1-1-1973

Relationship of Preferred Tone Reproduction to Picture Size

David Miller

Follow this and additional works at: http://scholarworks.rit.edu/theses

Recommended Citation
Miller, David, "Relationship of Preferred Tone Reproduction to Picture Size" (1973). Thesis. Rochester Institute of Technology.

This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact ritscholarworks@rit.edu.
RELATIONSHIP OF PREFERRED TONE REPRODUCTION TO PICTURE SIZE

by David C. Miller

A thesis submitted in partial fulfillment of the requirements for the degree Bachelor of Science in the School of Photography in the College of Graphic Arts and Photography of the Rochester Institute of Technology.

January 1973

Thesis Adviser: Dr. J.A.C. Yule
ACKNOWLEDGMENTS

My sincere thanks must be extended to those people at the Graphic Arts Research Center of the Rochester Institute of Technology whose cooperation was so necessary to the success of this project.

In particular my appreciation goes to Dr. John A. C. Yule for his valuable advice and patient teachings. The value of these will continue long after the paper is complete.

Irving Pobboravsky contributed much valuable information to assist in writing the computer programs used in the project.

From Kodak, J. L. Simonds and, especially, C. N. Nelson contributed important insight into the project basics.

In addition my wife, Gail, deserves much credit for her patience in the many hours devoted to this project and especially for her much needed assistance in the typing of this work.
Abstract

A relationship between preferred tone reproduction and final picture size is suggested in many forms in the literature and in practical experience.

This project uses photographic halftone prints varying in tone reproduction and produced at different sizes to investigate this relationship. The tone reproduction variations are introduced electronically using an RCA color scanner and a method of eigenvector analysis is used to reduce these tone reproductions down to their important components.

The final set of prints consisting of ten tone reproductions, three reproduced sizes, and two sharpnesses are evaluated to determine their subjective quality in the judgement of a group of ten observers.

These quality ratings are normalized and averaged and then mathematically correlated with an eigenvector representation of their tone reproduction. The preferred tone reproduction (producing maximum quality) may then be determined for each picture size.

Due to large differences in quality rating from observer to observer and an incomplete selection of tone reproductions, no definite relationship was determined. Useful information was obtained on the use of the eigenvector method, the magnitude of quality variation as tone reproduction is changed, the difficulties of subjective evaluation, and a calculated tone reproduction producing maximum quality for a normal print not considering size.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2 Outline</td>
<td>5</td>
</tr>
<tr>
<td>3 Procedures</td>
<td>6</td>
</tr>
<tr>
<td>A. Tone Reproduction Variation</td>
<td>6</td>
</tr>
<tr>
<td>B. Eigenvector Analysis</td>
<td>10</td>
</tr>
<tr>
<td>C. Halftone and Print Production</td>
<td>11</td>
</tr>
<tr>
<td>D. Preliminary Experiment</td>
<td>12</td>
</tr>
<tr>
<td>E. Final Experiment</td>
<td>14</td>
</tr>
<tr>
<td>F. Subjective Evaluation</td>
<td>17</td>
</tr>
<tr>
<td>4 Analysis and Results</td>
<td>20</td>
</tr>
<tr>
<td>5 Conclusions</td>
<td>32</td>
</tr>
<tr>
<td>List of References</td>
<td>34</td>
</tr>
<tr>
<td>Appendices</td>
<td>36</td>
</tr>
<tr>
<td>A. Processing and Production</td>
<td>37</td>
</tr>
<tr>
<td>B. Eigenvector Analysis</td>
<td>43</td>
</tr>
<tr>
<td>C. Quality Ratings</td>
<td>52</td>
</tr>
<tr>
<td>D. Statistical Analysis</td>
<td>56</td>
</tr>
<tr>
<td>E. Least Squares Curve Fitting</td>
<td>59</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Preferred Objective Tone Reproduction</td>
<td>2</td>
</tr>
<tr>
<td>3A</td>
<td>Format of Original Subject</td>
<td>8</td>
</tr>
<tr>
<td>3B</td>
<td>Scanner Gradation Range</td>
<td>9</td>
</tr>
<tr>
<td>3C</td>
<td>Results of Preliminary Experiment</td>
<td>13</td>
</tr>
<tr>
<td>3D</td>
<td>Halftone Production</td>
<td>14</td>
</tr>
<tr>
<td>3E</td>
<td>Reproduction Size</td>
<td>15</td>
</tr>
<tr>
<td>3F</td>
<td>Examples of Final Prints</td>
<td>16</td>
</tr>
<tr>
<td>3G</td>
<td>Evaluation Set-Up</td>
<td>17</td>
</tr>
<tr>
<td>4A</td>
<td>Tone Reproduction Curves</td>
<td>20</td>
</tr>
<tr>
<td>4B</td>
<td>Mean plus Eigenvectors</td>
<td>21</td>
</tr>
<tr>
<td>4C</td>
<td>Mean Normalized Quality Ratings</td>
<td>22</td>
</tr>
<tr>
<td>4D</td>
<td>Graph of λ_1 and λ_2 vs. \bar{R}</td>
<td>23</td>
</tr>
<tr>
<td>4E</td>
<td>\bar{R} and Calculated \bar{R}_c</td>
<td>25</td>
</tr>
<tr>
<td>4F</td>
<td>Graph of λ_1 and λ_2 vs. \bar{R}_c</td>
<td>26</td>
</tr>
<tr>
<td>4G</td>
<td>Values for \bar{R}_c Maximum</td>
<td>27</td>
</tr>
<tr>
<td>4H</td>
<td>Graph of λ_1 and λ_2 vs. \bar{E}_c</td>
<td>28</td>
</tr>
<tr>
<td>4I</td>
<td>Optimum Tone Reproduction</td>
<td>29</td>
</tr>
<tr>
<td>4J</td>
<td>Iso-quality vs. Scalar Multiples</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>%DA vs. D scanner positive and E scanner</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>D print vs. %DA negative</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Observer Quality Ratings (r)</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Normalized Quality Ratings</td>
<td>54</td>
</tr>
</tbody>
</table>
Section One

Introduction

The search for a method of controlling the reproduction process goes back many years. In 1890 Hurter and Driffield stated, "The production of a perfect picture by means of photography is an art; the production of a technically perfect negative is a science." They went on to explain the photographic process in terms of log exposure input producing a log opacity (optical density) output characterized by the familiar D log E curve.\(^1\) With this tool photography could move toward becoming a quantitative science.

It was not until L. A. Jones described his process of "tone reproduction" that an objective could be assigned to the photographic system. This objective he stated as exact reproduction of relative luminance. Many other studies have been made to determine, under controlled viewing conditions, what sort of objective tone reproduction characteristics are required to produce photographs of high quality as judged by many observers.\(^2\)\(^{a}\),\(^3\),\(^4\)

In one such study\(^5\) the objective tone reproduction curves shown below were described. The important points to grasp are first, that scenes with different luminance ranges must be reproduced differently and second, the curves lie below the line representing 1:1 relative luminance reproduction.
Another approach to the realization of optimum tone reproduction has been the more recent study of subjective tone reproduction. This study is involved in understanding the visual sensation (brightness) produced by a scene stimuli (luminance). This is a complicated procedure because the visual system is constantly changing adaptation so that there is seldom a constant relationship between brightness and luminance.2a In studies where adaptation curves have been determined and subjective tone reproduction curves produced, it has been found that a 1:1 reproduction of original brightness vs. reproduction brightness, (relative to white), will produce the best subjective quality evaluations.6,7

These studies are important because they give insight into and draw attention to the processes of visual adaptation. The evaluation of any process involving the human visual system can be complicated by
the fact that what the eye sees is not necessarily what the brain perceives. One such complication is the phenomena of simultaneous contrast which refers to the brightness of the surround and its effect on the appearance of an object. A gray patch appears lighter when surrounded by a dark area than it does when surrounded with a light area. This effect varies with the angular subtense of the areas involved so that it might not be visible in a large area outdoors but would be very apparent if the scene were reduced down to an 8 x 10 print.

The phenomena of successive contrast occurs when the eye fixates on different areas of a scene. The previous fixation has an effect on the adaptation of the eye for the next fixation and this occurs throughout the viewing of any object.

There would seem to be reason to believe that the angular subtense of an object on the retina would cause variations in contrast. This would be caused by the change in sensitivity of the light receptors as the image moves away from the center of the image area. Also the analysis of information content which varies fixation patterns may have some effect on adaptation.

Large area reproduction is not the only factor involved in quality rating of photographs. Small area image-structure characteristics are very important in the overall subjective evaluation of a picture. Graininess, sharpness, and resolving power contribute to the quality and definition ordinarily used to describe print preference.

Thus we see that quality of a print depends on many interacting and widely variable aspects. Large scale tone reproduction
and complex visual phenomena, as well as small scale image-structure characteristics, all act together to influence a subjective opinion of quality.

When reproductions are changed in size many of these factors will be affected. Edge sharpness increases and fine-detail recognition decreases as reproductions are made smaller. Viewing conditions will change and at the same time it may be expected that some of the mechanisms of visual perception will be modified. It should be expected, then, that the subjective opinions of quality will also change.

It is the object of this project that a relationship be found between these changes in picture size and preferred tone reproduction. With such information the production of a perfect picture will move another step closer to becoming a science and away from the art.
Section Two

Outline

1) selection of appropriate methods of production and analysis

2) creation of an eigenvector computer program and determination of its suitability for use with the scanner gradation range

3) standardization procedures leading to the production of the halftone photographic reproductions

4) production of scanner positives, halftones, and prints for a preliminary experiment

5) evaluation of prints for quality

6) production of scanner positives, varying sizes of halftones and prints for final experiment

7) analysis of curve shapes with eigenvector program

8) production of standard viewing background for evaluations

9) evaluation by a group of observers

10) analysis of ratings and conclusions about relationship of preferred tone reproduction to final print size
Section Three

Procedures

The objective of this research project will be to determine the relationship between objective tone reproduction and subjective print quality as a function of picture size. From such a relationship the preferred tone reproduction corresponding to optimum print quality may be determined for each picture size.

In reaching such an objective, procedures for changing tone reproduction and picture size must be established as well as a method of quality determination. When this has been completed, the variables may be correlated mathematically to obtain the final relationship.

A. Tone Reproduction Variation

Several types of tone reproduction are usually considered subjectively significant. First, the choice of luminances in the original subject to be reproduced as highlight and shadow; second, the density range with which these highlight and shadow points are reproduced; and third, the variation in contrast in the highlight, middletone, and shadow areas of the reproduction.

Using the techniques of graphic arts reproduction our choices are reduced to a workable number. Ordinarily a photographic print of the original scene is used and in such a case the highlight and shadow luminances have been condensed into the density range of the print. In the printed reproduction the density range of the picture is limited by the paper printed upon and the density of the ink
layer applied. While either of these limitations may be modified somewhat, they will be considered as constant factors. We are then left with modification in curve shape as our remaining tone reproduction control. In graphic arts photography this control is exercised by producing halftones with varying amounts of main, flash, and bump exposure. *

In this project, however, a method of tone reproduction control with greater flexibility than this would be desirable. One method which provides this flexibility and which is available for research is the RCA (Hel) Chromograph C286 color scanner at the Graphic Arts Research Center. This instrument allows control of tone reproduction continuously, over a very wide range, by electronic means. The highlight, middletone, and shadow regions are individually adjustable and the maximum and minimum densities at the highlight and shadow may be kept constant.

The RCA scanner is ordinarily used to produce continuous tone separations from a color transparency or print utilizing electronic color correction and gradation controls. The procedure it uses is to pass a light beam through the original, which is spinning on a drum, and then through color filters and onto photomultiplier tubes where it is converted to an electrical signal. This signal travels to a computer section where it is modified for color correction, gradation, unsharp

*Main - image exposure through a halftone screen.
Bump - additional image exposure without a screen (increases highlight contrast).
Flash - uniform fogging exposure through screen (lowers shadow contrast and decreases density range of the negative).
masking and other procedures useful in the graphic arts. After modification this signal travels to the exposing section where it is reconverted to a light beam which exposes a sheet of film rotating in synchronization with the original, producing either a positive or a negative of the original at the operators option. The original chosen was a black and white print (for its defined highlight and shadow). This was combined with alphanumeric targets and density scales to produce the original as shown in Figure 3A. The output from the scanner will be a film positive.

The scanner adjustments were explored and the best procedures for adjusting the tone reproduction were determined. This is covered in much more detail in Appendix A.

Next the range of tone reproduction adjustment was determined. The procedure was to adjust each gradation control from maximum to minimum leaving the endpoint densities constant. Each gradation control
was set to each of three positions to produce a total of twenty-seven different tone reproduction curves.

A portion of this set of curves is shown below in Figure 3B with the density of the original plotted against voltage to the scanner exposure lamp (proportional to output density). The range of tone reproduction available is very large and should be entirely sufficient for this project.

FIGURE 3B - Scanner Gradation Range
(plotted on non-linear Munsell scale)
B. Eigenvector Analysis

In order to perform the necessary mathematical analysis at the end of the project, the tone reproduction curves should be reduced to a minimum number of descriptive parameters. One method of achieving this is eigenvector analysis. This method (used in multivariate analysis) is used to obtain vectors which when added in various linear combinations will recreate the original set of data (usually represented by a set of curves) utilizing far fewer parameters.

These vectors are ordinarily called eigenvectors \(V \) and the amount of each vector needed to recreate the original data is called the scalar multiple \(\lambda \). For a given set of data the mean vector, eigenvectors, and scalar multiples may be found which can recreate the original data points as follows:

\[
z = \bar{z} + v_1 \lambda_1 + v_2 \lambda_2 + v_3 \lambda_3 + \ldots
\]

Since the mean vector and eigenvectors are the same for any curve from the original set, any curve may be described by specifying its scalar multiples. There is a further description of this method in Appendix B.\[16,18,19,20\]

A computer program was written which would perform the necessary calculations and this was applied to the family of twenty-seven curves produced by the scanner. When this was done each curve could be reduced to a specification of only three scalar multiples. Thus instead of the sixteen steps originally used to describe each curve, each one could now be described using three numbers. This indicates that the eigenvector method should be useful in the necessary
mathematical analysis and this method is applicable to the family of gradation curves produced by the RCA scanner.

C. Halftone and Print Production

Before anything may be produced from the scanner, the remainder of the system must be standardized. The necessary requirement is that the density produced on the final photographic halftone print be predictable as one goes through the halftone and printing stages. Analysis with a system such as the Jones diagram is useful for cascading a number of operations as is done in this project.

In the production of the halftone negatives, a Kodak 150 L magenta positive screen was used and the Kodalith Ortho Type 3 films were processed in a Log E processor using RT developer and replenisher. A Klimsch graphic arts camera was used for each halftone exposure with the scanner positive back-lighted in the transparency holder. Each halftone was produced using a main and bump exposure. The purpose of this dual exposure was to allow some compensation for variations in the density range of different scanner positives and to adjust for small changes in the development activity of the automatic processor. This compensation was performed by changing slightly the ratio of main to bump exposure which will vary the basic density range (BDR)* of the halftone screen.

An investigation of sharpness is significant in a study of this nature. It is felt by J. L. Simonds of Kodak (private communication)

* BDR - the range of densities on the original which will produce the chosen highlight and shadow dot size.
original photographic print
black + white continuous tone

ten film positives
tone reproduction varied on scanner
b + w - continuous tone - same size

S
small

M
medium

MU
medium unsharp

L
large

contact printed, paper halftone prints
(40 prints in the completed set)

from each scanner positive
four halftone film negatives
at varying sizes and sharpness

FLOW CHART OF PRODUCTION PROCEDURE
that sharpness is the only important source of changes in preferred tone reproduction as size changes. This may be tested by producing an unsharp picture at the halftone stage and including this with those to be evaluated.

The print production was done by contact printing each halftone onto Kodabromide E-2 paper using a point light source and the vacuum film back of the Klimsch camera.

Kodabromide E-2 paper was chosen for its surface qualities and gloss which approximate ink on a coated paper stock. This paper is exposed and processed to produce a maximum density of 1.30 which is typical of monochrome printing on a lithographic press. Each print is tray processed in Dektol developer. The details on processing and set-up for both the halftone and printing stages are given in much more detail in Appendix A.

D. Preliminary Experiment

Using the procedure established in previous sections, a preliminary experiment was performed. This preliminary experiment was a scaled down version of the final print production and was designed to check the procedures which were laid out and, most important, to determine the range of tone reproductions which should be covered in the final experiment. Eight prints were produced which varied in tone reproduction. Three observers rated each print as acceptable or not acceptable in overall quality. Such a procedure gives very little information about preferred tone reproduction but instead indicates, as shown below, an approximate range in which the experiment should be made.
FIGURE 3C

Results of Preliminary Experiment

- Unsatisfactory reproduction
- Satisfactory reproduction

D reproduction vs. D original graph for dark and light conditions.
E. Final Experiment

Using the set of curves from the preliminary experiment, a range of tone reproductions within the acceptable region is chosen for study. Using the RCA scanner, twenty film positives were made from the original print, each with a different tone reproduction. These were then compared with those known to be acceptable and ten were chosen as being representative of the range to be tested.

From the ten scanner positives, halftones were made as described previously. From each of the scanner positives, five halftones were made. Three of them varying in magnification and two varying in size and sharpness. This is shown in Figure 3D below with the magnification from the original (magnification ranges vary by 2 1/2 times)

![Diagram showing halftone production process]

FIGURE 3D

For the changes in sharpness the position of the lens and copyboard are shifted slightly so that the magnification remains the same as the sharp reproduction but the focus is degraded.

The amount of degradation was determined visually by comparing isolated sections of both the sharp and unsharp halftones. In one case the sharp edge of a medium-sized halftone was compared with a sharp
edge on the small-sized halftone and the focus on the latter was
degraded until the two appeared equal in sharpness. In the second
case the alphanumeric target of a medium-sized halftone was defocused
until it showed the same detail as a small-sized halftone.

Each of the fifty completed halftones could be characterized
by their size and sharpness and each was checked for proper highlight
and shadow dot area in a uniform area of the picture or gray scale
using a Welch SS-100 dot area meter.

The final step in the procedure is the production of the
photographic halftone prints. The gray scales and resolution targets
were removed with a mask since they will not be useful in the sub-
jective evaluation. The prints were then tray processed, dried,
mounted, and trimmed leaving a 1/2-inch white border around each of
the reproductions. The finished size of the image area in each print
is listed in Figure 3E.

<table>
<thead>
<tr>
<th>Size</th>
<th>Width</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>7.2 cm</td>
<td>5.0 cm</td>
</tr>
<tr>
<td>Medium</td>
<td>17.7 cm</td>
<td>12.7 cm</td>
</tr>
<tr>
<td>Large</td>
<td>42.4 cm</td>
<td>30.6 cm</td>
</tr>
</tbody>
</table>

Figure 3F on the next page shows one set of small size reproductions.
F. Subjective Evaluation

The next procedure was an evaluation process using observers to subjectively rate the reproductions for quality.

A large semi-enclosed Macbeth viewing booth with 5500°K fluorescent lamps is used as the viewing surround and method of illumination. A facsimile newspaper page produced on white photographic paper is used as the immediate background. The background is meant to be typical of the surround an observer would often see when viewing a printed picture. In this way any undesirable effects due to surround are minimized. Behind this newspaper page is a large gray cardboard held within the viewing booth at an angle to prevent glare at the observer position. Using this arrangement the reproductions are illuminated with 80-100 footcandles of light. The basic format is shown in the following diagrams.
The picture quality may now be determined with a set of observers. It is possible to judge quality using many different methods. Ranking and paired comparison are among the most commonly used.

In this project where angular subtense of the object is a primary concern, viewing more than one reproduction at a time may influence the results. This consideration limits subjective evaluation to one print at a time. When this is done, however, subtle differences between prints will not be as noticeable as if they were side by side. To reduce problems in this respect some sort of standard reference of fixed quality may be used for indirect comparison. The procedure would be to observe the standard and then the print for evaluation and then the standard and then the next print for evaluation and so on for the entire set. This would give a reference in the memory which would be reinforced periodically rather than lost and replaced with a new reference as might happen when a number of different prints are evaluated one after another. Each set in this project will be judged using one print from the set as a control reference.

The evaluation process was carried out with ten observers. The following instructions were read to each observer:

"The object of the following procedure will be to determine the quality of each print in a series. A control print will be shown alternately with the print to be judged and each print will be rated against the control using the following scale:

\[
\begin{array}{c|c}
0 & \text{definitely worse} \\
10 & \text{noticeably worse} \\
20 & \text{slightly worse} \\
30 & \text{very nearly the same (toward worse)} \\
40 & \text{control picture} \\
50 & \text{very nearly the same (toward better)} \\
60 & \text{slightly better} \\
70 & \text{noticeably better} \\
80 & \text{definitely better} \\
90 & \text{slightly better} \\
100 & \text{noticeably worse} \\
\end{array}
\]
The control print is not necessarily in the middle of the set and the rest of the prints will probably not be equally arranged above or below. Each print does not need a different rating, i.e. two prints may be rated 70 and so on.

Prints should be judged in a manner which will determine which print the observer personally prefers, ignoring such imperfections as dirt or fingerprints."

The prints were shown in a different order for each reproduction set and the same order was used for each observer. The control was the #1 print from the set being judged.

Ten Graphic Arts Research Center personnel were chosen to make the evaluations. They were not generally people accustomed to judging print quality in this manner. The group consisted of secretaries, pressmen, and several others.

The evaluations were fairly long and somewhat tedious, so to minimize the problem the small unsharp print was eliminated. Even with this concession the observations took between one-half and three-quarters of an hour.

The observers had similar feelings about the ratings. The lack of real criteria for the determination of quality was a common complaint. Apparently the criteria of "personal preference" is not adequate because as a group we have not been exposed to reproductions rated as either good or bad in order to form a frame of reference. The most common wording of this complaint is of the order, "I know the print is very different than the control, but I can't tell whether it's better or worse."

The ratings given by each observer are listed in Appendix C.
Section Four

Analysis and Results

From the data obtained from the prints and the observer quality ratings, an investigation of the relationship between preferred tone reproduction and picture size may be undertaken.

The tone reproduction curves for each print are shown below in Figure 4A.

The range of curve shapes is quite substantial and this is expected from the visual difference between prints as seen in the previous section.

To determine the types of tone variations in the set, an eigenvector analysis (see Appendix B) is performed. There are two types of variation present; (a) the first, which accounts for 88% of the variation within the curves, is a bow-shaped curve. As the amount
of this vector increases in the reproduction, the print will become
darker overall, and (b) the second, which accounts for an additional
11% of variation (99% total for both vectors), is an S-shaped curve.
As it increases the reproduction becomes flatter and as it decreases
the reproduction increases in contrast. These vectors are shown in
Figure 4B.

FIGURE 4B
Mean plus Eigenvectors
(plotted on Munsell density scales)
Any additional vectors do not account for a significant amount of variance in the original set.

Next, the observer quality ratings should be normalized so as to eliminate differences in observer rating standards and to allow all the observers to be considered as a single group.

The ratings were normalized so that for each observer the highest ranked print in a set equalled 100 and the lowest ranked print was 0. This was done with the formula:

\[R = (r - L) \frac{100}{H - L} \]

where:
- \(r \) = observer quality rating
- \(H \) = highest rating
- \(L \) = lowest rating

These normalized ratings were then averaged and the mean and standard deviation at each size was tabulated. These data are shown in Appendix C. Below are the mean values and their associated scalar multiples for each size.

<table>
<thead>
<tr>
<th>Print</th>
<th>(\lambda_1)</th>
<th>(\lambda_2)</th>
<th>(\bar{R}_s)</th>
<th>(\bar{R}_m)</th>
<th>(\bar{R}_{mu})</th>
<th>(\bar{R}_l)</th>
<th>(\bar{R}^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-.096</td>
<td>.028</td>
<td>55.0</td>
<td>51.6</td>
<td>54.6</td>
<td>51.1</td>
<td>53.1</td>
</tr>
<tr>
<td>2</td>
<td>-.493</td>
<td>-.024</td>
<td>19.8</td>
<td>60.7</td>
<td>51.3</td>
<td>43.1</td>
<td>43.7</td>
</tr>
<tr>
<td>3</td>
<td>.097</td>
<td>-.148</td>
<td>56.2</td>
<td>80.1</td>
<td>63.9</td>
<td>65.8</td>
<td>66.5</td>
</tr>
<tr>
<td>4</td>
<td>.509</td>
<td>.013</td>
<td>46.9</td>
<td>35.6</td>
<td>37.2</td>
<td>35.4</td>
<td>38.8</td>
</tr>
<tr>
<td>5</td>
<td>-.225</td>
<td>-.140</td>
<td>76.8</td>
<td>67.2</td>
<td>70.8</td>
<td>77.8</td>
<td>73.2</td>
</tr>
<tr>
<td>6</td>
<td>.372</td>
<td>-.113</td>
<td>62.5</td>
<td>71.8</td>
<td>62.5</td>
<td>67.3</td>
<td>66.0</td>
</tr>
<tr>
<td>7</td>
<td>.160</td>
<td>-.354</td>
<td>70.5</td>
<td>74.9</td>
<td>77.2</td>
<td>51.5</td>
<td>68.5</td>
</tr>
<tr>
<td>8</td>
<td>-.336</td>
<td>-.388</td>
<td>45.8</td>
<td>71.9</td>
<td>46.5</td>
<td>57.4</td>
<td>55.9</td>
</tr>
<tr>
<td>9</td>
<td>-.270</td>
<td>.692</td>
<td>0.0</td>
<td>10.3</td>
<td>4.5</td>
<td>4.0</td>
<td>4.7</td>
</tr>
<tr>
<td>10</td>
<td>.282</td>
<td>.434</td>
<td>72.7</td>
<td>61.2</td>
<td>55.9</td>
<td>41.3</td>
<td>57.8</td>
</tr>
</tbody>
</table>

*At all points in this paper the common subscripts are:
- \(s \) = small reproduction size
- \(m \) = medium reproduction size
- \(mu \) = medium (unsharp) reproduction size
- \(l \) = large reproduction size

FIGURE 4C - Mean Normalized Quality Ratings

In addition the scalar multiples are plotted against the values for \(\bar{R} \) in Figure 4D.
FIGURE 4D

λ_1 and λ_2 vs. \bar{R} (mean normalized ratings)

\bar{R}

picture # 9

Scalar Multiple #2

Scalar Multiple #1

light

dark

contrasty
At this stage it is reasonable to apply statistics to the data to determine the major sources of quality variance. Using an analysis of variance (ANOVA) the data variance due to the tested factors is compared with the data variance due to experimental error\(^{15}\) (see Appendix D). This procedure showed that, while tone reproduction did significantly affect quality ratings, neither picture size nor sharpness produced significant changes in the quality response when compared with those produced by error.

At this point at least two inferences may be drawn: (a) the data are as accurate as possible and the factors sharpness and reproduction size are actually insignificant in determining quality, or (b) the data were not sufficiently accurate and the role of the tested factors remains unknown.

Looking at the set of data from the observers in Appendix C, one sees large discrepencies within any single reproduction suggesting a system with a wide standard deviation. In such a case more quality decisions must be made to increase the accuracy of the calculation of a mean quality rating. Thus more observers or more observations would probably reduce experimental error. This in turn would increase the possibility of detecting significance of the tested factors.

Another method would be to smooth the quality ratings by fitting them to an appropriate curve. This would produce new and possibly more accurate data with which the experiment could be completed. The experiment will follow the latter course.
The method of least squares was used to relate the eigenvector scalar multiples to the normalized quality ratings. A quadratic curve of the form

\[Q = a_1 \lambda_1 + a_2 \lambda_2 + a_3 \lambda_1^2 + a_4 \lambda_2^2 + a_5 \lambda_1 \lambda_2 + a_6 \]

was chosen as the most reasonable model.

A computer program (see Appendix E) was created which would calculate the proper coefficients for each reproduction size and sharpness. The new mean normalized ratings calculated (\(\bar{R}_c \)) are shown in Figure 4E with the original \(\bar{R} \) for comparison.

<table>
<thead>
<tr>
<th></th>
<th>Small</th>
<th>Medium</th>
<th>Unsharp</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\bar{R})</td>
<td>(\bar{R}_c)</td>
<td>(\bar{R})</td>
<td>(\bar{R}_c)</td>
</tr>
<tr>
<td>1</td>
<td>55.0</td>
<td>63.4</td>
<td>51.6</td>
<td>66.6</td>
</tr>
<tr>
<td>2</td>
<td>19.8</td>
<td>19.3</td>
<td>60.7</td>
<td>50.0</td>
</tr>
<tr>
<td>3</td>
<td>56.2</td>
<td>69.9</td>
<td>80.1</td>
<td>71.9</td>
</tr>
<tr>
<td>4</td>
<td>46.9</td>
<td>50.8</td>
<td>35.6</td>
<td>50.6</td>
</tr>
<tr>
<td>5</td>
<td>76.8</td>
<td>58.0</td>
<td>67.2</td>
<td>70.6</td>
</tr>
<tr>
<td>6</td>
<td>62.5</td>
<td>58.4</td>
<td>71.8</td>
<td>59.9</td>
</tr>
<tr>
<td>7</td>
<td>70.5</td>
<td>63.2</td>
<td>74.9</td>
<td>72.2</td>
</tr>
<tr>
<td>8</td>
<td>45.8</td>
<td>53.6</td>
<td>71.9</td>
<td>77.6</td>
</tr>
<tr>
<td>9</td>
<td>0.0</td>
<td>1.4</td>
<td>10.3</td>
<td>13.1</td>
</tr>
<tr>
<td>10</td>
<td>72.7</td>
<td>68.2</td>
<td>61.2</td>
<td>52.8</td>
</tr>
</tbody>
</table>

FIGURE 4E - \(\bar{R} \) and Calculated \(\bar{R}_c \)

From this new information the tone reproduction needed for maximum quality for each size may be calculated as shown in Appendix E. The newly calculated \(\bar{R}_c \) and the points of maximum quality are plotted against the scalar multiples in Figure 4F below.
FIGURE 4F

λ_1 and λ_2 vs. \bar{R}_c (calculated ratings)
One would probably expect to find small differences in optimum tone reproduction and a smooth progression from small to large. The location of the maximum quality point for the medium sized reproduction indicates immediately that something is amiss. Calculating the maximum values of \(\bar{R}_c \) we find that they are:

<table>
<thead>
<tr>
<th>Size</th>
<th>Small</th>
<th>Medium</th>
<th>Unsharp</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{R}_c) maximum</td>
<td>70.9</td>
<td>97.1</td>
<td>66.0</td>
<td>70.3</td>
</tr>
</tbody>
</table>

FIGURE 4G - Values for \(\bar{R}_c \) Maximum

There is no apparent reason why the medium reproduction should have a maximum \(\bar{R}_c \) so unlike the other reproductions. Looking again at Figure 4F, the values of \(\bar{R}_c \) continue to increase as you approach \#8 from the tested areas. Thus the maximum would be expected to appear outside the range that was tested. In such a case the quadratic curve fitting was forced to extrapolate an answer and an incorrect result was drawn. This is a result of studying too limited a tone reproduction range and more observations would not result in a correct answer unless the ratings were changed considerably. At this point the experiment cannot be done again and more accurate results will await future experimentation in this area.

If all of the data from the original normalized observations are combined, information about the optimum tone reproduction for this subject (not considering size a factor) may be obtained. This information should be quite accurate because of the increased amount of data used to determine it. A plot of \(\lambda_1, \lambda_2, \) and \(\bar{R}_c \) is shown in Figure 4H along with the position of maximum quality.
FIGURE 4H

λ_1 and λ_2 vs. $\frac{\bar{R}}{R_c}$ (average calculated ratings)

$\frac{\bar{R}}{R_c} = 6.4$

picture #9

Scalar Multiple #2

Scalar Multiple #1
This optimum tone reproduction is then plotted using RIT TR graph paper with axes scaled according to visual density perception. Figure 41 shows that this optimum reproduction has more contrast than a straight line reproduction would have. Overall such an optimum print is lighter than the corresponding straight line reproduction, also.

FIGURE 41
(plotted with non-linear Munsell density scale)
In addition using the quadratic model, ellipses showing regions of equal quality may be drawn. In Figure 4J this plot of iso-quality vs. scalar multiples is shown.

The ellipses for any size print would be similar to these and such a diagram is extremely useful in choosing a tone reproduction range to be studied.
At this point the procedures are established, computer programs are available, and the tone reproduction range has been narrowed to a useful size. Using this as a starting point I hope that another project will be initiated to gain more concrete results and perhaps investigate similar questions on optimum tone reproduction.

An interesting project, perhaps related to similar work in this subject, would be to determine the correlation between the three gradation knob settings of the scanner and the resultant curve shapes. Since only two types of variation (s-shaped and bowed) seem to be available, only two control knobs are really needed.
Section Five

Conclusions

Due to deficiencies in the tone reproduction range studied and the wide quality response range given by the observers, no conclusive information on the preferred tone reproduction for prints of different sizes may be made.

Several observations may be drawn from the work done in the project, however.

First is the question of quality preference in a group of observers. Is there really a tone reproduction which most observers will consider to produce a high quality print? It is much easier for a person to determine sharpness, contrast, lightness or darkness and other single factors than it is to bring them all together in a subjective quality judgement. In this experiment the observers expressed widely different quality preferences and showed little ability to make firm quality decisions. If quality is not a more definite criterion that it has shown itself to be, then perhaps small changes in quality due to size or sharpness are not really important after all. An interesting project would be to find what factors (contrast, sharpness, darkness, etc.) actually contribute most to quality.

Secondly, the application of eigenvectors to characterize tone reproduction curves has proven to be an extremely useful method. This could be used to aid in the analysis of any study using variations of tone reproduction. It is particularly adaptable to mathematical analysis of any multivariate system.
Third, the results obtained from the study of the averaged data, from all observations on all prints, has given much insight into the relationship of tone reproduction change to quality preference. The optimum tone reproduction curve for an average of different sized prints should be of value in a practical reproduction system.

All that seems to remain at this point to obtain meaningful information is the selection of a wider or, at least, more appropriate range of tone reproductions and the use of a larger observer group and/or employment of a more efficient judging system.
LIST OF REFERENCES

(a) pp. 464-497
(b) pp. 536-539.

APPENDICES
APPENDIX A

Processing and Production
APPENDIX A

Processing and Production

I. Scanner Procedures

Scanner - RCA (Hell) Chromograph C286
Development - D-8 developer 2:1
3 minutes @ 68°F RIT agitation
Film - Dupont Scanner Film

Several adjustments were performed on the scanner. Prior to these, however, development tests were carried out. The developer chosen was D-8 for its ability to give high contrast and low fog with the Dupont continuous tone scanner film. At the same time the iris diaphragm in the exposing section of the scanner was adjusted to give a sufficient exposure to the scanner film without resorting to excessive voltage at the exposing lamp.

These adjustments resulted in an iris opening of 4 1/4 units and development in D-8 (2 pts. developer: 1 pt. water) at 68°F for 3 minutes.

Next the linearization of the scanner output was performed. This procedure should produce a linear relationship between voltage applied to the exposing lamp and the density produced on the scanner positive. A straight line relationship was not obtained but the results were adequate for the range of densities to be produced.

Next a sampling of the range of gradation was made and one further need was determined. The black adjustment control, which
balances the output of the photomultipliers on a black shadow area, will significantly decrease the effectiveness of the gradation controls if it is set on too low a density. The setting found to be best was on a density .15 above the actual shadow density.

Other than this all single color adjustment controls were set normally and all color correction and special tone controls were turned off.
II. Halftone Films

Camera - Klmsch copy camera

Film - Kodak Ortho Type 3 #2556

Processing - Log E automatic processor

Kodak RT developer and replenisher

2 minutes @ 85°F

Screen - Kodak Magenta Positive 150% / in.

With the scanner positive in the transparency holder of the Klmsch (illuminated from behind with pulsed xenon lamps), the image size and sharpness could be changed to produce the needed halftones. The copyboard was carefully masked to prevent as much flare light from reaching the lens as possible.

Main and bump exposures were used in different ratios for small BDR corrections. Exposures were: main = 16 1/2 sec + 1 1/2 sec

bump = 2.7 sec + .5 sec

(.7ND filter over lens)
III. Halftone Prints

Paper - Kodabromide E-2
Exposure - Kodak point source, tap 2, 24 sec with 1.2ND
Development - D-72 1:6 for 1 1/2 minutes @ 68°F

The photographic halftone prints were produced by exposing the Kodabromide paper in vacuum contact with the masked film halftone. The Klimsch film back was used as an open-faced vacuum board and a point light source at a distance of 52" from the back was used for exposure.

The exposure remained constant for each print and development varied only in the amount of developer used for different size prints. Fresh developer was used for each print except for the small size where two were processed at a time. The dilution of the developer caused some difficulty in control of maximum density levels and some prints were made over to correct for errors. Maximum density was maintained to ±.03.

The prints were stopped and fixed normally and hypo clearing agent was used to reduce washing time. The prints were dried in a rotary drum drier and mounted on cardboard with dry mounting tissue.

A graph of % dot area vs. print density is shown on the next page.
Kodabromide E-2
exposure: Kodak point source
tap 2 + 1.20 ND (.3 ft.cd.)
development: Dektol 1:6
1 1/2 minutes 68°F

D_{print}

%DA_{negative}
APPENDIX B

Eigenvector Analysis
APPENDIX B

Eigenvector Analysis

I. Mathematical Basis

If n sets of response data Z are available at m levels of a variable X, then the response vector may be arranged in a data matrix of n rows and m columns.

From this data matrix a covariance matrix (W) and a mean vector (μ) may be calculated from the original set of data.

The mean vector (μ) is the mean value of each of the n sets of data at a given level of X. It supplies a method of specifying the location of the family of curves to be analysed.

The covariance matrix (W) is defined as \(W = f(z-μ)(z-μ)^T \). This matrix contains a diagonal element, \(f(z_i-μ_i)^2 \), which is the variance of Z, and a nondiagonal element, \(f(z_i-μ_i)(z_j-μ_j) \), which is the covariance of \(z_i \) and \(z_j \). These terms are often referred to as sums of squares and sums of cross products and may be used as a measure of correlation between data groups.

From this covariance matrix the vector and root corresponding to maximum variance may be calculated. The equation for the root is \(|W-λI|^* = 0 \) and for the vector \(WV = λV \) or \((W-λI)V = 0 \).

In the calculation of the latent root for a matrix of order n, n roots will be calculated. The largest of these corresponds to the largest variance.

*The notation \(A' \) indicates the transpose of a matrix A (the transpose of a matrix has the rows and columns interchanged, i.e. \(A_{ij} = A'_{ji} \)).

**I is the identity matrix which contains a diagonal row of 1's. This matrix is equal to 1 in any matrix algebra manipulations.
In an example where \(n = 2 \), the following equation is obtained:

\[
\begin{vmatrix}
 z_{11} & z_{12} \\
 z_{21} & z_{22}
\end{vmatrix}
- \lambda_i
\begin{vmatrix}
 1 & 0 \\
 0 & 1
\end{vmatrix}
= 0 =
\begin{vmatrix}
 z_{11} - \lambda_i & z_{12} - 0 \\
 z_{21} - 0 & z_{22} - \lambda_i
\end{vmatrix}
\]

\[
(z_{11} - \lambda_i)(z_{22} - \lambda_i) - (z_{12})(z_{21}) = 0
\]

and

\[
\lambda_i^2 - z_{11}\lambda_i - z_{22}\lambda_i + z_{11}z_{22} - z_{21}z_{12} = 0.
\]

This equation may then be solved for its roots.

In a computer application this solution is most easily obtained
in an iterative procedure in which the covariance matrix is premultiplied
by normalized approximations of the final vector until the iteration
converges on the final solution of the roots.

The largest root is then used in the equation \((W - \lambda I)V = 0\) to
find the component vector, \(V\), associated with that root.

The number of vectors and roots necessary to account for a
given percentage of original variability may be determined. The sum of
the diagonal elements of \(W\) is called the grace and is equal to the sum
of all the roots of \(W\). The ratio of the sum of the roots calculated
to the trace is a measure of the variability explained.

The scalar multiples may then be normalized with a weighting
factor \((f)\) obtained by dividing the elements of \(V\) by the root and
summing the product of \(\lambda = \sum_{i=1}^{n} f(z_i - \bar{z}_i)\).

Thus we can obtain a complete specification of the original data
set in fewer parameters. The mean \((\mu)\), the component vector \((V)\), and
the scalar multiple \((\lambda)\) may be used to specify the curves in the original
family.
Any response could then be stated mathematically as follows:

\[z_1 = \tilde{z}_1 + \lambda_1 V_{1,1} + \lambda_2 V_{2,1} + \lambda_3 V_{3,1} + \cdots \]

\[z_2 = \tilde{z}_2 + \lambda_1 V_{1,2} + \lambda_2 V_{2,2} + \lambda_3 V_{3,2} + \cdots \]

\[z_r = \tilde{z}_r + \lambda_1 V_{1,r} + \lambda_2 V_{2,r} + \lambda_3 V_{3,r} + \cdots \]

NOTE: It should be understood that eigenvectors are sets of discrete points. For illustration they may be represented by a curve drawn through those points.
APPENDIX B

B. Computer Program to Compute Mean, Eigenvectors, and Scalar Multiples from a Data Set

\text{IASSIGN M:SI\langle FILE\langle EIGN\rangle}

\text{IFORTTRAN OPTIONS:}
\text{EXTENDED FIV-H VERSION DOO}

\begin{verbatim}
1: C I=ROWS(VARYING ORDINATE) J=COLUMNS(CONSTANT STEP
2: C TO CHANGE SIZE OF DATA ARRAY THE FOLLOWING STEPS
3: C MUST BE CHANGED -- #8,9,10 --12,13-- #80,81
4: C DIMENSION A(I,J),P(I,J),V(J,J),PTP(J,J)
5: C DIMENSION XMEAN(1,J),U(1,J),Y1(1,J),Y(1,J),V(1,J)
6: C DIMENSION WW(J,1,J),X(I,J),XX(J,J)
7: C IMPLICIT DOUBLE PRECISION (A-H,O-Z)
8: C DIMENSION A(10,9),P(10,9),W(9,9),PTP(9,9)
9: C DIMENSION XMEAN(1,9),U(1,9),Y1(1,9),Y(1,9)
10: C DIMENSION V(1,9),WW(10,1,9),X(10,9),XX(9,9)
11: PRINT 30
12: I=10
13: J=9
14: QQ=0.0
15: READ 19,A
16: DO 3 K=1,J
17: SUM=0.0
18: DO 2 L=1,I
19: SUM=A(L,K)+SUM
20: 2 CONTINUE
21: C MEAN ROW VALUE
22: XMEAN(1,K)=SUM/I
23: 3 CONTINUE
24: PRINT 27
25: PRINT 17,XMEAN
26: PRINT 26
27: DO 4 K=1,J
28: DO 4 L=1,I
29: C MEAN CORRECTED DATA MATRIX
30: P(L,K)=A(L,K)-XMEAN(1,K)
31: 4 CONTINUE
32: TRACE=0.0
33: C PREMULTIPLY 'P' BY ITS TRANSPOSE
34: 100 DO 15 L=1,I
35: DO 15 K=1,J
36: X(K,L)=P(L,K)
37: 15 CONTINUE
38: DO 16 K=1,J
39: DO 16 L=1,I
40: PTP(K,L)=0.0
41: DO 16 M=1,I
42: PTP(K,L)=PTP(K,L)+X(K,M)*P(M,L)
\end{verbatim}
CONTINUE
43: DO 44 5 L=1,J
44: DO 45 5 LL=1,J
45: W(LL,L)=PTP(LL,L)
46: CONTINUE
47: DO 48 200 N=1,10
48: IF (I .LE. 2) GO TO 50
49: DO 50 49 L=1,J
50: DO 50 49 LL=1,J
51: W(LL,L)=PTP(LL,L)
52: CONTINUE
53: DO 50 49 L=1,J
54: IF (N .LT. 2) GO TO 94
55: C PREMULTIPLY 'V' BY ITS TRANSPOSE
56: DO 32 31 L=1,J
57: XX(L,1)=V(1,L)
58: CONTINUE
59: DO 31 32 L=1,J
60: DO 32 31 K=1,J
61: PTP(K,L)=XX(K,1)*V(1,L)
62: CONTINUE
63: DO 31 32 L=1,J
64: DO 32 31 K=1,J
66: CONTINUE
67: DO 98 5 L=1,J
68: IF (N .GE. 2) GO TO 98
69: C TRACE IS SUM OF DIAGONAL ROW OF PTP
70: TRACE=PTP(L,L)+TRACE
71: U(1,L)=1.0
72: Y(1,L)=1.0
73: CONTINUE
74: DO 98 8 K=1,100
75: DO 8 35 L=1,J
76: Y(1,L)=0.0
77: DO 8 35 M=1,J
78: Y(1,L)=U(1,M)*PTP(M,L)+Y(1,L)
79: CONTINUE
80: Q=DNAX1(Y(1,1),Y(1,2),Y(1,3),Y(1,4),Y(1,5),
81: 1Y(1,6),Y(1,7),Y(1,8),Y(1,9))
82: DO 8 6 L=1,J
83: R=ABS(Y(1,L)-Y(1,L))
84: IF (R .GE. 0.000000001) GO TO 7
85: CONTINUE
86: GO TO 6
87: CONTINUE
88: DO 98 7 M=1,J
89: Y(1,M)=Y(1,M)
90: CONTINUE
91: DO 98 8 L=1,J
92: U(1,L)=Y(1,L)/Q
93: CONTINUE
94: QQ=Q+Q
95: SUM=0.0
96: DO 98 10 L=1,J
97: SUM=Y(1,L)**2.0+SUM
98: CONTINUE
99: Z=DSQRT(Q/SUM)
100: DO 101 11 L=1,J
101: V(1,L)=Y(1,L)*Z
1

02: \[WW(N, 1, L) = (Y(1, L) + Z) / Q \]
103: CONTINUE
104: EXP/QQ/TRACE
105: PRINT 28, N
106: PRINT 23, V
107: PRINT 24, EXP
108: IF (EXP GT 9999) GO TO 75
109: PRINT 29
110: DO 79 L = 1, I
111: COEF = 0.0
112: DO 69 K = 1, J
113: COEF = WW(N, 1, K) * P(L, K) + COEF
114: 69
115: CONTINUE
116: 79 CONTINUE
117: PRINT 26
118: 200 CONTINUE
119: 17 FORMAT (5F10.4)
120: 19 FORMAT (F8.7)
121: 23 FORMAT (5F10.5)
122: 24 FORMAT (16HTRACE EXPLAINED=, F6.5, /)
123: 25 FORMAT (1H(I2, 1H), 2X, F7.4)
124: 26 FORMAT (/)
125: 27 FORMAT (10X, 20HMEAN RESPONSE VECTOR)
126: 28 FORMAT (10X, 23HCHARACTERISTIC VECTOR #, I1)
127: 29 FORMAT (16HSCALAR MULTIPLES)
128: 30 FORMAT (5X, 37HEIGENVECTOR ANALYSIS OF RESPONSE DATA, /)
129: 75 END

SUBPROGRAMS

M:0C 9PRINT 9END10L 9RTOD 9READ 910LUSA
9ITOD DMA1X ABS 9POWDR DSQRT 910DATA
9STOP

PROGRAM ALLOCATION

2A0.0 I 2A1.0 J 2A2.0 QQ 2A4.0 K
2A6.0 SUM 2A8.0 L 2AA.0 TRACE 2AC.0 M
2AD.0 LL 2AE.0 N 2B0.0 Q 2B2.0 R
2BA.0 Z 2B6.0 EXP 2B8.0 COEF
2B4.0 A 36E.0 P 422.0 W 4C4.0 PTP
566.0 XMEAN 578.0 U 58A.0 Y1 59C.0 Y
5AE.0 V 5C0.0 WW 674.0 X 728.0 XX

PROGRAM SIZE 7CA

PROGRAM END
EIGENVECTOR ANALYSIS OF RESPONSE DATA

MEAN RESPONSE VECTOR

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.0310</td>
<td>0.1730</td>
<td>0.2900</td>
<td>0.4280</td>
<td></td>
</tr>
<tr>
<td>0.5790</td>
<td>0.7690</td>
<td>0.9820</td>
<td>1.3000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHARACTERISTIC VECTOR #1

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.06905</td>
<td>0.14693</td>
<td>0.25982</td>
<td>0.35843</td>
<td></td>
</tr>
<tr>
<td>0.36067</td>
<td>0.36178</td>
<td>0.26023</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRACE EXPLAINED = .87936

SCALAR MULTIPLES

1. 0.0960
2. 0.4928
3. 0.0974
4. 0.5057
5. 0.2247
6. 0.3719
7. 0.1597
8. 0.3362
9. 0.2695
10. 0.2315

CHARACTERISTIC VECTOR #2

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.07481</td>
<td>0.11142</td>
<td>0.10492</td>
<td>0.06450</td>
<td></td>
</tr>
<tr>
<td>0.01537</td>
<td>-0.09464</td>
<td>-0.16609</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRACE EXPLAINED = .99100

SCALAR MULTIPLES

1. 0.0235
2. 0.0243
3. 0.1435
4. 0.0126
5. 0.1395
6. 0.1187
7. 0.3542
8. 0.3383
9. 0.6925
10. 0.4340
Characteristic Vector
3

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.01482</td>
<td>0.01887</td>
<td>0.00506</td>
<td>0.00907</td>
<td></td>
</tr>
<tr>
<td>-0.02093</td>
<td>-0.03312</td>
<td>0.04299</td>
<td>0.00000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trace Explained: 99.75%

Scalar Multiples

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>1.1671</td>
</tr>
<tr>
<td>(2)</td>
<td>-1.707</td>
</tr>
<tr>
<td>(3)</td>
<td>1.1977</td>
</tr>
<tr>
<td>(4)</td>
<td>-0.0676</td>
</tr>
<tr>
<td>(5)</td>
<td>5.154</td>
</tr>
<tr>
<td>(6)</td>
<td>-1.506</td>
</tr>
<tr>
<td>(7)</td>
<td>-5.408</td>
</tr>
<tr>
<td>(8)</td>
<td>0.0424</td>
</tr>
<tr>
<td>(9)</td>
<td>-3.943</td>
</tr>
<tr>
<td>(10)</td>
<td>4.015</td>
</tr>
</tbody>
</table>

Characteristic Vector
4

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.01186</td>
<td>0.01053</td>
<td>0.00519</td>
<td>-0.01134</td>
<td></td>
</tr>
<tr>
<td>-0.01707</td>
<td>0.01363</td>
<td>-0.00091</td>
<td>0.00000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trace Explained: 99.917%

Scalar Multiples

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>2.735</td>
</tr>
<tr>
<td>(2)</td>
<td>0.426</td>
</tr>
<tr>
<td>(3)</td>
<td>4.125</td>
</tr>
<tr>
<td>(4)</td>
<td>-1.533</td>
</tr>
<tr>
<td>(5)</td>
<td>-1.533</td>
</tr>
<tr>
<td>(6)</td>
<td>5.457</td>
</tr>
<tr>
<td>(7)</td>
<td>-4.233</td>
</tr>
<tr>
<td>(8)</td>
<td>1.923</td>
</tr>
<tr>
<td>(9)</td>
<td>0.741</td>
</tr>
<tr>
<td>(10)</td>
<td>-4.109</td>
</tr>
</tbody>
</table>
APPENDIX C

Quality Ratings
APPENDIX C

Observer Quality Ratings \((r)\)

<table>
<thead>
<tr>
<th>Observer</th>
<th>PRINT 2</th>
<th>PRINT 3</th>
<th>PRINT 4</th>
<th>PRINT 5</th>
<th>PRINT 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S M MU L</td>
</tr>
<tr>
<td>1</td>
<td>35 30 35 40</td>
<td>35 40 55 60</td>
<td>40 20 30 35</td>
<td>40 75 65 40</td>
<td>60 60 45 65</td>
</tr>
<tr>
<td>2</td>
<td>30 20 60 40</td>
<td>30 70 70 70</td>
<td>90 70 80 60</td>
<td>80 30 30 80</td>
<td>60 80 40 60</td>
</tr>
<tr>
<td>3</td>
<td>20 65 60 40</td>
<td>65 65 45 75</td>
<td>55 20 35 40</td>
<td>55 60 75 75</td>
<td>40 45 65 55</td>
</tr>
<tr>
<td>4</td>
<td>40 80 55 60</td>
<td>45 55 45 45</td>
<td>35 40 30 40</td>
<td>60 80 60 75</td>
<td>55 40 30 38</td>
</tr>
<tr>
<td>5</td>
<td>30 80 75 35</td>
<td>60 80 40 25</td>
<td>15 20 0 10</td>
<td>85 60 80 70</td>
<td>40 20 15 20</td>
</tr>
<tr>
<td>6</td>
<td>10 30 20 20</td>
<td>80 85 90 80</td>
<td>70 80 70 70</td>
<td>40 35 40 40</td>
<td>70 90 90 80</td>
</tr>
<tr>
<td>7</td>
<td>30 40 20 60</td>
<td>60 55 70 60</td>
<td>40 60 40 30</td>
<td>80 70 60 40</td>
<td>40 70 60 70</td>
</tr>
<tr>
<td>8</td>
<td>40 40 30 80</td>
<td>60 80 40 40</td>
<td>30 20 20 30</td>
<td>70 70 60 60</td>
<td>80 80 60 60</td>
</tr>
<tr>
<td>9</td>
<td>30 80 70 30</td>
<td>40 80 30 60</td>
<td>30 30 20 30</td>
<td>90 70 80 90</td>
<td>30 80 90 60</td>
</tr>
<tr>
<td>10</td>
<td>20 80 60 30</td>
<td>40 80 80 70</td>
<td>70 60 80 80</td>
<td>40 30 40 80</td>
<td>60 80 60 80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observer</th>
<th>PRINT 7</th>
<th>PRINT 8</th>
<th>PRINT 9</th>
<th>PRINT 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S M MU L</td>
<td>S M MU L</td>
<td>S M MU L</td>
<td>S M MU L</td>
</tr>
<tr>
<td>1</td>
<td>45 60 60 45</td>
<td>40 35 35 40</td>
<td>10 10 10 15</td>
<td>60 65 45 60</td>
</tr>
<tr>
<td>2</td>
<td>80 80 70 40</td>
<td>30 70 40 70</td>
<td>10 10 30 10</td>
<td>80 40 60 30</td>
</tr>
<tr>
<td>3</td>
<td>70 60 60 60</td>
<td>40 45 65 70</td>
<td>25 30 30 25</td>
<td>60 70 60 45</td>
</tr>
<tr>
<td>4</td>
<td>45 40 50 45</td>
<td>50 80 75 60</td>
<td>30 30 30 35</td>
<td>47 55 45 47</td>
</tr>
<tr>
<td>5</td>
<td>70 30 70 60</td>
<td>45 80 25 35</td>
<td>10 10 20 10</td>
<td>40 65 35 45</td>
</tr>
<tr>
<td>6</td>
<td>60 85 70 80</td>
<td>20 45 20 10</td>
<td>10 10 10 10</td>
<td>90 90 90 40</td>
</tr>
<tr>
<td>7</td>
<td>70 80 70 40</td>
<td>30 40 20 60</td>
<td>10 10 10 30</td>
<td>60 40 40 40</td>
</tr>
<tr>
<td>8</td>
<td>30 50 60 40</td>
<td>55 70 30 60</td>
<td>30 20 30 40</td>
<td>40 80 40 55</td>
</tr>
<tr>
<td>9</td>
<td>80 90 40 40</td>
<td>40 90 60 40</td>
<td>20 80 20 20</td>
<td>70 30 40 40</td>
</tr>
<tr>
<td>10</td>
<td>70 90 80 60</td>
<td>80 70 70 70</td>
<td>20 10 20 40</td>
<td>80 20 60 40</td>
</tr>
</tbody>
</table>

NOTE: PRINT #1 used as control from each set \((r = 50)\).

Each reproduction size was evaluated in a different order, the orders remained constant for each observer.

<table>
<thead>
<tr>
<th>order</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>medium</td>
<td>5</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>B</td>
<td>small</td>
<td>6</td>
<td>4</td>
<td>10</td>
<td>3</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>large</td>
<td>10</td>
<td>2</td>
<td>9</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>medium (unsharp)</td>
<td>9</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

print numbers
APPENDIX C

Normalized Quality Ratings (R)

Small Print

<table>
<thead>
<tr>
<th>Observer</th>
<th>Print 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80.0</td>
<td>50.0</td>
<td>50.0</td>
<td>60.0</td>
<td>60.0</td>
<td>100.0</td>
<td>70.0</td>
<td>60.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>2</td>
<td>50.0</td>
<td>25.0</td>
<td>25.0</td>
<td>100.0</td>
<td>87.5</td>
<td>62.5</td>
<td>87.5</td>
<td>25.0</td>
<td>0.0</td>
<td>87.5</td>
</tr>
<tr>
<td>3</td>
<td>60.0</td>
<td>0.0</td>
<td>90.0</td>
<td>70.0</td>
<td>70.0</td>
<td>40.0</td>
<td>100.0</td>
<td>40.0</td>
<td>0.0</td>
<td>80.0</td>
</tr>
<tr>
<td>4</td>
<td>66.7</td>
<td>33.3</td>
<td>50.0</td>
<td>16.7</td>
<td>100.0</td>
<td>83.3</td>
<td>50.0</td>
<td>66.7</td>
<td>0.0</td>
<td>56.7</td>
</tr>
<tr>
<td>5</td>
<td>53.3</td>
<td>26.7</td>
<td>66.7</td>
<td>6.7</td>
<td>100.0</td>
<td>40.0</td>
<td>80.0</td>
<td>46.7</td>
<td>0.0</td>
<td>40.0</td>
</tr>
<tr>
<td>6</td>
<td>50.0</td>
<td>0.0</td>
<td>87.5</td>
<td>75.0</td>
<td>37.5</td>
<td>75.0</td>
<td>62.5</td>
<td>12.5</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>7</td>
<td>57.1</td>
<td>28.6</td>
<td>71.4</td>
<td>42.9</td>
<td>100.0</td>
<td>42.9</td>
<td>85.7</td>
<td>28.6</td>
<td>0.0</td>
<td>71.4</td>
</tr>
<tr>
<td>8</td>
<td>40.0</td>
<td>20.0</td>
<td>60.0</td>
<td>0.0</td>
<td>80.0</td>
<td>100.0</td>
<td>0.0</td>
<td>50.0</td>
<td>0.0</td>
<td>20.0</td>
</tr>
<tr>
<td>9</td>
<td>42.9</td>
<td>14.3</td>
<td>28.6</td>
<td>14.3</td>
<td>100.0</td>
<td>14.3</td>
<td>85.7</td>
<td>28.6</td>
<td>0.0</td>
<td>71.4</td>
</tr>
<tr>
<td>10</td>
<td>50.0</td>
<td>0.0</td>
<td>33.3</td>
<td>83.3</td>
<td>33.3</td>
<td>66.7</td>
<td>83.3</td>
<td>100.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

$$\bar{R} = 55.0$$ $$s = 11.74$$

Medium Print

<table>
<thead>
<tr>
<th>Observer</th>
<th>Print 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>61.5</td>
<td>30.8</td>
<td>46.2</td>
<td>15.4</td>
<td>100.0</td>
<td>76.9</td>
<td>76.9</td>
<td>38.5</td>
<td>0.0</td>
<td>84.6</td>
</tr>
<tr>
<td>2</td>
<td>57.1</td>
<td>14.3</td>
<td>85.7</td>
<td>85.7</td>
<td>28.6</td>
<td>100.0</td>
<td>100.0</td>
<td>85.7</td>
<td>0.0</td>
<td>42.9</td>
</tr>
<tr>
<td>3</td>
<td>60.0</td>
<td>90.0</td>
<td>90.0</td>
<td>0.0</td>
<td>80.0</td>
<td>50.0</td>
<td>80.0</td>
<td>50.0</td>
<td>0.0</td>
<td>20.0</td>
</tr>
<tr>
<td>4</td>
<td>40.0</td>
<td>100.0</td>
<td>50.0</td>
<td>20.0</td>
<td>100.0</td>
<td>20.0</td>
<td>20.0</td>
<td>100.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>5</td>
<td>57.1</td>
<td>100.0</td>
<td>100.0</td>
<td>14.3</td>
<td>71.4</td>
<td>14.3</td>
<td>28.6</td>
<td>100.0</td>
<td>0.0</td>
<td>78.6</td>
</tr>
<tr>
<td>6</td>
<td>50.0</td>
<td>25.0</td>
<td>93.8</td>
<td>87.5</td>
<td>31.3</td>
<td>100.0</td>
<td>93.8</td>
<td>43.8</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>7</td>
<td>57.1</td>
<td>42.9</td>
<td>64.3</td>
<td>71.4</td>
<td>85.7</td>
<td>85.7</td>
<td>100.0</td>
<td>42.9</td>
<td>0.0</td>
<td>42.9</td>
</tr>
<tr>
<td>8</td>
<td>50.0</td>
<td>33.3</td>
<td>100.0</td>
<td>0.0</td>
<td>83.3</td>
<td>100.0</td>
<td>50.0</td>
<td>83.3</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>9</td>
<td>33.3</td>
<td>83.3</td>
<td>83.3</td>
<td>0.0</td>
<td>66.7</td>
<td>83.3</td>
<td>100.0</td>
<td>100.0</td>
<td>83.3</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>50.0</td>
<td>87.5</td>
<td>87.5</td>
<td>62.5</td>
<td>25.0</td>
<td>87.5</td>
<td>100.0</td>
<td>75.0</td>
<td>0.0</td>
<td>12.5</td>
</tr>
</tbody>
</table>

$$\bar{R} = 51.61$$ $$s = 9.05$$

\bar{R} values are given for the normalized quality ratings in both small and medium print sizes. The values are calculated as the average of the ratings for each observer. The standard deviation s is also provided for each print size, indicating the variability of the ratings among observers.
Normalized Quality Ratings (R) - Continued

Medium Unsharp Print

<table>
<thead>
<tr>
<th>Observer</th>
<th>Print</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.7</td>
<td>45.5</td>
<td>81.8</td>
<td>90.9</td>
<td>45.5</td>
<td>0.0</td>
<td>63.6</td>
<td>40.0</td>
<td>20.0</td>
<td>20.0</td>
<td>63.6</td>
</tr>
<tr>
<td>2</td>
<td>40.0</td>
<td>60.0</td>
<td>80.0</td>
<td>100.0</td>
<td>0.0</td>
<td>20.0</td>
<td>0.0</td>
<td>80.0</td>
<td>20.0</td>
<td>0.0</td>
<td>60.0</td>
</tr>
<tr>
<td>3</td>
<td>44.4</td>
<td>66.7</td>
<td>33.3</td>
<td>11.1</td>
<td>100.0</td>
<td>77.8</td>
<td>66.7</td>
<td>77.8</td>
<td>0.0</td>
<td>20.0</td>
<td>66.7</td>
</tr>
<tr>
<td>4</td>
<td>44.4</td>
<td>55.6</td>
<td>33.3</td>
<td>0.0</td>
<td>66.7</td>
<td>0.0</td>
<td>44.4</td>
<td>100.0</td>
<td>0.0</td>
<td>33.3</td>
<td>33.3</td>
</tr>
<tr>
<td>5</td>
<td>60.0</td>
<td>93.3</td>
<td>46.7</td>
<td>0.0</td>
<td>100.0</td>
<td>13.3</td>
<td>86.7</td>
<td>26.7</td>
<td>20.0</td>
<td>40.0</td>
<td>40.0</td>
</tr>
<tr>
<td>6</td>
<td>50.0</td>
<td>12.5</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
<td>33.3</td>
<td>100.0</td>
<td>0.0</td>
<td>100.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>7</td>
<td>66.7</td>
<td>16.7</td>
<td>100.0</td>
<td>50.0</td>
<td>83.3</td>
<td>83.3</td>
<td>100.0</td>
<td>16.7</td>
<td>0.0</td>
<td>50.0</td>
<td>50.0</td>
</tr>
<tr>
<td>8</td>
<td>75.0</td>
<td>25.0</td>
<td>50.0</td>
<td>0.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>25.0</td>
<td>25.0</td>
<td>50.0</td>
<td>50.0</td>
</tr>
<tr>
<td>9</td>
<td>42.9</td>
<td>71.4</td>
<td>14.3</td>
<td>0.0</td>
<td>85.7</td>
<td>100.0</td>
<td>28.6</td>
<td>57.1</td>
<td>0.0</td>
<td>28.6</td>
<td>28.6</td>
</tr>
<tr>
<td>10</td>
<td>50.0</td>
<td>66.7</td>
<td>100.0</td>
<td>100.0</td>
<td>33.3</td>
<td>66.7</td>
<td>100.0</td>
<td>83.3</td>
<td>0.0</td>
<td>66.7</td>
<td>66.7</td>
</tr>
</tbody>
</table>

\[\bar{R} = 54.61, 51.34, 63.94, 37.25, 70.83, 62.47, 77.23, 46.46, 4.50, 55.89 \]

\[s = 12.99, 26.17, 32.16, 41.76, 35.58, 38.06, 24.49, 31.46, 9.56, 20.64 \]

Large Print

<table>
<thead>
<tr>
<th>Observer</th>
<th>Print</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70.0</td>
<td>50.0</td>
<td>90.0</td>
<td>40.0</td>
<td>50.0</td>
<td>100.0</td>
<td>60.0</td>
<td>50.0</td>
<td>0.0</td>
<td>90.0</td>
<td>90.0</td>
</tr>
<tr>
<td>2</td>
<td>57.1</td>
<td>42.9</td>
<td>85.7</td>
<td>71.4</td>
<td>100.0</td>
<td>71.4</td>
<td>42.9</td>
<td>85.7</td>
<td>0.0</td>
<td>28.6</td>
<td>28.6</td>
</tr>
<tr>
<td>3</td>
<td>50.0</td>
<td>30.0</td>
<td>100.0</td>
<td>0.0</td>
<td>100.0</td>
<td>60.0</td>
<td>70.0</td>
<td>90.0</td>
<td>0.0</td>
<td>40.0</td>
<td>40.0</td>
</tr>
<tr>
<td>4</td>
<td>37.5</td>
<td>62.5</td>
<td>25.0</td>
<td>12.5</td>
<td>100.0</td>
<td>7.5</td>
<td>25.0</td>
<td>62.5</td>
<td>0.0</td>
<td>30.0</td>
<td>30.0</td>
</tr>
<tr>
<td>5</td>
<td>66.7</td>
<td>41.7</td>
<td>25.0</td>
<td>0.0</td>
<td>100.0</td>
<td>16.7</td>
<td>83.3</td>
<td>41.7</td>
<td>0.0</td>
<td>58.3</td>
<td>58.3</td>
</tr>
<tr>
<td>6</td>
<td>57.1</td>
<td>14.3</td>
<td>100.0</td>
<td>85.7</td>
<td>42.9</td>
<td>100.0</td>
<td>100.0</td>
<td>0.0</td>
<td>42.9</td>
<td>0.0</td>
<td>42.9</td>
</tr>
<tr>
<td>7</td>
<td>50.0</td>
<td>75.0</td>
<td>75.0</td>
<td>0.0</td>
<td>25.0</td>
<td>100.0</td>
<td>25.0</td>
<td>75.0</td>
<td>0.0</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td>8</td>
<td>40.0</td>
<td>100.0</td>
<td>20.0</td>
<td>0.0</td>
<td>60.0</td>
<td>60.0</td>
<td>20.0</td>
<td>60.0</td>
<td>20.0</td>
<td>50.0</td>
<td>50.0</td>
</tr>
<tr>
<td>9</td>
<td>42.9</td>
<td>14.3</td>
<td>57.1</td>
<td>14.3</td>
<td>100.0</td>
<td>57.1</td>
<td>28.6</td>
<td>28.6</td>
<td>0.0</td>
<td>28.6</td>
<td>28.6</td>
</tr>
<tr>
<td>10</td>
<td>40.0</td>
<td>0.0</td>
<td>80.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>80.0</td>
<td>80.0</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
</tr>
</tbody>
</table>

\[\bar{R} = 51.13, 43.07, 65.78, 35.39, 77.79, 67.27, 51.48, 57.35, 4.00, 41.34 \]

\[s = 11.42, 30.49, 31.82, 37.68, 29.91, 34.39, 27.58, 28.17, 8.43, 20.84 \]

NOTE: The second decimal place in \(\bar{R} \) and \(s \) is not significant.
APPENDIX D

Statistical Analysis
APPENDIX D

Analysis of Variance
(test for significance of size and tone reproduction)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>55.00</td>
<td>51.61</td>
<td>51.13</td>
</tr>
<tr>
<td>2</td>
<td>19.79</td>
<td>60.71</td>
<td>43.07</td>
</tr>
<tr>
<td>3</td>
<td>56.22</td>
<td>80.08</td>
<td>65.78</td>
</tr>
<tr>
<td>4</td>
<td>46.84</td>
<td>35.65</td>
<td>35.39</td>
</tr>
<tr>
<td>5</td>
<td>76.83</td>
<td>67.20</td>
<td>77.79</td>
</tr>
<tr>
<td>6</td>
<td>62.47</td>
<td>71.77</td>
<td>67.27</td>
</tr>
<tr>
<td>7</td>
<td>70.47</td>
<td>74.93</td>
<td>51.48</td>
</tr>
<tr>
<td>8</td>
<td>45.81</td>
<td>71.92</td>
<td>57.35</td>
</tr>
<tr>
<td>9</td>
<td>0.00</td>
<td>10.33</td>
<td>4.00</td>
</tr>
<tr>
<td>10</td>
<td>72.70</td>
<td>61.15</td>
<td>41.34</td>
</tr>
</tbody>
</table>

\[Y = 29 \quad SST = \sum_{ij} x_{ij} \times \frac{1}{n} = 9753.44 - \frac{2515805.37}{30} = 13693.17 \]

\[Y = 9 \quad SSR = \frac{T_i^2}{c} - \frac{T..^2}{n} = \frac{285017.23}{3} - \frac{2515808.37}{30} = 11445.47 \]

\[Y = 2 \quad SSC = \frac{T.j^2}{n} - \frac{T..^2}{n} = \frac{843481.97}{10} - 83860.27 = 487.92 \]

\[Y = 18 \quad SSE = SST-(SSR+SSC) = 2059.78 \]

<table>
<thead>
<tr>
<th></th>
<th>F ratio</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSR</td>
<td>1238.38</td>
<td>10.82 (2.46) SIGNIFICANT</td>
</tr>
<tr>
<td>SSC</td>
<td>243.96</td>
<td>2.13 (3.55) NOT SIGNIFICANT</td>
</tr>
<tr>
<td>SSE</td>
<td>114.43</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX D

Analysis of Variance

(test for significance of sharpness and tone reproduction)

<table>
<thead>
<tr>
<th></th>
<th>Sharpness</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>51.61</td>
<td>54.61</td>
</tr>
<tr>
<td>2</td>
<td>60.71</td>
<td>51.34</td>
</tr>
<tr>
<td>3</td>
<td>80.08</td>
<td>63.94</td>
</tr>
<tr>
<td>4</td>
<td>35.65</td>
<td>37.25</td>
</tr>
<tr>
<td>5</td>
<td>67.20</td>
<td>70.83</td>
</tr>
<tr>
<td>6</td>
<td>71.77</td>
<td>62.47</td>
</tr>
<tr>
<td>7</td>
<td>74.93</td>
<td>77.23</td>
</tr>
<tr>
<td>8</td>
<td>71.92</td>
<td>46.46</td>
</tr>
<tr>
<td>9</td>
<td>10.33</td>
<td>4.50</td>
</tr>
<tr>
<td>10</td>
<td>61.15</td>
<td>55.89</td>
</tr>
</tbody>
</table>

\[Y = 19 \quad \text{SST} = 69613.01 - 61590.57 = 8022.44 \]
\[Y = 9 \quad \text{SSR} = \frac{138051.46}{2} - 61590.57 = 7435.16 \]
\[Y = 1 \quad \text{SSC} = \frac{617755.85}{10} - 61590.57 = 185.01 \]
\[Y = 9 \quad \text{SSE} = 402.27 \]

\((\alpha = .05, \beta = .05)\)

<table>
<thead>
<tr>
<th></th>
<th>MS</th>
<th>F ratio</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSR</td>
<td>826.12</td>
<td>18.48 (3.18)</td>
<td>SIGNIFICANT</td>
</tr>
<tr>
<td>SSC</td>
<td>185.01</td>
<td>4.13 (5.12)</td>
<td>NOT SIGNIFICANT</td>
</tr>
<tr>
<td>SSE</td>
<td>44.69</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX E

Least Squares Curve Fitting
APPENDIX E

Least Squares Analysis

A. Procedure

With the final sets of prints evaluated and analysed, each print is characterized by its size, tone reproduction, and quality rating (R). The least squares method allows one to find a relationship between quality and tone reproduction at a given size. If a relationship of the form

\[Q = a_1 \lambda_1 + a_2 \lambda_2 + a_3 \lambda_1^2 + a_4 \lambda_2^2 + a_5 \lambda_1 \lambda_2 + a_6 \]

is assumed, then the coefficients \(a_i \) may be calculated which describe the curve best fitting the original data points (i.e. producing the lowest squared deviation from the original data).

The procedure used to find the coefficients is to solve simultaneously a set of "normal equations" formed by multiplying through the original equation by each of the independent variables and summing over the \(n \) sets of data to be fitted to the curve.

These normal equations are of the form:

\[\Sigma Q \lambda_1 = a_1 \Sigma \lambda_1^2 + a_2 \Sigma \lambda_1 \lambda_2 + a_3 \Sigma \lambda_1^3 + a_4 \Sigma \lambda_1 \lambda_2^2 + a_5 \Sigma \lambda_1^2 \lambda_2 + a_6 \Sigma \lambda_1 \]

\[\Sigma Q \lambda_2 = a_1 \Sigma \lambda_1 \lambda_2 + a_2 \Sigma \lambda_1^2 \lambda_2 + a_3 \Sigma \lambda_1 \lambda_2^2 + a_4 \Sigma \lambda_1 \lambda_2^3 + a_5 \Sigma \lambda_1 \lambda_2 \]

\[\Sigma Q = a_1 \Sigma \lambda_1 + a_2 \Sigma \lambda_2 + a_3 \Sigma \lambda_1^2 + a_4 \Sigma \lambda_2^2 + a_5 \Sigma \lambda_1 \lambda_2 + a_6 \Sigma \]

When the coefficients are determined the quality points \(\bar{R}_c \) corresponding to any tone reproduction may be calculated.
To find the tone reproduction which will produce a maximum value of \(Q \), the first and second derivatives of the equation must be investigated.

For the original equation

\[
Q = a_1 \lambda_1 + a_2 \lambda_2 + a_3 \lambda_1^2 + a_4 \lambda_2^2 + a_5 \lambda_1 \lambda_2 + a_6
\]

two partial first derivatives may be obtained which when set equal to zero and solved simultaneously will yield values of \(\lambda_1 \) and \(\lambda_2 \) which may produce a maximum value of \(Q \).

These derivatives are:

\[
\frac{\partial Q}{\partial \lambda_1} = a_1 + 2a_3 \lambda_1 + a_5 \lambda_2 = 0
\]

\[
\frac{\partial Q}{\partial \lambda_2} = a_2 + a_5 \lambda_1 + 2a_4 \lambda_2 = 0
\]

The final check is made by using the second derivatives:

\[
\frac{\partial^2 Q}{\partial \lambda_1^2} = 2a_3 \quad \text{and} \quad \frac{\partial^2 Q}{\partial \lambda_2^2} = 2a_4
\]

If these two values are negative, the values of \(\lambda_1 \) and \(\lambda_2 \) will produce a maximum \(Q \).
B. Computer Program to Fit Data to a Curve of the Form

\[Q = a_1 x_1 + a_2 x_2 + a_3 x_1^2 + a_4 x_2^2 + a_5 x_1 x_2 + a_6 \]

1.000 DIMENSION D(20), Z(36), W(6), X(10), Y(10), Q(10), QQ(10)
2.000 DIMENSION ZZ(16), Ww(4)
3.000 DO 31 = 1, 20
4.000 D(I) = 0.0
5.000 CONTINUE
6.000 DO 4 I = 1, 10
7.000 READ 9, X(I), Y(I), Q(I)
8.000 D(1) = X(I) + D(1)
9.000 D(2) = Y(I) + D(2)
10.000 D(3) = X(I) * X(I) + D(3)
11.000 D(4) = Y(I) * Y(I) + D(4)
12.000 D(5) = X(I) * Y(I) + D(5)
13.000 D(6) = X(I) * X(I) * X(I) + D(6)
14.000 D(7) = Y(I) * Y(I) * Y(I) + D(7)
15.000 D(8) = X(I) * (Y(I) * Y(I)) + D(8)
16.000 D(9) = Y(I) * (X(I) * X(I)) + D(9)
17.000 D(10) = (X(I) * X(I)) * (X(I) * X(I)) + D(10)
18.000 D(11) = (Y(I) * Y(I)) * Y(I) * Y(I) + D(11)
19.000 D(12) = (X(I) * X(I)) * (Y(I) * Y(I)) + D(12)
20.000 D(13) = (X(I) * X(I)) * X(I) * Y(I) + D(13)
21.000 D(14) = (Y(I) * Y(I)) * Y(I) * X(I) + D(14)
22.000 D(15) = Q(I) * X(I) + D(15)
23.000 D(16) = Q(I) * Y(I) + D(16)
24.000 D(17) = Q(I) * (X(I) * X(I)) + D(17)
25.000 D(18) = Q(I) * (Y(I) * Y(I)) + D(18)
26.000 D(19) = Q(I) * (X(I) * Y(I)) + D(19)
27.000 D(20) = Q(I) + D(20)
28.000 CONTINUE
29.000 PRINT 24, D(I), I = 1, 20
30.000 FORMAT(3F10.5)
31.000 10 FORMAT(FG6.4)
52.000 \text{ZC}(21) = D(12) \\
53.000 \text{ZC}(22) = D(11) \\
54.000 \text{ZC}(23) = D(14) \\
55.000 \text{ZC}(24) = D(4) \\
56.000 \text{ZC}(25) = D(9) \\
57.000 \text{ZC}(26) = D(8) \\
58.000 \text{ZC}(27) = D(13) \\
59.000 \text{ZC}(28) = D(14) \\
60.000 \text{ZC}(29) = D(12) \\
61.000 \text{ZC}(30) = D(5) \\
62.000 \text{ZC}(31) = D(1) \\
63.000 \text{ZC}(32) = D(2) \\
64.000 \text{ZC}(33) = D(3) \\
65.000 \text{ZC}(34) = D(4) \\
66.000 \text{ZC}(35) = D(5) \\
67.000 \text{ZC}(36) = 10.0 \\
68.000 \text{W}(1) = D(15) \\
69.000 \text{W}(2) = D(16) \\
70.000 \text{W}(3) = D(17) \\
71.000 \text{W}(4) = D(18) \\
72.000 \text{W}(5) = D(19) \\
73.000 \text{W}(6) = D(20) \\
74.000 \text{Z}(1) = D(3) \\
75.000 \text{Z}(2) = D(5) \\
76.000 \text{Z}(3) = D(6) \\
77.000 \text{Z}(4) = D(8) \\
78.000 \text{Z}(5) = D(5) \\
79.000 \text{Z}(6) = D(4) \\
80.000 \text{Z}(7) = D(9) \\
81.000 \text{Z}(8) = D(7) \\
82.000 \text{Z}(9) = D(6) \\
83.000 \text{Z}(10) = D(9) \\
84.000 \text{Z}(11) = D(10) \\
85.000 \text{Z}(12) = D(12) \\
86.000 \text{Z}(13) = D(8) \\
87.000 \text{Z}(14) = D(7) \\
88.000 \text{Z}(15) = D(12) \\
89.000 \text{Z}(16) = D(11) \\
90.000 \text{W}(1) = D(15) \\
91.000 \text{W}(2) = D(16) \\
92.000 \text{W}(3) = D(17) \\
93.000 \text{W}(4) = D(18) \\
94.000 \text{CALL SIMULT(Z,W,6,J)} \\
95.000 \text{PRINT 11} \\
96.000 \text{PRINT 10,(W(1),I=1,6)} \\
97.000 \text{11 FORMAT(/) } \\
98.000 \text{W1=W(1)*D(3)+W(2)*D(5)+W(3)*D(6)+W(4)*D(8)+} \\
99.000 \text{1W(5)*D(9)+W(6)*D(1)-D(15)} \\
100.000 \text{W2=W(1)*D(5)+W(2)*D(4)+W(3)*D(9)+W(4)*D(7)+} \\
101.000 \text{1W(5)*D(8)+W(6)*D(2)-D(16)} \\
102.000 \text{W3=W(1)*D(6)+W(2)*D(9)+W(3)*D(10)+W(4)*D(12)+} \\
103.000 \text{1W(5)*D(13)+W(6)*D(3)-D(17)} \\
104.000 \text{W4=W(1)*D(8)+W(2)*D(7)+W(3)*D(12)+W(4)*D(11)+} \\
105.000 \text{1W(5)*D(14)+W(6)*D(4)-D(18)} \\
106.000 \text{W5=W(1)*D(9)+W(2)*D(6)+W(3)*D(13)+W(4)*D(14)+} \\
107.000 \text{1W(5)*D(12)+W(6)*D(5)-D(19)} \\
108.000 \text{W6=W(1)*D(1)+W(2)*D(2)+W(3)*D(3)+W(4)*D(4)+} \\
109.000 \text{1W(5)*D(5)+W(6)*10.0-D(20)} \\
110.000 \text{W7=W(1)*D(3)+W(2)*D(5)+W(3)*D(6)+W(4)*D(8)-D(15)} \\
111.000 \text{W8=W(1)*D(5)+W(2)*D(4)+W(3)*D(9)+W(4)*D(7)-D(16)} \\
112.000 \text{W9=W(1)*D(6)+W(2)*D(9)+W(3)*D(10)+W(4)*D(12)-D(17)} \\
113.000 \text{W10=W(1)*D(8)+W(2)*D(7)+W(3)*D(12)+W(4)*D(11)-D(18)}
114.000 PRINT 11
115.000 PRINT 25, WW1, WW2, WW3, WW4, WW5, WW7
116.000 C PRINT 26, WW7, WW8, WW9, WW10
117.000 SUM=0.0
118.000 DO 20 I=1, 10
119.000 QQ(I)=W(1)*X(I)+W(2)*Y(I)+W(3)*X(I)**2.0+W(4)*Y(I)**2.0
120.000 I+W(5)*X(I)*Y(I)+W(6)
121.000 C QQ(I)=W(W(1))X(I)+W(W(2))Y(I)+W(W(3))X(I)X(I)+W(W(4))Y(I)Y(I)
122.000 SUM=QQ(I)-Q(I)+SUM
123.000 20 CONTINUE
124.000 PRINT 11
125.000 PRINT 30, ((X(I), Y(I), Q(I), QQ(I)), I=1, 10)
126.000 PRINT 11
127.000 PRINT 27, SUM
128.000 PRINT 11
129.000 PRINT 11
130.000 24 FORMAT(5F12.5)
131.000 25 FORMAT(6F10:3)
132.000 26 FORMAT(4F10:3)
133.000 30 FORMAT(5X, F10.5, 5X, F10.5, 8X, F4.2, 8X, F4.2)
134.000 27 FORMAT(9HSUM OF DIFFERENCES=, F5.3)
135.000 END--EOF HIT AFTER 135.
*END
LEAST SQUARE FOR AVERAGE \(\bar{R} \)

\[
\text{SEV.LEV.} = 0 \\
\text{XEQ77 Y}
\]

\[
P \quad 0.0000 \quad 0.02107 \quad 0.30418 \quad -44.20616 \\
\quad 0.0000 \quad 0.30293 \quad 0.07325 \quad 47.63129 \\
\quad 1.00068 \quad -10452 \quad 0.00959 \quad 33.94461 \\
\quad .99888 \quad .00577 \quad -0.05412 \quad 8.81142 \\
\quad .00015 \quad 3.0293 \quad 0.07325 \quad 523.19946
\]

\[
a_1 \quad 11.35617 \\
\quad -21.80235 \\
\quad -99.65713 \\
\quad -49.94768 \\
\quad 64.32507 \\
\quad 67.60072
\]

\[
\begin{array}{cccc}
\lambda_1 & \lambda_2 & \bar{R} & \bar{R}_c \\
-0.09600 & -0.02800 & 53.10 & 64.97 \\
-0.49300 & -0.02400 & 43.70 & 39.19 \\
-0.09700 & -0.14800 & 66.50 & 69.17 \\
-0.50900 & -0.01300 & 38.80 & 47.84 \\
-0.22500 & -0.14000 & 73.20 & 64.29 \\
-0.37200 & -0.11300 & 66.00 & 57.33 \\
-0.16000 & -0.35400 & 68.50 & 64.88 \\
-0.33600 & -0.38800 & 55.90 & 62.04 \\
-0.27000 & -0.69200 & 4.70 & 6.43 \\
-0.28200 & -0.43400 & 57.80 & 52.06 \\
\end{array}
\]

SUM OF DIFFERENCES = -.001
Small Reproduction

\[
\begin{bmatrix}
34.62999 \\
-10.95260 \\
-139.40141 \\
-41.12891 \\
109.40222 \\
68.67635
\end{bmatrix} = a_i
\]

<table>
<thead>
<tr>
<th>(\lambda_1)</th>
<th>(\lambda_2)</th>
<th>(\bar{R})</th>
<th>(\bar{R}_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.09600</td>
<td>-0.02800</td>
<td>55.00</td>
<td>63.43</td>
</tr>
<tr>
<td>-0.49300</td>
<td>-0.02400</td>
<td>19.80</td>
<td>19.26</td>
</tr>
<tr>
<td>0.09700</td>
<td>-0.14800</td>
<td>56.20</td>
<td>69.87</td>
</tr>
<tr>
<td>0.50900</td>
<td>-0.1300</td>
<td>46.90</td>
<td>50.76</td>
</tr>
<tr>
<td>-0.22500</td>
<td>-0.14000</td>
<td>76.00</td>
<td>58.00</td>
</tr>
<tr>
<td>0.37200</td>
<td>-0.11300</td>
<td>62.50</td>
<td>58.38</td>
</tr>
<tr>
<td>0.16000</td>
<td>-0.35400</td>
<td>70.50</td>
<td>63.18</td>
</tr>
<tr>
<td>-0.33600</td>
<td>-0.38800</td>
<td>45.60</td>
<td>53.62</td>
</tr>
<tr>
<td>-0.27000</td>
<td>0.69200</td>
<td>0.00</td>
<td>1.45</td>
</tr>
<tr>
<td>0.28200</td>
<td>0.43400</td>
<td>72.70</td>
<td>68.25</td>
</tr>
</tbody>
</table>

SUM OF DIFFERENCES = -0.000

Large Reproduction

\[
\begin{bmatrix}
-0.57449 \\
-20.90234 \\
-86.28905 \\
-71.40926 \\
39.99174 \\
65.23712
\end{bmatrix} = a_i
\]

<table>
<thead>
<tr>
<th>(\lambda_1)</th>
<th>(\lambda_2)</th>
<th>(\bar{R})</th>
<th>(\bar{R}_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.09600</td>
<td>-0.02800</td>
<td>51.10</td>
<td>63.75</td>
</tr>
<tr>
<td>-0.49300</td>
<td>-0.02400</td>
<td>43.10</td>
<td>45.48</td>
</tr>
<tr>
<td>0.09700</td>
<td>-0.14800</td>
<td>65.80</td>
<td>65.32</td>
</tr>
<tr>
<td>0.50900</td>
<td>0.01300</td>
<td>35.40</td>
<td>42.57</td>
</tr>
<tr>
<td>-0.22500</td>
<td>-0.14000</td>
<td>77.80</td>
<td>63.78</td>
</tr>
<tr>
<td>0.37200</td>
<td>-0.11300</td>
<td>67.30</td>
<td>52.85</td>
</tr>
<tr>
<td>0.16000</td>
<td>-0.35400</td>
<td>51.50</td>
<td>59.12</td>
</tr>
<tr>
<td>-0.33600</td>
<td>-0.38800</td>
<td>57.40</td>
<td>58.26</td>
</tr>
<tr>
<td>-0.27000</td>
<td>0.69200</td>
<td>4.00</td>
<td>2.97</td>
</tr>
<tr>
<td>0.28200</td>
<td>0.43400</td>
<td>41.30</td>
<td>40.59</td>
</tr>
</tbody>
</table>

SUM OF DIFFERENCES = -0.001
Medium Réproduction

\[
\begin{array}{llll}
\lambda_1 & \lambda_2 & \bar{R} & \bar{R}_C \\
-0.09600 & -0.02800 & 51.60 & 66.61 \\
-0.49300 & -0.02400 & 60.70 & 50.05 \\
-0.09700 & -0.14800 & 80.10 & 71.66 \\
-0.50900 & -0.01300 & 35.60 & 50.63 \\
-0.22500 & -0.14000 & 67.20 & 70.64 \\
-0.37200 & -0.11300 & 71.80 & 59.94 \\
-0.16000 & -0.35400 & 74.90 & 72.15 \\
-0.33600 & -0.38800 & 71.90 & 77.56 \\
-0.27000 & -0.69200 & 10.30 & 13.09 \\
-0.28200 & -0.43400 & 61.20 & 52.77 \\
\end{array}
\]

SUM OF DIFFERENCES=-0.001

Medium Unsharp Reproduction

\[
\begin{array}{llll}
\lambda_1 & \lambda_2 & \bar{R} & \bar{R}_C \\
-0.09600 & -0.02800 & 54.60 & 66.33 \\
-0.49300 & -0.02400 & 51.30 & 41.70 \\
-0.09700 & -0.14800 & 63.90 & 69.69 \\
-0.50900 & -0.01300 & 37.20 & 47.54 \\
-0.22500 & -0.14000 & 70.80 & 64.45 \\
-0.37200 & -0.11300 & 62.50 & 58.36 \\
-0.16000 & -0.35400 & 77.20 & 64.67 \\
-0.33600 & -0.38800 & 46.50 & 57.07 \\
-0.27000 & -0.69200 & 4.50 & 8.35 \\
-0.28200 & -0.43400 & 55.90 & 46.24 \\
\end{array}
\]

SUM OF DIFFERENCES=-0.000