




Figure 4.22: SSIM Frames of Outdoor Pedestrians, 1080p

High profile outperform VP8 substantially, with H.264 High’s 1st quartile above VP8’s

3rd quartile.

Rush Hour is easier to encode, as noted by the tight distribution of the SSIM values.

H.264 has a slight edge here, with H.264 High profile performing the best of the three.

The frames of In to Tree, as shown in Figure 4.24, show VP8’s tendency to allocate

bandwidth to the end of videos in a two pass scenario, rather than in the beginning. It’s

performance overall in this video is poor, as it performs worse than H.264 Baseline for

much of the video. This graph renders the performance gain VP8 had over H.264 in

Figures 4.20 and 4.22 somewhat less. VP8 cannot inherently encode these scenes more

efficiently, but instead allocates more resources to them.
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Figure 4.23: SSIM Summary of In to Tree and Rush Hour

Figure 4.24: SSIM Frames of In to Tree, 720p
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4.3 Intra-coding Test Results

For intra-coding tests, which encompasses the ability of the encoder to use intra-prediction

and entropy encoding, two tests were run, each on the same three source videos. Table

3.11 on page 74 summarizes the encoder options used for these two tests.

The first test was a comparison of H.264 Baseline profile and VP8’s good deadline

encoder. Figure 4.25 shows the results of bitrate (controlled by the quantization factor

parameter) versus quality, measured as SSIM.

The error bars are representative of the standard deviation of the frames, and the data

points themselves are the average SSIM of all frames in the video. A high average SSIM

with small error bars is desired due to the consistency the encoded video would have;

large error bars indicate that the encoded video varies more widely in its quality.

VP8 has a higher SSIM for a given bitrate for each of the three videos encoded. The

difference in SSIM between VP8 and H.264 for lower resolution videos is greater than

higher resolution images. This is due to its intra-prediction efficiency, which performs

more equally on higher resolution images, due to diminishing returns. Further, Parkrun

has a high level of detail, which is challenging for intra-prediction to compress. These

two factors are responsible for the higher SSIM difference in Foreman and Crew.

Also worthy of note is that H.264 Baseline does not use the 8× 8 DCT that VP8 lacks,

further equalizing the compression difference at HD resolutions. The 8× 8 DCT is instru-

mental in retaining quality at higher resolutions due to the larger sample size it uses.

As the quantization factor increases, and the bitrate decreases, there are more zeros be-

ing encoded. Entropy encoders such as VP8’s boolean entropy encoder, compress strings

of zeros very well. At the lower bitrates, the SSIM difference between H.264 and VP8 is

greater than at higher bitrates, due to VP8’s superior entropy encoder. This shows that

VP8’s boolean entropy encoder is significantly better than CAVLC, the entropy encoder
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used in H.264’s Baseline profile.

For the second intra-coding test, H.264 High profile was used to compare against

VP8’s best deadline encoder. This profile and deadline change were the only parameter

changes between the two tests. Figure 4.26 shows the results for this test, and is formatted

in the same way as 4.25.

For this test, the results are almost identical between VP8 and H.264. VP8 seems to

lose some efficiency at the higher quantization factors, where H.264 has a slightly higher

average efficiency. However, the results are so close, and the error is high compared to the

difference to render the conclusion insignificant. At higher bitrates, there is no significant

measurable difference.

To comment about the statistical significance of the PSNR and SSIM results, Student’s

t-test and Welch’s t-test were used. First, a Welch’s t-test was used to measure whether

or not the variances were equal. The standard deviation, σ was tested. If the resulting

p-value was less than the chosen value for α = 0.1, the null hypothesis that the variances

were equal is rejected. If the variances are unequal, Welch’s t-test was used for the average

PSNR or SSIM values corresponding to those standard deviations. Otherwise, Student’s

t-test was used, which assumes equal variances.

All tests used a two-tailed test, which is used when no assumption is made about

the data, as in this case. The null hypothesis for the quality metrics is that there is no

difference between H.264 and VP8. If the null hypothesis is rejected, it indicates that

there is a statistically significant difference between the two.

In Table 4.8, the p-values for the samples are collected. Square brackets indicate sta-

tistical significance for α = 0.1. For σ the only statistically significant result indicating

that the variances are different was for Foreman PSNR. Therefore the PSNR p-value for

Foreman was calculated with Student’s t-test. The only statistically significant difference

between H.264 and VP8 was for Crew under PSNR, where it is obvious that VP8 outper-
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forms H.264. Otherwise, the significance of their difference is minuscule.

Table 4.8: p-values for the Average PSNR and SSIM Values based on σ

Video PSNR p-value PSNR σ p-value SSIM p-value SSIM σ p-value
Foreman 0.37246 [0.00886] 0.22581 0.35943
Crew [0.01505] 0.30333 0.40258 0.19586
Parkrun 0.34615 0.20152 0.16909 0.10522
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4.4 Inter-coding Test Results

As discussed in Section 3.7, the tests in Table 3.12 on page 76 were performed and results

gathered. Similar to the film and television tests (Section 4.2.2), the VP8 configuration

8 (Table 3.12) was first encoded at a nominal bitrate. For Ice, it was 500 Kbps, and for

Parkrun, the nominal bitrate was 1300 Kbps. The output bitrate for Ice was 358 Kbps, and

was 1426 Kbps for Parkrun.

Figure 4.27 shows the summary of Ice and Parkrun measured in PSNR. The abbrevia-

tion “BF” indicates bidirectional frames. There are three possibilities for each video: no B

frames, many B frames (16 for H.264, and VP8 uses altref frames), or weighted B frames

(weighted at 100 in x264, VP8 uses a stronger ARNR filter). Using no B frames, configu-

ration 1, tries to achieve VP8 emulation in H.264. It does this by restricting the number of

frames it can reference to one, and disabling B frames.

For Ice and Parkrun, in PSNR, it seems that H.264 outperforms VP8 for no B frames.

The median is the same for Ice, but VP8 has a lower average and a larger variance. For

Parkrun, VP8’s median is approximately H.264’s 1st quartile, but the averages are approx-

imately equivalent. This indicates that VP8 has a higher PSNR skew, and the position of

the 3rd quartile confirms that.

For the tests that use B frames, H.264’s advantage depends upon the video. For Ice,

where VP8 was indicated to place altref frames, there is little improvement for VP8. There

is a similar problem with H.264 with 16 B frames: there is little improvement, except for an

increase in the minimum PSNR. When the B frames are weighted, however, the average

and median improves and outperforms VP8. For Parkrun, VP8’s altref frames do not

result in an improvement. For H.264, it’s not until that heavily weighted B frames are

used is a large improvement noted. H.264’s average is near its 3rd quartile, and its median

is well above VP8’s. In this video, large amounts of B frames make a distinct difference in
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the quality.

Figure 4.27: PSNR Summary of Inter-coding Tests

The SSIM summary, Figure 4.28, shows similar results. For Ice, using no B frames and

equally weighted P and B frames actually results in VP8 having the slight edge. When

heavily weighted B frames are used, H.264 outperforms VP8 on Ice. For Parkrun, H.264

outperforms VP8 for each test. Similarly to the PSNR summary, VP8 notices little to no

improvement when altref frames are used.

When B frames are used, H.264 notices an increase in SSIM, and when those B frames

are heavily weighted, the difference in SSIM is dramatic. H.264’s 1st quartile is above

VP8’s average and median, while H.264’s minimum is near VP8’s median.

The tables for the raw PSNR and SSIM data for Ice and Parkrun can be seen in the

appendix, starting on page 136, Section B.2. These are included because the graphs do

not display all the tests run. The most relevant tests were displayed graphically.

VP8 had no difference between configurations 9 and 10. This indicates that the ARNR
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Figure 4.28: SSIM Summary of Inter-coding Tests

filter parameters have little to no effect on the output. There are three modes the ARNR

can be in, left to right, top to bottom, and center, each numbered from 1 to 3, respectively.

Additional tested showed that none of the three types had a deviation from the other.
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4.5 Loop Filter Efficiency Test Results

Videos were run in the manner described in Section 3.8 to measure the effectiveness of

the encoding’s loop filter. The test was not absolute, but rather differential, measured

according to Eq. 3.8.1, for each PSNR and SSIM metrics.

After measuring the average PSNR and SSIM for each video encoded with vpxenc

and x264, the percent difference was recorded. The percent differences for each resolution

and metric were averaged, and then these were averaged. These averages can be seen in

Table 4.9. VP8 has the highest percent difference in PSNR and SSIM, especially for HD

resolutions.

More detail can be seen in Figure 4.29. The points for each resolution are the individual

video’s average percent difference, and the horizontal line is the average of these points.

The Y axis is a log graph to better show the detail at the 0.05 to 1.5 range in percent

difference.

VP8 generally is at the top of each resolution, with SSIM being the largest difference.

In contrast, H.264’s SSIM values are often near the bottom, indicating that when using

SSIM to measure the quality, H.264’s loop filter is not as effective as VP8’s loop filter.

Table 4.9: Average Percent Difference for the four Resolutions and Overall

Resolution VP8 PSNR VP8 SSIM H.264 PSNR H.264 SSIM
CIF 2.30459% 2.570615% 1.182509% 0.749946%
4CIF 1.92730% 0.740154% 1.024065% 0.642160%
720p 3.48362% 4.301508% 0.208637% 0.211006%
1080p 2.11403% 1.817493% 0.497533% 0.207108%
Overall 2.45738% 2.357443% 0.728186% 0.452555%

These results, while positive for VP8, are not without bias. Using bilinear subpixel

filtering has an impact on the quality, which is also measured here, which should give

VP8 a boost in relative percent difference. We believe that, due to VP8’s filter design, the

difference is nominal and these results are still accurate.
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Figure 4.29: Percent Difference for PSNR and SSIM among four resolutions for VP8 and
H.264
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Chapter 5

Conclusion

VP8 is a powerful modern video codec that is suitable for individuals and organizations

that seek a patent-free alternative to H.264. Its quality on medium resolution web videos

is comparable with H.264, and excels at low resolution and low bitrate videos. Compared

to H.264 Baseline, VP8 outperforms it in quality for the same bitrate. Hardware imple-

mentations of VP8 are available and may come with some future mobile smartphones.

It is underperforming in higher resolution video, such as HD video, due to its sim-

pler segmentation scheme, which reduces the effectiveness of its adaptive quantization

and adaptive loop filter selection. VP8’s entropy coder is approximately as efficient as

CABAC, but is somewhat simpler, partially due to the lack of needing to adapt after ev-

ery bit. VP8’s intra prediction is sophisicated and performs as well as H.264 High profile

on intra prediction tests.

The current implementation of VP8’s encoder, vpxenc, does not accurately meet target

bitrate requests from the user, and as such, may be impractical for use where specific

bandwidth requirements are paramount. The current implementation fails to take full

advantage of alternate reference frames, and could benefit significantly from using altref

frames as B frames. The RD optimization in vpxenc biases bandwidth towards the end
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of the video, which gives inconsistent performance and distorts average PSNR or SSIM

analysis.

However, for some videos, VP8’s RD curve is within standard error with even H.264

High profile under x264. Under PSNR and SSIM, for CIF videos, VP8 is commensurate

with H.264 High profile, and outperforms H.264 Baseline substantially. For 4CIF and

higher resolution, H.264 High profile has a nominally higher performing RD curve when

compared with VP8, but the error is high enough to make the difference statistically non-

significant. This result matches the subjective MOS scores recorded by Simone et. al[2].

5.1 Improvements to VP8

VP8 would benefit from several improvements. These reflect conceptual suggestions,

rather than implementation detail suggestions. Unless otherwise noted in this section,

VP8 refers to the current implemenation, libvpx, rather than the VP8 bitstream specifica-

tion.

Improved RD Optimizer

As mentioned in the conclusion, VP8 lacks a high quality rate distortion optimizer, lead-

ing to lower bitrates than requested. Further, it seems to spend bandwidth arbitrarily,

rather than on difficult sections. It prefers to use bandwidth at the end of videos, likely

because it has used too little to meet the average targeted bitrate.

Better Use of Alternate Reference Frames

It’s likely that improved use of alternate reference frames in VP8 will boost compression

efficiency by 10% or more, as noted in the section on inter-coding tests. Further, the

optional hiding of altref frames is an interesting idea, but all data that is not displayed is
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overhead. More research will need to be done to see if this feature is useful, or if it’s better

to just use them as bidirectional frames.

Better Use of Segments

VP8’s principal shortcoming for HD video is its four segment limit to adapt various pa-

rameters to different areas of the frame. H.264 can scale to HD resolutions due to its

lack of a limit to the number of slices. At low resolutions, VP8’s FMO-like ability of its

segments helps make it outperform H.264 at a low complexity.

We believe that it is possible to leverage altref frames to act like additional segments

given a suitably intelligent encoder. The encoder would notice a string of frames with

highly similar contents – something that would be handled easily by forward predictive

frames – and use the altref frame to predict large portions of the frame. This is obvious

and is currently done in the VP8 encoder as of this writing. However, it might be possible

to use the segments in the altref frame to the encoder’s advantage, giving you not four

segments to work with, but 16. For every segment in the frame encoded, there are four

possible source segments from the altref frame, giving 16 possibilites for prediction.

5.2 Recommendations

As of yet, VP8’s support and implementations are tenuous, due to its immaturity. Its

quality alone does not warrant a switch to VP8; in fact, the opposite is true. VP8’s encoded

videos are, in general, lower quality than H.264’s except in low resolution, low bitrate

scenarios.

Combined with the possibility for a low cost, high performance hardware implemen-

tation, VP8 seems well suited to the surveillance market. Because widespread adoption

of a codec is not necessary for such video – only the encoder and decoder need match,
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which is simple in proprietary video systems – widespread acceptance is not necessary.

Due to its open source implementation, there are no upfront fees, and Google provides

a perpetual patent grant. However, due to VP8’s similarity to H.264, and the relatively

broad wording of many patents in the MPEGLA’s portfolio, legal action is still possible.

Due to Google’s development of the Android platform, which is the leading smart-

phone platform[31], VP8 is likely to be well supported through its container WebM in the

smartphone market. VP8 outperforms H.264 Baseline profile at smartphone resolutions,

which is the typical hardware implementation in smartphones, such as the iPhone. This

may accelerate the growth of VP8 for web video and video conferencing.

VP8 has subpar performance for HD video when compared with H.264 High profile.

This indicates that VP8 is likely to lag in the film and television markets, where H.264 is

already the defacto standard.
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Appendix A

Source Code Listings

A.1 The Video Run Script

# ! / usr / b in / p e r l

use Cwd;

use F i l e : : Basename ;

use F i l e : : Temp qw/tempf i l e / ;

use Time : : HiRes qw( gett imeofday t v i n t e r v a l ) ;

my $QPSNR = ”qpsnr” ;

my $KEYFRAMES = ” keyframes ” ;

my $ l o g f i l e = ”$ENV{HOME}/ t h e s i s / r e s u l t s /raw” ;

my %i n f o = (

vp8 => {

bin => ”vpxenc” ,

ex t => ”webm” ,

o f l a g => ”−o” ,

i f l a g => ”−−threads =1” ,

b u i l d d i r => ”$ENV{HOME}/ build/libvpx−v0 . 9 . 6 / ” ,
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b i t r a t e f a c t o r => 1 . 0 ,

passes => ”−−f p f =/tmp/vpxfp −−passes =2 −−pass=” ,

} ,

h264 => {

bin => ” x264 ” ,

ex t => ”mkv” ,

o f l a g => ”−o” ,

i f l a g => ”−−threads 1 −−quie t −−no−progress ” ,

b u i l d d i r => ”$ENV{HOME}/ build/x264/” ,

b i t r a t e f a c t o r => 1 0 0 0 . 0 ,

passes => ”−−s t a t s /tmp/264 fp −−pass ” ,

}

) ;

my $encoding = s h i f t @ARGV;

my $twopass = 0 ;

my $ i n p u t f i l e = s h i f t @ARGV;

my $ o u t f i l e ;

my $basename ;

my $index = 0 ;

i f ( $encoding =˜ /ˆ jm$/ i )

{

$ o u t f i l e = s h i f t @ARGV;

$basename = basename ( $ o u t f i l e ) ;

$basename =˜ s / ˆ ( . + ) \ . ( [ ˆ . ] ) +/$1 /; # t r u n c a t e e x t e n s i o n

goto QPSNR;

}

i f ( $ i n p u t f i l e =˜ /ˆ twopass$/ i )

{

$twopass = 1 ;
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$ i n p u t f i l e = s h i f t @ARGV;

print ”Two pass enabled : \” $ i n p u t f i l e \”\n” ;

}

$index = s h i f t @ARGV;

$basename = basename ( $ i n p u t f i l e ) ;

$basename =˜ s / ˆ ( . + ) \ . ( [ ˆ . ] ) +/$1 /; # t r u n c a t e e x t e n s i o n

$basename .= $index ;

my $enc = $ in fo { l c ( $encoding ) } ;

$ o u t f i l e = ”$basename . ” . $enc−>{ext } ;

push @ARGV, $enc−>{o f l a g } ;

push @ARGV, $ o u t f i l e ;

push @ARGV, $enc−>{ i f l a g } ;

push @ARGV, $ i n p u t f i l e ;

my $tmp = join ” ” , @ARGV;

my ( $seconds , $microseconds ) = gett imeofday ;

my $enc output ;

i f ( $twopass )

{

print ” Invoking : $enc−>{bin} $enc−>{passes }1 $tmp\n” ;

system ( ”$enc−>{bin} $enc−>{passes }1 $tmp 2>&1” ) ;

print ” Invoking : $enc−>{bin} $enc−>{passes }2 $tmp\n” ;

$enc output = ‘ $enc−>{bin} $enc−>{passes }2 $tmp 2>&1‘;

}

e lse
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{

print ” Invoking : $enc−>{bin} $tmp\n” ;

$enc output = ‘ $enc−>{bin} $tmp 2>&1‘;

}

my ( $osec , $omicro ) = gett imeofday ;

my $time = ( $osec − $seconds ) + ( $omicro − $microseconds ) / ( 1 0 0 0 . 0 * 1 0 0 0 . 0 ) ;

QPSNR:

my $psnr = ‘$QPSNR −a psnr −r $ i n p u t f i l e $ o u t f i l e 2>/dev/null ‘ ;

my $ssim = ‘$QPSNR −a ssim −r $ i n p u t f i l e $ o u t f i l e 2>/dev/null ‘ ;

my $keyframes = ‘$KEYFRAMES $ o u t f i l e 2>/dev/null ‘ ;

my @blines = s p l i t /\n/ , $psnr ;

my @sl ines = s p l i t /\n/ , $ssim ;

my @klines = s p l i t /\n/ , $keyframes ;

my @psnr s ta t s ;

my @ss im sta ts ;

open STATS , ”>” , ”$basename . s t a t s ” or

die ”Can ’ t open $basename . s t a t s : $1” ;

my ( $s , $k ) ;

my @iframes ; # f r a m e s where t h e r e a r e key f r a m e s

# Average , Minimum , Maximum , Median , 1 s t Q u a r t i l e , 3 rd Q u a r t i l e , V a r i a n c e

my $avg ssim = my $min ssim = my $max ssim = my $med ssim = my $ f q t s s i m = my

$ t q t s s i m = my $var ssim = 0 . 0 ;

my $avg psnr = my $min psnr = my $max psnr = my $med psnr = my $ f q t p s n r = my

$ t q t p s n r = my $var psnr = 0 . 0 ;

my $avg num = s c a l a r ( @s l ines ) − 1 ;

foreach ( @blines )

129



{

chomp ;

print STATS $ ;

$s = s h i f t @sl ines ;

$k = s h i f t @klines ;

chomp $s ;

chomp $k ;

s / ˆ . * , ( . + ) , $/$1 /;

$s =˜ s / ˆ . * , ( . + ) , $/$1 /;

i f ( $k =˜ m/ ˆ (\d+) ,\ s * (\d+) $ /)

{

push @iframes , $1 i f ( $2 > 0) ;

}

i f ( $s =˜ m/ ˆ (\d + (\ .\d+) ? ) $/ && $s > 0)

{

push @ssim stats , ( $s + 0 . 0 ) ;

# p r i n t ” ss im : ” . ( $ s s i m s t a t s [ s c a l a r ( @ s s i m s t a t s ) − 1 ] ) . ” psnr : ” ;

$avg ssim += $s ;

}

i f ( / ˆ (\d + (\ .\d+) ? ) $/ i && $ > 0)

{

push @psnr stats , ( $ + 0 . 0 ) ;

# p r i n t ” ” . ( $ p s n r s t a t s [ s c a l a r ( @ p s n r s t a t s ) − 1 ] ) . ”\n ” ;

$avg psnr += $ ;

}

print STATS $s . ” ,\n” ;

}
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$keyframes = join ’ : ’ , @iframes ; # J o i n t h e l i s t t o g e t h e r

i f ( s c a l a r ( @ss im sta ts ) != s c a l a r ( @psnr s ta t s ) | | s c a l a r ( @ss im sta ts ) <= 0)

{

print ”SSIM : ” . s c a l a r ( @ss im sta ts ) . ” ” .

”PSNR : ” . s c a l a r ( @psnr s ta t s ) . ”\n” ;

my $max = s c a l a r ( @ss im sta ts ) ;

$max = s c a l a r ( @psnr s ta t s ) i f ( s c a l a r ( @psnr s ta t s ) > s c a l a r ( @ss im sta ts ) ) ;

for (my $ i = 0 ; $ i < $max ; $ i ++)

{

print ”” . ( $ i + 1) . ” , ” ;

i f ( $ i < s c a l a r ( @psnr s ta t s ) )

{

print $ p s n r s t a t s [ $ i ] . ” , ” ;

}

e lse

{

print ”XXX, ” ;

}

i f ( $ i < s c a l a r ( @ss im sta ts ) )

{

print $ s s i m s t a t s [ $ i ] . ” , ” ;

}

e lse

{

print ”XXX, ” ;

}
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print ”\n” ;

}

die ” S ize not equal ” ;

}

@ss im sta ts = s o r t {$a <=> $b} @ss im sta ts ;

@psnr s ta t s = s o r t {$a <=> $b} @psnr s ta t s ;

$avg ssim /= s c a l a r ( @ss im sta ts ) ;

$avg psnr /= s c a l a r ( @psnr s ta t s ) ;

$min ssim = $ s s i m s t a t s [ 0 ] ;

$min psnr = $ p s n r s t a t s [ 0 ] ;

$max ssim = $ s s i m s t a t s [ s c a l a r ( @ss im sta ts ) − 1 ] ;

$max psnr = $ p s n r s t a t s [ s c a l a r ( @psnr s ta t s ) − 1 ] ;

$med ssim = $ s s i m s t a t s [ s c a l a r ( @ss im sta ts ) / 2 ] ;

$med psnr = $ p s n r s t a t s [ s c a l a r ( @psnr s ta t s ) / 2 ] ;

$ f q t s s i m = $ s s i m s t a t s [ s c a l a r ( @psnr s ta t s ) * 1 / 4 ] ;

$ f q t p s n r = $ p s n r s t a t s [ s c a l a r ( @psnr s ta t s ) * 1 / 4 ] ;

$ t q t s s i m = $ s s i m s t a t s [ s c a l a r ( @psnr s ta t s ) * 3 / 4 ] ;

$ t q t p s n r = $ p s n r s t a t s [ s c a l a r ( @psnr s ta t s ) * 3 / 4 ] ;

# Compute t h e v a r i a n c e , u n b i a s e d

#

h t t p s : / / c o n t r o l s . eng in . umich . edu / w i k i / i n d e x . php / B a s i c s t a t i s t i c s : mean , median , a v e r a g e , s t a n d a r d d e v i a t i o n , z−s c o r e s , and p−v a l u e # S t a n d a r d D e v i a t i o n a n d W e i g h t e d S t a n d a r d D e v i a t i o n

for (my $ i = 0 ; $ i < s c a l a r ( @ss im sta ts ) ; $ i ++)

{

$var ssim += ( $ s s i m s t a t s [ $ i ] − $avg ssim ) * * 2 ;

$var psnr += ( $ p s n r s t a t s [ $ i ] − $avg psnr ) * * 2 ;

}
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$var ssim /= ( s c a l a r ( @ss im sta ts ) − 1) ;

$var psnr /= ( s c a l a r ( @psnr s ta t s ) − 1) ;

# Log

open LOG, ”>>” , ” $ l o g f i l e /$encoding . csv ” or

die ”Couldn ’ t open $ l o g f i l e /$encoding . csv : $ ! ” ;

my $ b i t r a t e ;

i f ( $encoding ! ˜ /ˆ jm$/ i )

{

$ b i t r a t e = ‘ mediainfo $ o u t f i l e ‘ ;

i f ( $ b i t r a t e =˜ m/ B i t \ s r a t e \s +:\ s (\d+\ . ?\d * ) \s ? (\d+) ?\ s ( Kbps |Mbps) /)

{

$ b i t r a t e = ” $1$2 ” ;

i f ( $3 eq ”Mbps” )

{

$ b i t r a t e *= 1000 ;

}

}

e lse

{

print ”\n\n<<<<<<\n” ;

print $ b i t r a t e ;

print ”\n\n>>>>>>\n” ;

die ”Couldn ’ t parse output f o r b i t r a t e ” ;

}

my $ c u r r d i r = getcwd ;

chdir $enc−>{b u i l d d i r } or die ”Couldn ’ t cd to ” . $enc−>{b u i l d d i r } . ” :

$ ! ” ;

my $gitnum = ‘ g i t log 2>/dev/n u l l | head −n 1 ‘ ;
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chomp $gitnum ;

i f ( length ( $gitnum ) < 5)

{

# E r r o r

i f ( $enc−>{b u i l d d i r } =˜ m/v (\d+\ .\d+\ .\d+) /)

{

$gitnum = $1 ;

}

e lse

{

die ”Couldn ’ t get g i t commit or vers ion s t r i n g from path ” ;

}

}

}

my $cmdline = join ” ” , @ARGV;

$cmdline .= $enc−>{passes } . ”X” i f $twopass ;

print LOG ” $ i n p u t f i l e , $index , $gitnum , $time , ” .

” $ o u t f i l e , $cmdline , ” .

”$min psnr , $ fq t psnr , $med psnr , $ tq t psnr , $max psnr , $avg psnr ,

$var psnr , ” .

”$min ssim , $fqt ss im , $med ssim , $tqt ss im , $max ssim , $avg ssim ,

$var ssim , ” .

” $ b i t r a t e , $keyframes\n” ;

c lose LOG;

c lose STATS ;
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Appendix B

Data Tables

B.1 t-test p-value Tables for HD Television and Film

Table B.1: p-values for SSIM Frames of City Outdoors, 720p

H.264 BP v. VP8 H.264 HP v. VP8
Overall 1.284611× 10−55 1.270864× 10−06

Old Town Cross 0 0
Stockholm 3.224369× 10−26 2.353832× 10−21

Ducks Take Off 0.000152 4.746303× 10−62

In to tree 3.765971× 10−228 2.656876× 10−104

Table B.2: p-values for SSIM Frames of Outdoor Pedestrians, 1080p

H.264 BP v. VP8 H.264 HP v. VP8
Overall 2.097634× 10−14 4.684079× 10−05

BlueSky 1.695898× 10−07 2.995189× 10−22

Tractor 1.141252× 10−05 6.713645× 10−132

Riverbed 4.277902× 10−11 1.773084× 10−23

PedArea 2.544987× 10−111 1.421869× 10−37

RushHour 6.734528× 10−39 3.419514× 10−09
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B.2 Inter-coding Test Result Tables

Table B.3: Raw PSNR Values for Ice for Inter-Coding Test

H.264
ID Minimum 1st Q Median 3rd Q Maximum Average

1 28.7258 30.8601 31.3264 31.7167 33.6821 31.28749
2 29.8239 31.5415 32.0396 32.3694 34.054 31.93619
3 29.5786 30.9275 31.407 31.7633 33.6621 31.37277
4 29.8586 31.5459 32.0266 32.3709 34.0823 31.93979
5 28.7798 31.1498 31.6141 32.1424 34.4165 31.62075
6 28.3958 30.5001 31.0901 31.7037 34.2573 31.09054
7 28.5776 30.5557 31.1203 31.7647 34.3585 31.12723

VP8
ID Minimum 1st Q Median 3rd Q Maximum Average

8 27.5783 30.3187 31.328 31.9161 34.8618 31.04945
9 27.6012 30.6868 31.5476 32.2418 34.5567 31.14962

10 27.6012 30.6868 31.5476 32.2418 34.5567 31.14962

Table B.4: Raw SSIM Values for Ice for Inter-Coding Test

H.264
ID Minimum 1st Q Median 3rd Q Maximum Average

1 0.882117 0.910921 0.917326 0.920761 0.939357 0.916052
2 0.897363 0.918529 0.924455 0.927809 0.942085 0.923074
3 0.893067 0.912303 0.918526 0.92147 0.939135 0.917354
4 0.898251 0.918576 0.924545 0.927632 0.941712 0.923111
5 0.887259 0.915987 0.922924 0.926344 0.943362 0.921198
6 0.879325 0.909889 0.917683 0.923086 0.942642 0.916316
7 0.881436 0.910443 0.918562 0.923625 0.943264 0.916963

VP8
ID Minimum 1st Q Median 3rd Q Maximum Average

8 0.893485 0.912797 0.920274 0.926994 0.941436 0.918692
9 0.893485 0.911105 0.920316 0.927189 0.943117 0.918608

10 0.893485 0.911105 0.920316 0.927189 0.943117 0.918608
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Table B.5: Raw PSNR Values for Parkrun for Inter-Coding Test

H.264
ID Minimum 1st Q Median 3rd Q Maximum Average

1 20.0845 21.1779 21.6196 22.0863 36.7307 22.0631
2 20.5839 21.4876 21.9866 22.4985 36.8141 22.3795
3 20.1192 21.1688 21.6568 22.1134 36.7429 22.0261
4 20.5963 21.5006 21.9709 22.4925 36.7564 22.3741
5 20.5541 21.5037 21.9843 22.4872 36.7307 22.4139
6 19.9664 20.9349 21.7466 22.94 36.9139 22.2683
7 19.9996 20.9737 21.7682 22.9597 36.8301 22.2845

VP8
ID Minimum 1st Q Median 3rd Q Maximum Average

8 19.1223 20.3897 21.1298 22.6002 36.7765 21.9599
9 19.1286 20.4008 21.1283 22.6428 36.7765 21.9604

10 19.1286 20.4008 21.1283 22.6428 36.7765 21.9604

Table B.6: Raw SSIM Values for Parkrun for Inter-Coding Test

H.264
ID Minimum 1st Q Median 3rd Q Maximum Average

1 0.640983 0.687208 0.710074 0.735774 0.930365 0.717275
2 0.669181 0.71266 0.733257 0.762811 0.930518 0.741368
3 0.6443 0.688104 0.710239 0.741263 0.930491 0.717976
4 0.670133 0.711482 0.732512 0.763143 0.930518 0.740947
5 0.668498 0.711252 0.733174 0.762593 0.930518 0.742839
6 0.65849 0.709746 0.743541 0.805057 0.930036 0.755018
7 0.659856 0.710904 0.744225 0.805577 0.930116 0.755811

VP8
ID Minimum 1st Q Median 3rd Q Maximum Average

8 0.543608 0.619667 0.686507 0.803259 0.960793 0.705465
9 0.541691 0.619021 0.685261 0.803566 0.960793 0.705181

10 0.541691 0.619021 0.685261 0.803566 0.960793 0.705181
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