop path to reuse partial results. This path reduces the number of comparators and adding and subtracting units; only three adding and subtracting units are needed instead of the more prevalent nine. In addition, this architecture only requires five registers instead of eight to reuse partial results. One four-input decoder/encoder pair comparator is also used. Three Circular Buffers are used to contain the structuring element as well as to keep the number of pins low. Each cell of the structuring element is contained in three circular buffers one at a time; after all the pixels of the structuring element are amassed, three pixels are sent to the three adding and subtracting units. These pixels are added for dilation or subtracted for erosion with pixels of the input image. Dilation requires nine additions and eight two-operand comparisons; however, the feedback loop mentioned earlier can help reduce hardware units. The erosion function can be executed in only three steps (the same as dilation); however, instead of additions and finding maximum values, subtractions and finding minimum values are performed; therefore, both of these operations can be executed using the same hardware, albeit the different units used for both operations.

Ong and Sunwoo [9] concluded that their design may require less hardware and may
also be faster than other architectures it was compared against.

Deforges and Normand [2] presented another morphological hardware implementation that uses a new structuring element decomposition method. The main components used in this approach are discussed here. The first of which is structuring elements. Four two-pixel structuring elements are sufficient to construct any 8-convex element as several of both set unions and dilations. Most of the structuring elements used are symmetrical; most can be acquired by restricting formulas to simply elementary dilations. In this way, elements are simple to describe since only the index element being used for the dilation need be specified.

The second item to discuss is the systolic processor. As mentioned earlier, the algorithm is confining the relationship area to the 8-connected region. This makes it easy for a specific architecture to be designed according to the same process. The process needs to store one row of previously gained results to provide values within the region. To avoid multiple address management caused from the specifications of the algorithm to depend on the actual two-pixel structuring elements, some temporal relationships are created. Now, to get values within the region, the row memory need only be accessed one time by pipelining the positions in each row. A synchronous dual port ram is implemented to create a FIFO-like memory, which allows both reading and writing to occur during a single clock cycle.

Finally, the global architecture is discussed. A simple global control unit is of necessity to this system; it manages the addresses as well as the signal generation at the start of each row. The maximum extraction module implies that only a comparator and multiplexer are needed. The systolic processor as discussed above, and which is dedicated to the dilation by the structuring element, is also needed. Additional registers are used to pipeline the combinatorial phases which introduce a bit of latency, but the synchronous data path is restricted by one stage alone. Maximum clock rate is therefore dependent only on one combinatorial phase.
2.3.2 Connected components implementations

The connected components algorithm is a method that is capable of combining object pixels, those with a value of 1, to adjacent object pixels to form regions within a binary image. Each region discovered in the image is given a unique label. Further details on the connected components algorithm are provided in section 3.5 on page 26.

Figure 2.2: Processing element

Rasquinha and Ranganathan [11] presented a chip designed specifically for connected component labeling. The algorithm used within the chip processes an image using N Processing Elements and is based on rows. The organization of a processing element is shown in Figure 2.2. It requires there be two rows of the image at a time for the processing and makes two passes over the image. In the first pass, the image is processed top to bottom and in the second pass the output just gathered from the previous pass is then processed in reverse order, from bottom to top. Each of the N existing Processing Elements contains two pixels; one of those pixels is from the row currently being processed. The other pixel for the first pass is the one directly above it; for the second pass, directly below it. Every Processing Element can access the values of the labels of the pixels stored in neighboring Processing Elements. The label equivalences created in a Processing Element during the
processing is stored within the Processing Element. Subsequently, this equivalence is sent to other pixels in the row by left shifting them through the linear array of Processing Elements. Each processor cell is organized by three main parts, which work concurrently by pipelining and are controlled by a control unit. The architecture is designed in such a way as to implement both passes through the image as a single unit; the Pass signal given by the host determines the logic that is used in each Processing Element. To improve on speed and performance, each Processing Element is designed to implement a four stage pipeline for the first pass, and a three state pipeline for the second. The first two modules are used to execute the first two steps of the algorithm, and the last module is used for shifting labels out and is not used for computational purposes.

Rasquinha and Ranganathan [11] performed a simulation using eight Processing Elements (any number of Processing Elements can be used without any effect on throughput) implemented on an FPGA rapid prototyping system consisting of four XC4010 FPGAs at a frequency of about 35 MHz. The critical path could be shown to be in the second pipeline of the first module and was calculated to be 11 nanoseconds. Giving another 3 nanoseconds for register delays, a total clock period of 14 nanoseconds was calculated; the chip executes at a maximum clock frequency of 71.4 MHz and using 2 micron technology. Transferring the architecture to a more powerful, lower micron technology should improve the speed quite a bit.

Another approach uses parallel region labeling within a 3x4 window [18]. This approach uses a label assigning block with raster scan scheme to concurrently process two label-assigning functions for a binary image which has been input to the system. Two results are achieved, the first is that it appoints the initial label, the second is that it finds the label pair in the corresponding connected component. The processing block also merges labels and then outputs a symbolic image.

The value of each pixel within the binary image input to the system is either a 1, an object, or a 0, part of the background. The label-assigning must therefore give an initial label to a 1-pixel. The 3x4 window discussed above can be used to help speed up this process.
since the image data is given by the raster scan, because it shows that certain pixels are adjacent to other pixels. For 1-pixels therefore, the adjacent pixels’ labels are evaluated (if the certain pixel is a 0-pixel, its pair is simply null). At the same time, the equivalent pair is created while the label values in pairs of surrounding pixels are different. New label values are given for the certain pixel if there is no label value in the pixels adjacent to it. Using this algorithm, all 1-pixels should have been assigned labels. Additionally, in order to merge these labels with those of a connected component, a class register array is used. When the input label receives an equivalent pair, it has two register locations; after reading and subsequently comparing the data of the two registers, the smaller label can be completely replaced by the larger one. Also, in the second raster scan phase, the class register array can be used to retrieve the final label value in order to acquire the symbolic image as discussed in the first paragraph above, which is the output of this operation. Delving deeper into the hardware aspect, the label-assigning block retrieves two pixel information from the binary image memory and then appoints the interim label for each pixel to be saved into the image memory. And, because the register array only processes one equivalent pair at a time, the combination block is used to re-organize the two given pairs. The label image memory is then read and evaluated by the class registry array to complete any and all label merges for the connected component.

To conclude, this labeling architecture can be verified on an FPGA which takes 6120 logic elements with a working frequency of 80 MHz, which makes this connected component labeling assignment method a faster one. The architecture uses two processing elements and one class registry array to achieve the label assignment discussed in detail above in two raster scans. This design therefore gives better performance: with an FPGA implementation, real time operation can be achieved.

An overview of face detection methods, specifically focusing on feature-invariant approaches using skin color and face shape were covered in this chapter. Lastly, hardware architectures similar to the implementations presented in this work were discussed. Now that a foundation of face detection research has been laid, the face detection method used
for this thesis will be presented.
Chapter 3

Design

In order to compare software and FPGA performance in face detection, a simple face detector has been implemented. High-level detection methods are not suited for FPGA design, so this detector focuses on low-level methods. This chapter provides a high-level overview of the face detector followed by a detailed description of each component. The face detector uses Bayesian classification to divide the image into skin and nonskin pixels, which are then grouped into objects. An ellipse is fit to each object in order to compare its shape to that of an ellipse. If the shape of the ellipse resembles that of a face and the object is a close match to the ellipse, it is classified as a face and extracted. Figure 3.1 shows the flowchart containing the entire face detection process.

![Face detector flowchart]

Figure 3.1: Face detector flowchart
3.1 YCrCb conversion

Images are typically expressed in the RGB color space, however, it is a poor color space in which to analyze a pixel’s color information in. The YCrCb color space separates the luminance information, Y, from the chrominance information, Cr and Cb, which allows for a more accurate portrayal of the color of a pixel. Yang notes that most differences in skin color reside in the intensity rather than the chrominance [16], so a color space that can explicitly single this information out is beneficial. Ignoring the luminance component significantly reduces the difference in appearance of pixels and improve our ability to accurately determine the pixel’s type. Using the YCrCb color space gives some illumination invariance as most of the differences in lighting are in the luminance component. The transform from RGB to YCrCb is shown below.

\[
Y = 0.299R + 0.587G + 0.114B \\
C_R = R - Y \\
C_B = B - Y
\]

The simplicity of the transform incurs little to no overhead in the face detection process while providing a more accurate portrayal of each pixel’s color information.

3.2 Color correction

Converting to the YCrCb color space helps to minimize the affect of different lighting conditions in images; however, it does not account for how different input devices express color information as it is captured. Viewing the exact same scene taken at the exact same time by two different types of cameras will appear slightly different as each camera has slightly different hardware which interprets the scene differently. While there is no way to get every input device to interpret a scene in the same way, there are methods to balance the color within the image.
The gray-world assumption is one method used to minimize the difference. This method assumes that the average of each color component within an image is gray. If the component does not average to gray, then that component within each pixel can be scaled, so that the component will average to gray. While this assumption is by no means perfect, it provides a common base in which to normalize different images.

Gray-world averaging is used to normalize how the Cr and Cb components appear in different images. Correcting the color of the image through gray-world averaging is important so as to maintain the robustness of the classification as the location or input device changes. Without gray-world averaging, every time one of these things is changed, the classifier would need to be retrained else it would subsequently suffer from a low correct detection rate.

\section*{3.3 Bayesian classification}

Once the image has been converted to the YCrCb color space and color correction has been performed in an attempt to normalize color appearance, Bayesian classification can be used to divide the image into skin and nonskin pixels. Bayesian classification uses a priori knowledge of the probability a pixel is skin and nonskin based on its color information. Using both probabilities, it is able to make a determination if the pixel is likely to be skin or nonskin.

Bayesian classification is based on Bayes’ equation. The equation determines the probability that an object is a particular type given that object. When applied to skin and nonskin pixels, it would be the probability a pixel is skin or nonskin given the pixel. The actual equation in terms of skin probability is shown below

\begin{equation}
P(skin|x) = \frac{P(x|skin)P(skin)}{P(x|skin)P(skin) + P(x|\neg skin)P(\neg skin)}
\end{equation}

where x represents the pixel and $P(x|skin)$ and $P(skin)$ are probabilities that are known a priori. The skin and nonskin probabilities for a given pixel can be compared by
applying the same equation to the pixel's nonskin probability. Combining and simplifying the equations yield

\[P(x|\text{skin})P(\text{skin}) > P(x|\overline{\text{skin}})P(\overline{\text{skin}}) \]

(3.5)

where the pixel is determined to be skin if the statement evaluates to true and nonskin if it evaluates to false. The equation can be further simplified by combining the skin and nonskin probability values into a threshold value. This is possible since the skin and nonskin probability values are independent of the pixel used. The final equation is shown below.

\[P(x|\text{skin}) > P(x|\overline{\text{skin}}) \cdot \text{thresh} \]

(3.6)

Besides simplifying the equation, the \text{thresh} value adds flexibility to the calculation. It can be adjusted to give more weighting to the pixel's skin probability or nonskin probability, which causes the equation to classify pixels as skin more aggressively or more conservatively.

The Bayesian classification uses the color of the pixel to determine the conditional probabilities for the pixel's type given the pixel; however, any feature of the pixel may be used for this purpose. In order to use the pixel's color to determine the conditional probabilities, the skin and nonskin probabilities for each possible color within the color space need to be determined. A set of pixels predetermined to be skin or nonskin are used to determine the probabilities. This process is referred to as training.

The actual classification iterates through the image and classifies each pixel as either skin or nonskin based on the modified version of Bayes' equation and the pixel's color information. Upon completion the image is expressed in terms of skin pixels and nonskin pixels.
3.4 Gap closing

The classification process makes an educated decision as to whether a pixel is skin or nonskin; however, the classifier is basing its decision on the likelihood that a pixel is of a particular type. While a pixel may be more likely to be one type rather than another, it still may be of the other type. It is expected that the skin color classifier will do a good job segmenting the image, but not a perfect job. As a result, there will be holes and gaps within the areas classified as skin. Patching these gaps will give the face detector a more accurate depiction of the skin areas within the image. One way to close these gaps would be morphological closing.

The morphological closing operation is an image processing technique to fill in holes within an object while maintaining the appearance of the rest of the image. The operation is actually a combination of image dilation and image erosion. Image dilation expands all the edges within the image based on the shape of the structuring block. The structuring block is further discussed below. In this case, the goal of dilation is to fill in the areas within the objects. After the dilation is completed, erosion is used to cause all of the edges in the image to recede based on the shape of its structuring block. The erosion process is the opposite of the dilation process, and causes all the object edges within the image to recede to where they existed before dilation, however, the areas within the object should no longer have edges and remain untouched. An example of this process using a 3x3 square structuring element is shown in Figure 3.2. The first pane shows the original image, while the next pane depicts the image after dilation. Notice how the top hole is completely filled in while the bottom one still contains an edge. The final pane shows the image after the erosion stage. It can be seen how the top hole was not affected but the bottom hole, which still had an edge, now appears as it originally did.

The structuring block determines the area that is used to determine if a pixel should be dilated or eroded. The structuring block is placed upon the pixel, and the other pixels which it covers are used to determine the result of the operation. Thus, a larger structuring block considers more pixels than a smaller structuring block. The shape of the block can
also be changed if desired.

Pseudocode for dilation is shown below.

For each pixel in the image
 Place the structuring element on top of the pixel
 For each pixel covered by structuring element
 If the pixel is one
 label the pixel being operated on as one
 End if
 End for loop
End for loop

Note that the border needs to be extended to calculate the border pixels. The border can either be extended with zeros or can replicate the current border values. The process used for erosion would be similar to that for dilation; however, erosion would set the pixel being operated on to zero if any of its neighbors covered by the structuring element were zero.

Before the morphological closing operation is executed it is important to remove noise within the classified image; otherwise, the closing operation may join together some of the noise and skin regions. A morphological opening operation is capable of removing the noise. This operation is composed of an erosion stage followed by a dilation stage. The
image is eroded, which causes small regions, the noise, to be eroded away completely. The image is then dilated, so that all regions that were not completely eroded away are restored back to their original state.

3.5 Object detection

Now that the pixels are classified and the holes have been filled, the skin pixels within the image can be grouped into objects. One algorithm capable of labeling the skin regions is connected components. The connected components algorithm iterates through the skin pixels, looking at each skin pixel’s neighbors. If one of the neighbors is already part of an object, this skin pixel is added to that object, otherwise a new object is created. A neighbor can either be defined as one of the four adjacent pixels, or eight, if diagonals are included. For the face detection design the diagonals are included. The connected components algorithm also detects when two objects are connected, in which case it combines the objects into one new object.

![Connected Components example](image)

Overall, connected components makes two passes on the image. The first pass identifies the objects and detects conflicts. The second pass resolves the conflicts. An example of the connected components algorithm is shown in Figure 3.3. The first pane depicts the original image, the second pane, the image after the first pass, and the third pane, the image after the
second pass. Note that the objects that came in contact in the second pane were combined into one object in the third pane.

Pseudocode for the connected components algorithm is below.

Pass 1:
For each skin pixel
 For each neighbor of the skin pixel
 If neighbor is part of an object
 If current pixel is not part of an object
 Add current pixel to this object
 Else
 Add entry to conflict list for these two objects
 End if
 End if
 End for loop
 If current pixel is not part of an object
 Create a new object and add current pixel
 End if
End for loop

Pass 2:
For each skin pixel
 If skin pixel’s object is in the conflict list
 Change pixel’s value to conflict resolved value
 End if
End for loop

Additionally the object values can be updated so that they are sequential, as demonstrated in Figure 3.3.
Once the skin regions are identified as objects, higher level analysis can be performed on these regions, which will now be called face candidates, to separate the faces from other skin regions.

3.6 Preliminary filtering

The next three stages comprise the high-level filtering of the image. The preliminary filtering step removes any candidates that are definitely not faces. There is no need to waste additional computation time on these objects. In this stage the shape and size of the candidate are analyzed. If the candidate is too small to be a face that would be of interest, the object is removed. Also, any object whose ratio of width and length is too large will be removed.

3.7 Elliptical fitting

The primary feature used to separate faces from other skin regions is the shape of the region. If the region is a face, then it will have an elliptical-like shape. Of course, this method is hampered by facial hair and other things that obscure the face, but should be sufficient to obtain a rough idea of performance.

In order to compare the candidates to ellipses, ellipses need to be fit to each candidate. The elliptical fitting method proposed by [3] was used for this purpose. Detailed information about the method can be found in section 2.2.2 on page 11. The method fits an ellipse to the outline of an object, regardless of the shape.

Before an ellipse is fit to the candidate, the outline of the region needs to be extracted. The erosion operation previously discussed is used to remove the edge of the candidate. The candidate is then subtracted from its eroded version to obtain the outline, which was the edge that was removed.

A general conic equation is obtained after performing the elliptical fitting. This is
converted to an ellipse-specific equation.

3.8 Elliptical filtering

The elliptical fitting method will fit ellipses to all candidates, so the shape of the ellipse must be compared to the shape of the actual candidate to determine how well it fit. For each pixel that is part of the face candidate, it is determined if the pixel falls within the ellipse or not. The number of pixels that are within the ellipse are compared to the area of the ellipse. The candidate is removed if sufficient area within the ellipse is not covered.

The shape of the ellipse is also analyzed in a similar way that the original shape was in preliminary filtering. If the width to height ratio is too large, then the candidate is also removed.

3.9 Face extraction

The candidates that pass the filtering process are considered to be faces; they will be extracted from the original image as detected faces. A rectangular region with the width, height, and orientation of the ellipse fit to the face is used as a boundary for the region to be extracted.

The face detection method covered in this chapter contains many components. The components were implemented in Matlab, C++, and on an FPGA using VHDL. The details of these implementations are presented in the next chapter.
Chapter 4

Implementation

The face detector was implemented in both software and hardware in order to compare their performance. The software implementation was first written in Matlab for prototyping and then in C++ for optimal performance. Analysis of the C++ implementation showed which components were most time consuming. Those were implemented in VHDL in order to obtain a good estimate of a hardware version of the face detector. The details of these implementations are discussed in this chapter.

4.1 Software

The software implementations in Matlab and C++ were conceptually the same, although the structure of each program was slightly different. Any significant differences between the implementations is noted throughout this section. This section first covers the general implementation and then the structure of both the Matlab and C++ versions.

4.1.1 YCrCb conversion

The conversion from RGB to YCrCb was straightforward. A loop was created to iterate through the input pixels and convert each pixel to the YCrCb color space. The result was stored within a new image.
4.1.2 Color correction

The color correction component first determines a correction value for each component in the color space, and then applies those corrections to each pixel in the image. The correction for each color component is the average value of that component in the image subtracted from its gray level value. In the case of the YCrCb color space, the gray level value for both chrominance components is zero, while the Cr and Cb ranges are from -179 to 179 and -226 to 226 respectively. Once the correction values are determined, they are applied to their respective components. If the correction causes the component’s value to exceed its range, then the value is set to the range’s limit.

4.1.3 Bayesian classification

The pixel classification component used the Bayesian classifier equation to classify components. The parameters for the script are a skin probability map, a nonskin probability map, and a threshold value. The classifier’s flexibility allowed for different probability maps and threshold weights to be analyzed without any modifications.

4.1.4 Gap closing

The morphological opening and closing operations used 3x3 structuring elements to process the image. A larger structuring element was not chosen so as to prevent the morphological closing operation from joining two separate skin regions. The implementation of the dilation and erosion methods are built into the Matlab libraries, however they were implemented following the algorithm detailed in section 3.4 on page 24 for the C++ face detector.
4.1.5 Object detection

The implementation of the connected components algorithm follows the pseudocode described in section 3.5 on page 26. The connected components algorithm starts in the upper-left corner of the image and works across the rows until the bottom-right corner is reached. Since only the pixels already processed have been assigned to an object, only the neighbors of a pixel that have been processed will be analyzed in determining the value of the current pixel. This would include the pixels in the row above the current pixel and the pixel just to the left of the current pixel.

The pseudocode did not explain how to implement the conflict handling. The conflicts were handled through use of a conflict table that maps a pixel’s object value to the new value after conflicts have been resolved. The table is updated each time a new object is added or a conflict is detected in order to keep the table and algorithm in sync. The table also needs to keep track of the number of conflicts. The pseudocode for adding a new object is shown below.

Add a new entry table[newObj]
Set the entry value to newObj - numConflicts

Note that the object’s initial value is determined by subtracting the number of conflicts already detected. This is to keep the table continuous. Each time a conflict is resolved, one object value is no longer used; however, by decrementing each subsequent object by one, it can be replaced. New objects are decremented by the number of conflicts to account for these lost objects. More details on resolving conflicts can be found in the following pseudocode.

If table[obj1] != table[obj2]
 numConflicts = numConflicts + 1
If table[obj1] > table[obj2]
 higher = table[obj1]
 lower = table[obj2]
Else
 higher = table[OBJ2]
 lower = table[OBJ1]
End if
For lower to tableSize
 If table[val] == higher
 table[val] = lower
 Else If table[val] > higher
 table[val] = table[val] - 1
 End if
End for loop
End if

When resolving a conflict, the conflict table first checks to see if this is a new conflict. If so, the object with a higher value is merged into the object with the lower value. As mentioned above, subsequent objects are decremented by one to keep the known regions sequential.

The second pass of the connected components is basically just looking up the conflict resolved value for each pixel. However, additional computation was added to the second pass in order to speed up the preliminary filtering stage. The filtering stage uses the height, width, and area of each object detected in this stage. Since each pixel is already being accessed for the second pass, the information needed for each object is also calculated.

4.1.6 Preliminary filtering

The preliminary filtering component filters objects based on size and height to width ratio. In order for a region to be a face candidate, its area must be at least one percent of the total image area, and a maximum 2:1 ratio between height and width. The size restriction removes skin regions of a trivial size. The height to width ratio restriction removes skin regions that do not have dimensions that would be expected of a facial region.
4.1.7 Elliptical fitting

The elliptical fitting stage uses erosion to extract the edge of the object as described in section 3.4 on page 24. The erosion operation implemented for gap closing was modified so that a specific value within the image could be eroded. The operation looks for pixels with that value and erodes them if all their neighboring pixels covered by the 3x3 structuring element do not also have that value. The enhanced erosion technique was only used in the C++ implementation as erosion is built into Matlab. In the case of Matlab, the image is compared to the desired object value, which returns a new image comprised of ones, where the pixel matched the object value, and zeroes throughout the rest of the image. This new image could be used with Matlab's erosion function.

The elliptical fitting method described in section 2.2.2 on page 11 was implemented and used for this stage. Source code provided by Fitzgibbon, Pilu, and Fisher [3] was incorporated into the Matlab implementation. The elliptical fitting code as well as the Matlab functions used within the code were ported to the C++ implementation.

4.1.8 Elliptical filtering

Once an ellipse is fitted to a face candidate, the shape of the ellipse and how well the object matches the ellipse are analyzed to separate out the perceived faces. Like the height to width ratio restrictions for the preliminary filtering, the major and minor axes of the ellipse must maintain a 2:1 or less ratio to be considered a face.

If the ratio of the major and minor axes are within the acceptable range, the shape of the object and ellipse are compared. Since it is guaranteed that an ellipse will be fit to each object, it is necessary to see how well it fit in order to determine if this is a face region. The number of pixels within the object that reside within or on the ellipse are added together. This value is compared to the total area of the ellipse. A face candidate must fill at least 75% of the elliptical area to be deemed a face. The percentage used for the area requirement was determined through testing.
4.1.9 Face extraction

The face extraction stage extracts a rectangular region from the image containing the face. The width of the image is the length of the minor axis and the height is the length of the major axis. Each pixel within this region is extracted and added to a new image. If the subject’s head is tilted, the orientation is corrected so that the head appears upright in the image. The tilt correction assumes that the subject’s head is no more than 90 degrees from being upright. Finally, each face extracted is written to a file.

4.1.10 Training the classifier

The Bayesian classifier relies on the skin and nonskin conditional probabilities known for every color within the color space. These probabilities are determined through use of the color information for a set of pixels already known to be skin and nonskin. These pixels are used in the creation of a training set. The accuracy of the classifier relies upon the data within the training set, therefore it is critical to create a robust training set.

The training set is composed of a group of images containing a variety of faces with varying skin tone, facial expressions, orientation, lighting, and backgrounds. Various research teams have spent time developing training sets for this purpose. Many of these sets are made available freely to the academic community.

Originally the Aleix database created at Purdue University [8] was chosen to train the Bayesian classifier. However, the database used a white background for each image. Since the background of an image affects how the input device interprets the rest of the image, the database was unable to robustly represent various ways skin color appears, and could not be used. The Color FERET image library created by NIST[10] was chosen to replace the Aleix database. The Color FERET database is extremely large and provides images taken with various backgrounds, lighting sources, and skin tones among many other variations, and which provides a robust set of pixels in which to train the classifier. NIST’s release agreement prohibits sample images from being included, so no images are provided.
Two hundred and fifty frontal poses were selected from the database to be used as the training set. In order for these training images to be useful, the skin and nonskin regions need to be identified as skin and nonskin. Once the regions are known, probability tables can be created for both skin and nonskin. The creation of the probability tables is discussed later. A mapping image was created for each image in the training set. Each mapping image was created with the same dimensions as its training image. Each pixel in the mapping image is either black, green, or blue. Green pixels represent skin pixels, blue pixels represent clothing, hair, eyes, eyebrows, lips, and nostrils, while black represents everything else. The green pixels are be used for training the skin probabilities and blue for the nonskin probabilities. While the Color FERET database images have various backgrounds, there are not enough variations for them to be included with the nonskin pixels. An example image mapping is shown in figure 4.1.

![Example image map](image_url)

Figure 4.1: Example image map

Each mapping had to be created by hand as segmentation algorithms such as kmeans were not able to segment the skin and nonskin regions accurately enough. Refining the
images initially segmented by such algorithms proved to be as time consuming as creating the mappings from scratch. Adobe Photoshop and The Gimp photo editing tools were used instead to create the image mappings. Images mappings were created over-top of the original images using following the steps.

- Select the eyes, nostrils, lips, and eyebrows using the lasso tool
- Fill those areas in with blue
- Draw along the outline of the face using the pencil tool in green
- Select the interior of the outline using the magic wand tool
- Fill in that area as green
- Outline the hair and the clothing with the pencil tool in blue
- Select each region with the magic wand tool and fill it in as blue

A Matlab script was also written to touch-up the mappings to fill in tiny gaps that were not noticeable. The script filled the gaps between skin and nonskin regions as blue and then set any pixel that was not blue or green to black, so that it would be ignored during training.

Once the mappings were created for each training image, the images could be used to train the classifier. A two dimensional histogram representing all Cr and Cb values was created for both skin and nonskin. The pixels from the training images were first converted to the YCrCb color space and then color corrected using the same method as the face detector. Each pixel in the color corrected training image was compared to the corresponding pixel in its mapping. Pixels mapped to a green pixel were added to the skin histogram and pixels mapped to a blue pixel were added to the nonskin histogram. When all of the training pixels were added to the histograms, each histogram was divided by the number of pixels within the histogram to obtain the probabilities of each. Finally a 3x3 averaging filter was used on each set of probabilities to smooth out any abnormalities in the map.
The Matlab implementation used these probability tables along with a threshold value for Bayesian classification. The C++ implementation used a predefined threshold value and calculated the classification for each possible color combination during training. Calculating the classifications beforehand reduces the number of calculations needed at run-time and improves the overall performance, at the sacrifice of versatility in the threshold value. The preclassified results will be referred to as the Bayesian mapping. The Bayesian mapping for a threshold of 0.90 is shown in Figure 4.2 where the x-axis is Cb and the y-axis Cr. The training algorithm was built into both the C++ and Matlab implementations.

![Bayesian mapping](image)

Figure 4.2: Bayesian mapping

4.1.11 Matlab structuring

The Matlab implementation was used to prototype the face detector. Matlab provides built-in image format reading and writing as well as an interactive debugger which are useful for prototyping.
The Matlab code was split into four basic categories. The first category was image segmentation, which handled any processing needed to convert images to the proper size or format, as well as handling the image mappings. The skin classification category contained the scripts used for creation of the Bayesian mapping as well as the classifier itself. This category also included the color space transform and color correction code. The next category was object detection, which included the gap filling, connected components, and preliminary filtering. The final category was ellipse fitting, which held the ellipse fitting algorithms, ellipse filtering, and face extraction.

A final script was written to handle the interactions between the different groups of scripts that connected the overall face detection implementation. The scripts were split up into categories, so that each area of face detection could be analyzed and tested independently. Besides the code written to create the Bayesian mapping and to perform face detection, additional scripts were written to measure the accuracy of the Bayesian classifier as well as the entire system.

Uncompressed TIFF images were used for the creation of the Bayesian mapping and the face detection; however, the face detection script could be modified to use any type of image format supported by Matlab.

4.1.12 C++ structuring

C++ was used for the performance benchmarking of the software-based face detection. C++ is compiled to machine code, which gives it a speed advantage over interpreted languages such as the language used with Matlab.

The face detector is split into four files: FaceDetector.h, FaceDetector.cpp, Matrix.h, and Image.h. FaceDetector.h and FaceDetector.cpp contain the the actual face detection implementation while Matrix.h and Image.h are helper classes. Matrix.h contains a template class designed as a container for matrices and the matrix functionality needed for face detection. Image.h also contains a template class. This class was designed to contain images and some basic imaging operations. The helper classes were written as templates, so
that regardless of the data type used within the matrix or image, only one implementation was needed. A UML diagram detailing the C++ face detection implementation is shown in Figure 4.3.

![UML Diagram](image)

Figure 4.3: Face Detector UML Diagram

The face detector has a main function capable of creating a Bayesian mapping and executing the face detection algorithm. The face detector class may also be included in another C++ program where its face detection and Bayesian map creation functions can be called directly.

A custom image format was designed for use with the face detector when it is used as a stand-alone application. The format consists of a 16 byte header followed by the image
data written in binary. The header is composed of the following four 4 byte values: rows, columns, dimensions, and bytes per dimension.

4.2 Hardware

It was not necessary to implement the entire face detection design in VHDL in order to get a accurate estimate of performance. Implementing the bottlenecks within the face detection process is sufficient. A functional break-down of the C++ face detector’s execution time was analyzed to locate the time intensive functionality. The break-down was created using images of size 252x378 pixels. It can be found in in Figure 6.4 on page 64.

The erosion and dilation operations account for about 34% of the execution time. These operations are pixel independent and could be significantly improved with a parallel hardware design, and therefore a hardware design was implemented. The conversion to YCrCb and image subtraction functionality are also pixel independent, and their performance would be close to the performance of the erosion and dilation operations. As such, they will have similar performance and can be accurately measured by the erosion and dilation execution time. The color correction functionality makes two passes on the image. The first pass finds the correction values, and the second applies the correction. Both passes would again be similar in performance to erosion and dilation, as within a pass the output of one pixel does not depend on another. The color correction execution time can be computed as close to twice that of erosion or dilation. Finally, the connected components algorithm accounts for about 13% of the execution time. This functionality is unlike the others mentioned above, as each pixel relies on the output of the pixels processed before it. Such an algorithm is not ideal for use in hardware, but will give an accurate estimate of the type of performance such an algorithm should expect to have in an FPGA. Combined, these functions account for roughly 92% of the execution time within software. If the functionality that makes up the remaining 8% of execution time is assumed to be at least as fast in hardware as in software, then the performance of a complete hardware implementation
can be inferred from implementation of the dilation and erosion operations as well as the connected components algorithm.

4.2.1 Erosion and dilation filters

The erosion and dilation filters can run independently of the output from the filter for other pixels, and thus can be improved through parallelization in hardware. The hardware needed to read the image and write the result is the same for both filters, so the implementations are almost identical except for the actual filter operation. One implementation is presented for both.

In order to use parallelization, multiple pixels need to be filtered at the same time. The image was divided into blocks of 32x32 pixels as shown in Figure 4.4.

![Figure 4.4: Image broken into 32x32 pixel blocks](image)

The filters use a 3x3 structuring block, so in order to process the pixels on the edge of the block, its neighbors also need to be loaded along with the block for a total area of 34x34 pixels. The image borders are represented by zeroes. Each 34x34 block was inserted into
a parallel array of 32x32 filters capable of producing 32x32 results at once. These results could then be written to memory while the next block was being loaded into the filters. A flowchart of the filtering operation is shown in Figure 4.5.

![Filtering flowchart](image)

Figure 4.5: Filtering flowchart

The current block being processed and the left and right edges needed to process it were each loaded separately into a register from RAM. The output of this register was routed to the 32x32 array of filters, so that each filter would contain one of the 32x32 values being processed as well as its neighbors needed for the filtering. The result was written to another register to temporarily hold the results until they could all be written to RAM. While the results are being written to RAM, the next block can be read in and the process continues until all blocks are read. Since each value is either one or zero, they can be stored as bits. The SRAM within the FPGA is capable of reading and writing 32 bits a cycle, so every 34 cycles a 32x32 result can be calculated and 32 cycles later it is completely written back to RAM. A circuit diagram of the VHDL implementation is shown in Figure 4.6.
Figure 4.6: Dilation/Erosion filtering circuit diagram
A simple interface was implemented for reading and writing into the filtering implementation. One value is written into the filtering circuit at a time. Once the start line is set to high, the filtering process begins. When the filter is finished, the done line is set high and the filtered data can be written out one value at a time. A more complex IO design could have been used; however, it is only implemented to allow a testbench to load in and retrieve data from the filter. Only the performance of the actual filtering circuit was measured.

The filter first writes the data written into the filter into three separate SRAMs. One SRAM holds all the image data, while the other two hold the edges needed by each block. Translators were written to detect which input values are left or right edges and to translate their addresses into the addresses of the 32-bit row it is an edge of. Once all the data is written, the filter can now calculate all filtering results. Each cycle one row of 32 bits is read from the SRAM that holds the image data, and the left and right edges for that row are also read from their respective SRAMS. If the left or right edge falls on the border of the image, then zero is used for the edge value. These 34 bits are combined and stored within the load register. Once all 34 rows are read into the load register, the filtering is performed and the result is stored in the store register. The filtered values are read out of the store register a row at a time and written into the SRAM that holds the result. The process continues until all the pixels within the image have been processed.

The filter is divided into a three stage pipeline, so that each portion of the hardware could be used at once. The first stage of the pipeline reads the values out of the SRAM to filter. At the beginning of the next cycle those values are retrieved from the SRAM and can be written into the load register, which is the beginning of the second stage of the pipeline. The filter array and the store register are also used in the second stage. The final stage writes the filtered results retrieved from the store register.

This implementation uses an image size of 256x384 for processing, which is approximately the same size as used in the software implementation’s analysis. The size was slightly extended, so that the image columns and rows could be analyzed in 32 pixel increments. Smaller images may be used by zero extending the rows to 384 pixels.
4.2.2 Connected components

A fast hardware implementation of the connected components algorithm is difficult to create, as the output is dependent on all the pixels processed before it. It is possible to design a connected components implementation that can process two pixels at once, but it is not possible to operate on a 32x32 block of pixels simultaneously like the dilation and erosion filters. A simple connected components VHDL implementation was implemented to provide a baseline for performance of connected components within an FPGA.

The first pass of the connected components algorithm requires the neighbors of the current pixel that have already been processed. Figure 4.7 shows these neighbors in relation to the current pixel.

![Figure 4.7: Connected components neighbors](image)

The pixel marked with the X is the current pixel and the yellow pixels are its neighbors that have already been processed. In order to process the pixel, the pixel and its neighbors are sent to the connected components processing element, which executes the connected components algorithm. The connected components processing element would send any conflicts to the conflict table processing element and then write the pixel’s new value over its old value within RAM. The second pass of the connected components algorithm reads each pixel’s current value and retrieves the conflict resolved value for that pixel from the conflict table processing element. This new value is written back to the RAM in place of the value from the first pass.

The flowchart for the connected components implementation is shown in Figure 4.8.
A 2x3 window is used in the connected components processing element that contains the neighbors needed to operate on the current pixel. Once the pixel is processed, the next two values from the following column are read into the window and the next pixel is processed. The output of each processed pixel is written back to RAM. If the pixel is the start of a new object, the conflict table is updated and the new value is written back to RAM. However, if any conflicts are detected, the circuit stalls while the conflict table processing element resolves the conflict and then writes the new value to RAM. The left and right edges of the image present special cases that are handled slightly differently. Once the last pixel on a row is read and the connected components algorithm has been executed on the pixel before it, zeroes are read in to represent the right edge and then the last pixel is operated on. The circuit then wraps around to the first pixel in the next row. The zeroes previously read in are now considered the left edge. The first set of pixels are read in and the connected components processing element waits until the next set of pixels are read in to obtain the final neighbor needed to operate on the first pixel in this row.
The conflict table processing element was implemented in the same way as the software version of the conflict table was implemented. The conflict table is attached to another portion of RAM where it stores the current value for each object. Finally, on the second pass the conflicts have already been resolved, so the pixels within the image simply need to be updated with their conflict resolved value. Pixels are loaded and their value is passed into the conflict table processing element one at a time. The conflict table processing element finds the conflict resolved value and that value is written back to RAM.

A circuit diagram of the VHDL implementation of connected components is shown in Figure 4.9. The IO interface of the connected components implementation is similar to that of the dilation and erosion implementations. The data is written one 1-bit value at a time into SRAM. Once the image data is written into the connected components circuit, the start line is set high and the first pass of the algorithm begins. Upon completion of the first pass, the second pass begins. When the second pass finishes, the circuit sets its done line to high, signaling that the processing is complete. The result can then be read out one 8-bit value at a time. The connected components implementation restricts the total number of objects to 255, which is the same restriction used in the software implementation. Internally, 9 bits are used to represent each image to allow for additional objects before all the conflicts are resolved.
Figure 4.9: Connected components circuit diagram
During the first pass, a counter is used to keep track of the current address being read out of SRAM. Internally, the image is offset by the size of a row within memory to create a border of zero at the top of the image, so the size of a row needs to be added to the counter value in order to have the counter correspond to a pixel within memory. However, during the first cycle the offset is not added so that the pixel in the preceding row can be read. The second cycle adds the offset and reads the current pixel. Once the two values have been read, the connected components processing element processes the previous value. If the pixel is the start of a new object, the conflict table processing element is told about the new object and operation continues to the next pixel. Otherwise, if any conflicts are detected, the connected components processing element tells the system to wait and instructs the conflict table processing element to resolve the conflict. The conflict table processing element responds to the connected components processing element by setting its done line to high. If another conflict needs to be resolved, the process will be repeated. The conflict table's control line is configured by the connected components processing element to inform the table if a new value needs to be added or if a conflict is present. Finally, the new pixel value is written back in place of the old pixel value. Another counter is used to maintain the current pixel that should be written to. The counters are then updated to the next pixel value. The second pass also uses the read counter to read the current pixel. Once the pixel is read, it bypasses the connected components processing element and obtains the conflict resolved value directly from the conflict table using the current pixel value as an index into the conflict table. The new value is then written back to the address pointed to by the write counter. Both counters are then updated to process the next value.

Pipelining was also used to speed up the execution of the connected components VHDL implementation. Three stages were used within the pipeline; the first stage controls the read counter and which offset to use in order to read a value out of SRAM. The second stage controls the connected components and conflict table processing elements. The final stage controls the write counter and writing to the SRAM. The pipeline allows for the next pixel to be read from RAM while the current pixel is being processed.
The connected components VHDL implementation was designed for images 252x378 pixels in size, which corresponds with the size used in analysis of the software implementation’s performance. Smaller images may be used by zero extending the rows to 384 pixels.

The implementations discussed in this chapter were tested to verify their functionality. Test images were created to test the components of each implementation when possible. Visual inspection and sample input were also used in the testing process. The complete testing procedure is presented in the next chapter.
Chapter 5

Testing

The testing performed for the Matlab, C++, and VHDL implementations of the face detector are presented within this chapter.

5.1 Matlab testing

The Matlab implementation was used for prototyping the face detector. As such, the validity of each component needed to be tested as well as that of the complete system. A brief explanation of how each component was tested is explained within this section. Testing of the complete face detection system is also described.

A small set of RGB pixels were used as input to test the YCrCb conversion. The YCrCb value for each pixel was calculated by hand for verification against the Matlab result. RGB values that would test the lower bound and upper bound of each value were included in the set to make sure these conditions were being handled correctly.

A sample image was used to verify color correction. The image was converted to YCrCb. The average Cr and Cb values were calculated and stored. The converted image was then used as input into the color correction script. The average Cr and Cb values for the output were calculated and verified to be equivalent to the gray level average for these values. Finally, the image’s Cr and Cb values from before color correction were subtracted from the values after color correction to verify that the correction was uniformly distributed throughout the image.
Preliminarily the Bayesian classifier was tested by using different values near the skin/nonskin threshold and by verifying that these values were classified to the appropriate type. The mapping was also tested by creating an image with every Cr and Cb combination included. The Cr and Cb combinations were arranged to match how they are arranged in the mapping. The output of such an image should match the mapping. An example test map and image is shown in Figure 5.1 where the classification result should be identical to the input map.

Figure 5.1: Example mapping test

The dilation and erosion operations used for gap closing are provided by Matlab, however the entire component was still tested. An image of ones and zeros was used as input and the output of the image was visually inspected to verify that the gap closing component was capable of removing small amounts of noise and filling holes.

The object detection was tested using a sample input image to test the connected components algorithm, which is shown in Figure 5.2. The sample input consists of several objects of various shapes. The objects were placed just outside the neighborhood of the other objects to verify that only the proper pixels were examined. The v-shaped object was used to test conflict handling. The connected components algorithm initially detects two objects, but once the base is reached, the algorithm should see that they are connected and combine them together.
The preliminary filtering of the detected objects was verified by testing the boundaries. Input with a 2:1 ratio and slightly more than a 2:1 ratio were tested. An object that was one pixel away from being large enough was tested as well as an object containing the minimum amount of pixels needed.

The elliptical fitting was too complex to verify mathematically, so it was verified by inspection. Sample faces were fit to an elliptical region and the detected ellipse was superimposed onto the image containing the face. The fitting was then verified by comparing the superimposed ellipse to the shape of the face.

The elliptical filtering was tested similarly to how the preliminary filtering stage was verified. Exactly within and outside of the ratio boundary was tested, as well as exactly within and outside the required area. The elliptical detection component passed all tests. The output from the elliptical fitting test was used as an input into the face extraction. The extracted region was visually compared to the elliptical region superimposed over the face in the original image for verification.

The complete face detection system was tested using a testing set of images from a database developed at Kodak [7]. The database contains images of various employees with different skin tones in various office settings. Fifty of these images were used in the testing
set. Mappings were created for the testing set images in order to test and analyze the pixel classification portion of the face detector. The test set was used to verify the interaction between each component as well as the detector’s ability to find faces within the images. The results of running the face detector using the testing set were used to tweak the filtering stages of the process.

5.2 C++ testing

The matrix and image template classes were separately tested in Image.cpp and Matrix.cpp, respectively. Test inputs were created to test the functionality of these classes to minimize errors before testing the complete system.

Once the Matlab implementation was verified to be correct, it could be used to test the C++ implementation. Matlab scripts were written to read and write to the image format used by the C++ version of the face detector. The output after each component for a particular input image was written to this file format. The image and the mapping were also written to the C++ image format. The image and the mapping were used as input to the C++ implementation, which also output its result after each component. A binary diff between the Matlab and C++ files was used to verify the C++ face detector’s output.

The output from the elliptical fitting was slightly different due to different implementations of the algorithms used by the elliptical fitting algorithm. The extracted faces were visually inspected to make sure the proper region was extracted.

5.3 VHDL testing

Modelsim was used to test the VHDL implementations. A testbench was written for each implementation to input the test image into the circuit, execute the circuit, and compare the output against the expected output. Test vectors were generated from sample input and output of the connected components algorithm, as well as the dilation and erosion
operations used within the C++ implementation. The vectors were converted to ASCII, and a helper function was written in VHDL to read in the vectors during simulation.

The face detection implementations were verified through the testing procedures described in this chapter. The accuracy and speed of the detectors can now be measured using the testing set. The performance of both the software and hardware implementations will be presented in the next chapter.
Chapter 6

Results

The accuracy and performance of the face detector is presented and analyzed within this chapter. The performance of the FPGA-based face detector includes FPGA usage and execution time. The software-based face detector focuses solely on execution time as ample memory is available on a PC.

6.1 Accuracy

Accuracy in computer vision is measured in terms of correct detections and false alarms from the classification. Correct detections are objects that are correctly classified, while false alarms are objects that have been incorrectly classified. An accurate system would have a high percentage of correct detections and a low percentage of false alarms. The training set from [10] was used to create the skin and nonskin probability tables used by the Bayesian classifier. The testing set from [7] is used to analyze accuracy. The accuracy of both the Bayesian classifier and the complete face detection method is examined.

6.1.1 Bayesian classifier

The Bayesian classifier uses a threshold hold value in conjunction with the skin and nonskin probability tables to classify the pixels. A range of threshold values were used to classify the pixel’s from the testing set. The mappings made of the testing set images were used
to calculate the accuracy of the classification. The percentage of correct detections of skin were plotted against the percentage of pixels falsely classified as skin in what is known as a ROC, or receiver operating curve. Two receiver-operating curves were generated; one without color correction and one with color correction. The plot of the two curves is shown in Figure 6.1.

![Figure 6.1: Bayesian classifier receiver-operator curves](image)

The upper-left corner of the plot represents optimal accuracy where there are 100% correct detections and 0% false alarms. The classifier using color correction is much closer to the upper-left corner, which shows that it is a much more accurate classifier. The classifier without color correction suffers greatly from color differences between the images captured for the training set and those for the testing set. The difference in the accuracy of the two classifiers demonstrates how critical color consistency is in face detection.
The highest accuracy for the classifier with color correction was obtained with thresholds in the range of 0.33 to 0.90 with 86.7% correct detections and 20.9% false alarms to 77.6% correct detections and 10.2% false alarms. The threshold closest to the optimal value was a threshold of 0.60 at 81.6% correct detections and 13.2% false alarms. The detection rates seen are similar to those seen by other researchers who have reported correct detection rates between 80% and 90% [14], [19], and [1].

6.1.2 Face detector

The face detector achieves the highest level of accuracy when the false alarms can be reduced so as not to distort the shape of skin regions. A threshold of 0.90 was used to accomplish this. Table 6.1 shows the percentage of correct detections and false alarms.

Table 6.1 shows the accuracy of the face detector using the different classifiers. The face detector was only capable of achieving 48.6% correct detections. The classification stage was capable of a high correct detection rate; however, there is still a low overall correct detection rate for the face detector. The elliptical fitting and filtering stages primarily depend upon just the edge of the region, which is a relatively small portion of pixels identified as skin. The classification around the edge of the face must be extremely accurate so as not to distort the shape of the face. Any false detections near the edge of the face or an exposed neck could also distort the face region’s shape. Gap filling can fix wrong classification within the region, but is unable to alter the overall shape of the region. Perhaps there are better alternatives to filtering than the shape of the regions such as searching for eyes, noses, and lips. Also, the number of false alarms may decrease as other skin regions such as hands can have an elliptical shape.

<table>
<thead>
<tr>
<th>Correct Detections</th>
<th>False Alarms</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.6%</td>
<td>29.7%</td>
</tr>
</tbody>
</table>

Table 6.1: Face detection results
6.2 System performance

The performance of both the software and FPGA implementations are presented within this section. Both of the implementations are then compared to one another.

6.2.1 Software

The execution time for the C++ implementation is presented here, as well as a breakdown of the execution time. Three different systems were used to measure the execution time of the face detector. Table 6.2 shows information about each of these systems.

<table>
<thead>
<tr>
<th>System</th>
<th>Processor</th>
<th>L1 Cache</th>
<th>RAM</th>
<th>Operating Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laptop</td>
<td>Pentium Mobile 1.6 GHz</td>
<td>512 KB</td>
<td>512 MB</td>
<td>Cygwin</td>
</tr>
<tr>
<td>Pentium 4</td>
<td>Pentium 4 3.0 GHz</td>
<td>1,000 KB</td>
<td>512 MB</td>
<td>Cygwin</td>
</tr>
<tr>
<td>Pentium D</td>
<td>Pentium D 3.2 GHz</td>
<td>1,000 KB</td>
<td>2000 MB</td>
<td>Cygwin</td>
</tr>
</tbody>
</table>

Table 6.2: Test systems

The laptop system is half the speed and has half the L1 cache of the other processors; the difference will show the affect the processor has on execution time. The Pentium D is a dual core system; however, the face detector is a single threaded application, so the second processor should not affect execution time. The Pentium D system has almost four times the amount of RAM in the other systems; this will show how the amount of memory affects the execution time. The execution time was measured using a range of image resolutions. These resolutions can be found in Table 6.3.

<table>
<thead>
<tr>
<th>Rows</th>
<th>Columns</th>
<th>Total Pixels</th>
</tr>
</thead>
<tbody>
<tr>
<td>189</td>
<td>126</td>
<td>23814</td>
</tr>
<tr>
<td>378</td>
<td>252</td>
<td>95256</td>
</tr>
<tr>
<td>567</td>
<td>378</td>
<td>214326</td>
</tr>
<tr>
<td>756</td>
<td>504</td>
<td>381024</td>
</tr>
<tr>
<td>1134</td>
<td>756</td>
<td>857304</td>
</tr>
<tr>
<td>1512</td>
<td>1008</td>
<td>1524096</td>
</tr>
<tr>
<td>2268</td>
<td>1512</td>
<td>3429216</td>
</tr>
</tbody>
</table>

Table 6.3: Test image dimensions
Gprof, a GNU profiling tool, was used to measure the execution time and provide a breakdown of the time spent in each component. Gcc has an optional compile flag, -pg, used to compile in the information needed for gprof with the executable. In addition to the -pg flag, the -O3 optimization tag was used. This tag optimizes the source where possible for maximum performance.

The execution time of a single image was too fast to gather accurate information about the speed of the face detector, so a loop containing a set of ten images from the testing set were used as input for the face detector. 500 detections were performed for smaller resolution images. Less detections were done as the image size increased; 50 detections were performed for the largest resolution.

![Figure 6.2: Face detector execution time](image)

Figure 6.2 shows the execution times for each image resolution on each system. The Pentium 4 and Pentium D systems produced approximately the same execution time, while the laptop continued to be outpaced as the image resolution increased. Relatively the same performance between the two Pentium systems showed that 512 MB of RAM was sufficient. The laptop system was actually faster for an image size of 126x189 pixels, but was
outpaced for larger images. The greater amount of L1 cache available in the other systems allowed them to store more of the image within cache at a time and thus attain better execution times. The faster execution time of the laptop for the small image shows that the processor speed was not as big of factor as the cache size.

<table>
<thead>
<tr>
<th>Rows</th>
<th>Columns</th>
<th>Laptop (ms)</th>
<th>Pentium IV (ms)</th>
<th>Pentium D (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>126</td>
<td>189</td>
<td>6.39</td>
<td>9.10</td>
<td>8.16</td>
</tr>
<tr>
<td>252</td>
<td>378</td>
<td>46.25</td>
<td>30.96</td>
<td>33.31</td>
</tr>
<tr>
<td>378</td>
<td>567</td>
<td>102.49</td>
<td>50.95</td>
<td>56.27</td>
</tr>
<tr>
<td>504</td>
<td>756</td>
<td>197.51</td>
<td>120.40</td>
<td>111.79</td>
</tr>
<tr>
<td>756</td>
<td>1134</td>
<td>453.57</td>
<td>253.47</td>
<td>276.44</td>
</tr>
<tr>
<td>1008</td>
<td>1512</td>
<td>807.33</td>
<td>468.70</td>
<td>466.34</td>
</tr>
<tr>
<td>1512</td>
<td>2268</td>
<td>1721.76</td>
<td>1038.82</td>
<td>1015.88</td>
</tr>
</tbody>
</table>

Table 6.4: Execution time

The measured times plotted in Figure 6.2 are shown in Table 6.4. The face detector is capable of detecting faces of approximately 567x378 at 20 frames a second, which is considered real-time. However, the detector is capable of detecting faces at much higher resolutions in real-time if every frame is not used. For example, four images of approximately 1134x756 pixels can be processed a second, which shows the tremendous processing power available. However, in practice smaller images are actually preferable for use in the detection process. The structuring elements used for the gap filling were created for smaller resolution images; a larger structuring element would be ideal for the larger images. The details looked for within the image are large enough that the additional detail in the larger images do not provide any real advantage, but only take longer for the faces to be detected. If the additional detail is desired later on, it may be better to resize the image for detection but extract the face from the original image.

The gprof tool generates information about how many times each function was called and who called it, as well as the total time spent in the function and the time spent in calls that the function made. The breakdown of execution by component is shown in Figure 6.3. A resolution of 378x252 pixels was used for the breakdown. The gap filling took the largest percentage of execution time at 23.9%. Filter objects, which includes the filtering
Figure 6.3: Software execution time breakdown by component

stages and the elliptical fitting, were the second largest component along with YCrCb conversion at 21.0%. The Bayesian classification was the smallest at 0.7%. The component breakdown shows that the image processing steps of YCrCb conversion, color correction, and gap filling were the most intensive portions of processing with a combined 62.2% of the execution time. These steps are important to improve the accuracy of the entire system, but they also require over half of the execution time. The breakdown of the face detector’s execution time can also be looked at by function.

The functional breakdown is shown in Figure 6.4. YCrCb conversion, erosion, color correction, dilation, connected components, and image subtraction take up 91.6% of the execution time. The YCrCb conversion consumes the most execution time by function at 21.0%. Erosion follows closely behind at 19.8% and then color correction at 17.3%. The erosion and dilation algorithms are very similar in structure and combined represent the largest portion of execution time at 34.3%. The significant time spent in the image processing components also appears in the functional breakdown as YCrCb conversion, color correction, erosion, and dilation consume 72.6% of execution time. The component breakdown also showed 21.0% of the time is spent in the filtering and elliptical fitting stages. Surprisingly, the elliptical fitting does not represent a significant enough portion of
execution time to be listed separately. Analysis of that component shows that most of the
time was use to extract the edge of the object through the erosion and subtraction, which
both appear in the functional breakdown.

6.2.2 Hardware

The VHDL implementation was synthesized for FPGAs in different Xilinx families. Table
6.5 details the FPGAs used. The Spartan 3 family of FPGAs are entry level and offer a
modest -5 speed grade. The Virtex 2 family is a step up from the Spartan 3s and offer a -6
speed grade. The Virtex 4 FPGAs are high end and provide a much faster speed grade of
-12 and have more on chip RAM for its size than the other families.

<table>
<thead>
<tr>
<th>Device</th>
<th>Spartan 3</th>
<th>Virtex 2</th>
<th>Virtex 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>xc3s4000</td>
<td>xc2v2000</td>
<td>xc4vlx25</td>
</tr>
<tr>
<td></td>
<td>-5</td>
<td>-6</td>
<td>-12</td>
</tr>
<tr>
<td>Flip Flops</td>
<td>55,296</td>
<td>21,504</td>
<td>21,504</td>
</tr>
<tr>
<td>LUTs</td>
<td>55,296</td>
<td>21,504</td>
<td>21,504</td>
</tr>
<tr>
<td>RAM Blocks</td>
<td>96</td>
<td>56</td>
<td>72</td>
</tr>
<tr>
<td>Cost (US Dollars)</td>
<td>$216</td>
<td>$1,125</td>
<td>$404</td>
</tr>
</tbody>
</table>

Table 6.5: FPGA devices
Dilation, erosion, and connected components FPGA implementations were synthesized for each FPGA. The speed and utilization for each is shown in Table 6.6. The synthesis for the dilation and erosion architectures produced the same results. The slowest clock rate was on the Spartan 3, which was capable of 100 MHz clock speed with less than 10% utilization of the available flip flops and LUTs and 16% of the block RAM. The Virtex 4 provided the fastest clock rate at 178.6 MHz with 10% and 25% flip flop and LUT utilization respectively. 22% of the block RAM was used. The dilation and erosion architectures leave a lot of room on the chip for additional logic. The connected components architecture was not capable of the clock rate attained by the other architectures. The Spartan 3 attained a 51.8 MHz clock rate with little flip flops and LUTs used and 50% of the RAM blocks utilized. The Virtex 4 produced the quickest clock rate at 113.6 MHz while utilizing 1% of the flip flops, 6% of the LUTs, and 66% of the block RAM. The connected components architecture utilizes a large portion of the available block RAM. Connected components on the Virtex 2 used almost all the block RAM at 85%. The large amount of block RAM that needed to be routed from all over the chip to the actual logic is probably the reason for lower clock speeds than the dilation and erosion architectures. In order to utilize the rest of the FPGA with connected components, the image data would have to be stored off-chip and streamed in. The dilation and erosion architectures are capable of utilizing much less memory because each pixel can be stored as a bit; however, the connected components algorithm needs 9 bits per pixel.

The dilation and erosion architectures use 34 clock cycles per block to read, 1 cycle to process, and 32 cycles to write the result. The writes occur while the next reads happen, so the total number of cycles would be $35 \cdot NUM_BLOCKS + 32$ where the additional 32 cycles is the last write when there is no read. In an image of size 256x384 pixels there are 96 blocks, which would take 3392 cycles for a total execution time between 0.019 and 0.034 ms. The connected components architecture is not able to take advantage of the parallelism seen in the dilation and erosion architectures and takes much longer. It is difficult to calculate the number of cycles needed for the connected components algorithm.

65
as the conflict table resolution can take up to 1024 cycles, but usually takes 5 - 10 cycles. The same 10 images used to evaluate the software implementation were used to measure the average number of cycles needed for the connected components algorithm. The algorithm was simulated with each image and the average amount of clock cycles were 289,369 for a total execution time between 2.55 ms and 5.59 ms. The connected components is much \lowercase{slow} than the other architectures due to the inter-pixel dependencies.

The total execution time of the FPGA implementation can be calculated from the prototyping as described in section 4.2 on page 41. The color correction, YCrCb conversion, and image subtraction are all pixel independent like the dilation and erosion operations, therefore similar parallel hardware could be created for them. Color correction takes two passes, so it is approximated as taking twice as long to execute than dilation or erosion. YCrCb conversion and image subtraction would both be equivalent to the dilation and erosion execution times as they both only make one pass. Combined with the connected components algorithm, this accounts for 91.8% of the execution time. The other 8.2% is approximated by assuming that it is at least as fast as the slowest software implementation.

The approximate execution time for the FPGA implementations are shown in Table 6.7.
6.2.3 Comparison

The execution times for the software and VHDL implementations of erosion, dilation, and connected components were compared. The speed-up for each Xilinx FPGA was calculated against the Pentium D’s execution time. The speed-ups are shown in Figure 6.5.

<table>
<thead>
<tr>
<th>FPGA</th>
<th>Execution time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spartan 3</td>
<td>9.91</td>
</tr>
<tr>
<td>Virtex 2</td>
<td>7.82</td>
</tr>
<tr>
<td>Virtex 4</td>
<td>6.71</td>
</tr>
</tbody>
</table>

Table 6.7: Approximate FPGA execution times

![Figure 6.5: FPGA speed-ups over software executed on Pentium D](image)

The FPGA implementation of dilation and erosion completely outperformed the software execution time. Dilation produced a speed-up between 94.0 and 167.8, while the speed-up for erosion was between 62.4 and 111.4. Dilation was capable of a larger speed-up because the software implementation of dilation was slower than that of erosion. The software-based erosion filter only needed to process pixels that were labeled as a skin pixel, unlike dilation where every nonskin pixel needs to be processed. The amount of skin pixels within the image are much less, so the erosion operation has less pixels it needs to process. The connected components was not capable of a speed-up using the Spartan 3 and only
a marginal speed-up was seen for the Virtex 2 and Virtex 4. The connected components implementation was not able to take advantage of a hardware parallelization to the degree that the morphological operations were able to; however, through customized hardware, a small speed-up can still be obtained. A desktop processor is able to operate in the gigahertz range while the FPGAs run at hundreds of megahertz, but through customized hardware and parallelization, the FPGA implementations are capable of faster execution.

The approximated FPGA execution times were also compared against the total software execution time for the Pentium D. The overall speed-up for each FPGA was calculated using the execution times from Table 6.4 and Table 6.7. Table 6.8 contains the calculated speed-ups. The slowest FPGA still can provide a speed-up of 3.33 while the fastest FPGA is capable of a speed-up of 4.52. The FPGA implementation has a much faster execution. Even if the approximate execution time was slightly off, a significant speed-up would still be seen. Over half the execution time for the Virtex 4 is from the 8.2% of unaccounted execution time, which when implemented should be much faster and provide an even larger speed-up. The speed-up capable using an FPGA would make it worthwhile to fully implement.

<table>
<thead>
<tr>
<th>FPGA</th>
<th>Speed-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spartan 3</td>
<td>3.33</td>
</tr>
<tr>
<td>Virtex 2</td>
<td>3.88</td>
</tr>
<tr>
<td>Virtex 4</td>
<td>4.52</td>
</tr>
</tbody>
</table>

Table 6.8: Approximate Speed-up over Pentium D system

The performance of the C++ and FPGA face detectors were presented in this chapter. The next chapter will provide a concise summary and analysis of the findings. Additional research that can build upon this work will also be presented.
Chapter 7

Conclusion

The results obtained in this thesis are analyzed within this chapter. Additional research in this area is also suggested.

7.1 Accuracy

The face detector was capable of a marginal correct detection rate of 48.6%. The correct detection rate achieved by the Bayesian classifier was similar to those seen in other work in spite of the low overall detection rate. The filtering portion of the detection method uses the shape of the skin region to separate faces from other skin regions, which makes it critical that the outline of the face region is correctly classified. While the classification is good, it is not perfect. Gap filling is used to correct classification mistakes within the skin region; however, this does not affect the shape of the region. Exposed skin regions attached to the hand such as the neck will also alter the shape of the region. Besides distortions due to miss-classifying skin pixels as nonskin, false alarms can distort the skin region’s shape if they are near the outline of the face region. The false alarm rate of 29.7% was also higher than is desired. Other skin regions, such as hands, may have an elliptical-like shape and not be filtered out. The findings show that filtering on the shape of the face region alone is not a reliable method. The classifier was able to classify most of the actual skin pixels as skin; using a method that does not rely on the outline such as the presence of eyes, noses, or lips may be a better alternative.
7.2 Performance

The software-based face detector was capable of detecting faces within images of approximately 378x567 pixels at real-time speed, 20 frames per second. Larger images could also be processed in real-time if not all frames are processed, however, in practice smaller images are actually preferable for use in the detection process as the extra detail is not needed. The execution times measured for the software-based approach was mostly affected by the size of L1 cache. The Pentium 4 and Pentium D systems had twice as much L1 cache and ran almost twice as fast as the Pentium 4M system.

Analysis of the software-based face detector showed that 62.1% of the execution time was spent in the initial image processing stages with 23.7% used for dilation and erosion. Dilation and erosion operations were used to determine the approximate speed-up for the image processing functionality. Connected components was also implemented to represent functionality that was dependent on the output of previous pixels. The image processing and connected components functionality were approximately 91.6% of the total execution time.

A speed-up of 94.0 and 167.8 was seen for dilation and 62.4 and 111.4 for erosion using the Virtex 4 FPGA. The erosion and dilation FPGA implementations were able to take advantage of hardware parallelization, which significantly reduced the execution time for those operations over the software implementations. The FPGA implementation of the connected components algorithm was not able to attain a significant speed-up. On the Spartan 3, the execution time was actually slower than software. The customized hardware was capable of nearly the same execution time as the software version; however, without considerable parallelization, the FPGA implementation did not provide a significant speed-up.

Overall a speed-up between 3.33 and 4.52 was achieved within the FPGA over the fastest system, the Pentium D. All of the face detection components with non-trivial execution time would be significantly faster in an FPGA except for the connected components algorithm. Within software 78.6% of the time was spent processing these components. In
hardware, these components only represent 3.1% of the execution time. The 8.2% of software execution time that represented the remaining functions was cautiously approximated to the execution time on the slower processor, which was 3.95 ms. This is over half the total approximated time within hardware for the Virtex 4. In practice the FPGA implementation should be much faster, and a greater speed-up would be realized. Connected components was identified as the potential bottleneck in an FPGA implementation. Improvement in this area would greatly speed-up the hardware face detection.

The FPGA version is capable of detecting faces much faster than the software version; however, there are trade-offs for the increased performance. The software approach is better for prototyping and fine-tuning the system when design can change extensively. In addition, the software version does not require any special hardware. an FPGA implementation would be best used to improve the execution time of an existing software-based face detection method and not development of a new approach.

7.3 Future Research

7.3.1 Change filtering method

Filtering using the shape of the face did not produce a high correct detection rate. The method depends on too small a portion of the skin regions to have the desired accuracy. Also, other skin regions such as hands may have an elliptical region and would be falsely classified as faces. Perhaps a method that searches for the presence of facial features within the skin regions would be a better filtering method.

7.3.2 Improve parallelism in connected components algorithm

The FPGA implementation of the connected components algorithm did not obtain the speed-up seen with the dilation and erosion implementations. The high-level of parallelism within the dilation and erosion filters made the large speed-up possible. The connected
components algorithm depends upon the results of pixels processed before the current pixel, which makes the algorithm more difficult to parallelize; however, a set of rows could be read into an array of connected components processing elements. The result of one processing element can then be passed to the subsequent elements that depend on its result in order to add additional parallelism to the system. Also, storing the conflict table in a register would allow for multiple pixels to attain their conflict resolved value in the second pass simultaneously and provide additional parallelism in the hardware.

7.3.3 Fully implemented FPGA-based face detector

The face detector was only partially implemented to approximate the potential performance. The hardware is capable of much faster detection speeds than the software version. Implementing the entire detector within an FPGA would take advantage of the increased speed. The approximated execution time was a baseline of possible performance and cautiously approximated the other functionality. In practice, this face detector would probably be even faster than a software implementation.
Bibliography

