Error analysis of sequence modeling for projecting cyber attacks

Venkata Mudireddy
Error Analysis of Sequence Modeling for Projecting Cyber Attacks

by

Venkata Prasanth K R Mudireddy

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Engineering

Supervised by

Dr. Shanchieh Jay Yang, Associate Professor and Department Head, Department of Computer Engineering
Kate Gleason College of Engineering
Rochester Institute of Technology
Rochester, New York
May 2012

Approved By:

Dr. Shanchieh Jay Yang
Associate Professor and Department Head, Department of Computer Engineering
Primary Adviser

Dr. Dhireesha Kudithipudi
Assistant Professor, Department of Computer Engineering

Dr. Amlan Ganguly
Assistant Professor, Department of Computer Engineering
This work is dedicated to my parents Rama Devi and Bhaskara Reddy and to my brother Kalyan.
Acknowledgments

First and foremost, I would like to express my sincere gratitude to Dr. Shanchieh Jay Yang as my primary adviser for his continuous support and patience throughout my thesis, and for his immense knowledge. I would also like to thank Dr. Dhireesha Kudithipudi and Dr. Amlan Ganguly for serving on my committee and for their encouragement.

Special thanks to Daniel Fava and Stephen Byers for their research work which developed the model that my research is based on. I would also like to thank all my friends and colleagues from the RIT Computer Engineering Department.
Abstract

Intrusion Detection System (IDS) has become an integral component in the field of network security. Prior research has focused on developing efficient IDSs and correlating attacks as Attack Tracks. To enhance the network analyst’s situational awareness, sequence modeling techniques like Variable Length Markov Models (VLMM) have been used to project likely future attacks. However, such projections are made assuming that the IDSs detect each and every attack action, which is not viable in reality. An IDS could miss an attack due to loss of packets or improper traffic analysis, or when an attacker evades detection by employing obfuscation techniques. Such missed detections, could negatively affect the prediction model, resulting in erroneous estimations.

This thesis investigates the prediction performance as an error analysis of VLMM when used for projecting cyber attacks. This analysis is based on the impact of missed alerts, representing undetected attack actions. The analysis begins with an analytical study of a state-based Markov model, called Causal-State Splitting Reconstruction (CSSR), to contrast the context-based VLMM. Simulation results show that VLMM and CSSR perform comparably, with VLMM being a simpler model without the need to maintain and train the state space. A thorough design of experiments studies the effects of missing IDS alerts, by having missed alerts at different locations of the attack sequence with different rates. The experimental results suggested that the change in prediction accuracy is low when there are missed alerts in one part of the sequence and higher if they are throughout the entire sequence. Also, the prediction accuracy increases when there are rare alerts missing, and it decreases when there are common alerts missing. In addition, change in the prediction accuracy is relatively less for sequences with smaller symbol space compared to sequences
with larger symbol space. Overall, the results demonstrate the robustness and limitations of VLMM when used for cyber attack prediction. The insights derived in this analysis will be beneficial to the security analyst in assessing the model in terms of its predictive performance when there are missed alerts.
Contents

Dedication ... ii
Acknowledgments ... iii
Abstract .. iv
1 Introduction ... 1

2 Related Work .. 6
 2.1 Markov and Hidden-Markov Models 6
 2.2 Intrusion Detection System and events happening beyond detection 9
 2.3 Sequence Modeling and Prediction using Context-based Algorithm (VLMM) 12

3 Sequence Modeling and Prediction using State-based Algorithm (CSSR) 19
 3.1 Methodology .. 20
 3.2 Comparison of CSSR with other state-based algorithms 24
 3.3 Comparison of CSSR with context-based algorithms 25

4 Error Analysis ... 27
 4.1 Possible Errors and their Significance .. 27
 4.2 VLMM ... 29
 4.3 CSSR ... 30

5 Results and Discussion .. 33
 5.1 VLMM and CSSR on True Data .. 33
 5.1.1 Experiment Design ... 33
 5.1.2 Results and Discussion .. 35
 5.2 VLMM in presence of Missed Alerts 37
 5.2.1 Analysis based on Position 38
 5.2.1.1 Experiment Design 38
List of Figures

1.1 Components of Intrusion Detection System 2

2.1 Markov Process ... 7
2.2 Hidden-Markov Process ... 8
2.3 Overview of IDS and events happening beyond IDS 10
2.4 Attack Track Example .. 13
2.5 Suffix Tree for sequence: +ABACBAC- 14
2.6 Real-time Suffix Tree for sequence: +ABACBAC 15
2.7 GUI used for projection system [8] 18

3.1 Flow chart of CSSR [40] .. 21
3.2 Even process used to illustrate CSSR [42] 22
3.3 The full ϵ-machine reconstructed from 10,000 samples of the even process before the determinization procedure [42] 23
3.4 The final ϵ-machine by CSSR 24

4.1 Example showing the change in order of probabilities of two symbols ... 30

5.1 Interface used to generate a simulated network [28] 34
5.2 VLMM vs. CSSR for true data ... 36
5.3 VLMM vs. CSSR for average of all data sets 37
5.4 Change in Prediction Accuracy for data sets with 376 alerts 39
5.5 Change in Prediction Accuracy for 'Description' data sets 40
5.6 Change in Prediction Accuracy for 'Destination' data sets 40
5.7 Change in Prediction Accuracy for 'Category' data sets 40
5.8 Change in Prediction Accuracy for 'Description' data sets based on position for different trials .. 41
5.9 Change in Prediction Accuracy for 'Destination IP' data sets based on position for different trials ... 42
5.10 Change in Prediction Accuracy for 'Category' data sets based on position for different trials .. 43
5.11 Change in Prediction Accuracy for data sets with 376 alerts 45
5.12 Change in Prediction Accuracy for 'Description' data sets 45
5.13 Change in Prediction Accuracy for 'Destination IP' data sets 45
5.14 Change in Prediction Accuracy for 'Category' data sets 46
5.15 Change in Prediction Accuracy for 'Description' data sets based on occurrence for different trials 47
5.16 Change in Prediction Accuracy for 'Destination IP' data sets based on occurrence for different trials .. 48
5.17 Change in Prediction Accuracy for 'Category' data sets based on occurrence for different trials .. 49
5.18 Change in Prediction Accuracy for data sets with different symbol spaces . 50
List of Tables

2.1 Probabilities of predicted symbols given observed sequence ’A, B’ 17

3.1 Count statistics for words of length 4 and shorter from 10^4 samples of the even process [42] . 22

4.1 CSSR variables description . 31

5.1 Data Sets used to compare VLMM and CSSR 35
5.2 Prediction Accuracy of VLMM and CSSR for true data 36
5.3 Data Sets used for error analysis of VLMM based on position 39
5.4 Data Sets used for error analysis of VLMM based on occurrence 44
Glossary

CSSR Causal-State Splitting Reconstruction. iv, xi

FN False Negative. xi, 27

FP False Positive. xi, 27

GUI Graphical User Interface. xi, 17

HMM Hidden-Markov Models. xi, 3

IDS Intrusion Detection System. iv, xi

IP Internet Protocol. xi, 13

KS test Kolmogorov-Smirnov test. xi, 32

VLMM Variable Length Markov Model. iv, xi

XML Extensible Markup Language. xi, 12
Chapter 1

Introduction

In this Internet era, organizational dependence on networked information technology and its underlying infrastructure has grown explosively. In conjunction with this growth, the frequency and severity of network-based attacks have also drastically increased. At the same time, there is an inverse relationship between the decreasing expertise required to execute attacks and the increasing sophistication of those attacks. In other words, less skill is needed to do more damage. Security has evolved over the years due to an increasing dependence on public networks to disclose various restricted information. Security gained prominence in the 1990's when a hacker named Kevin Mitnick committed one of the largest computer-related crimes in the U.S history. The losses were reported to be around eighty million dollars [14]. Many incidents have taken place in the past where some prominent organizations including eBay, CNN, Yahoo were successfully attacked. Recently, on Feb 3, 2012 it was reported that a hacking group who claim themselves as Anonymous have hacked into a phone call between FBI and Scotland Yard. It was also reported earlier on Jan 19, 2012 that the same group have successfully taken down some prominent websites including those of the US Department of Justice and US copyright office. On any given day, there are around 225 major incidences of security breach reported to the CERT Coordination Center at Carnegie Mellon University [14]. The worldwide economic impact of the three most dangerous Internet Viruses of the last three years was estimated at 13.2 billion dollars [14]. Many such incidents reflect the fact that even the most secure networks are vulnerable and it requires a lot of skill to protect them. This has prompted various organizations across many
Figure 1.1: Components of Intrusion Detection System

industries to rethink the ways of improving network security. In addition to traditional Firewalls, Intrusion Detection Systems that monitor network events for signs of malicious activity have become an integral component of security. To effectively protect the network from the increasing number of intrusions and reduce their impact on the network, there is an indispensable need for efficient Intrusion Detection Systems.

An Intrusion Detection System (IDS) monitors network traffic for suspicious activity and alerts the network administrator. An IDS, as shown in Figure 1.1, is composed of several components. Sensors are used to generate security events and a console is used to monitor events and to control the sensors. It also has a central engine that records events logged by the sensors in a database and uses a system of rules to generate alerts from security events received. The two common types of IDS are based on pattern recognition or anomaly detection techniques. The pattern recognition based IDS monitors packets on the network and compares them against a database of signatures from known malicious activities. It raises an alert when there is a match. On the other hand, anomaly detection
based IDS works by establishing a profile for the system’s normal activity. It raises an alert when there is a conflict between observed activities and the normal profile.

To reduce the complexity of the overwhelming alerts generated by the IDSs, new techniques called Alert Tracking have been proposed to create comprehensive alert reports. Here the alerts that are related to each other would be grouped together as Attack Tracks. Previous works have concentrated on developing efficient IDSs and correlating the generated alerts. But the concept of projecting future attacks, which happens beyond IDS and attack tracking, hasn’t been completely explored by the researchers. Projection of likely future attacks is a crucial aspect in the field of network security, because providing information on the future alerts will assist the network analyst in taking necessary steps to protect the network.

Attack tracks can be converted into sequences of symbols and then sequence modeling schemes can be used to capture the properties of these sequences. The two main classes of existing techniques for sequence characterization are Context-based Markov models and State-based Hidden-Markov Models (HMM). Markov chains are most prominently used probabilistic techniques in the field of intrusion detection because of their better performance in terms of hit rate and false alarm rates [52]. Markov or finite-context models have been used by Daniel Fava in [19] to capture the ordering properties of sequence symbols. Different order Markov models have been implemented using a suffix tree, and then combined into a Variable Length Markov Model (VLMM). Fava inferred the attackers probable future attack steps and behavior from the VLMM, created from several representative attack tracks that have been previously observed. In [8], Byers has proposed a real-time continually learning system capable of projecting attack tracks that does not require a priori knowledge about network architecture.

In this thesis we propose to use a state-based model in place of a context-based model in the field of cyber attack projection. An algorithm called Causal-State Splitting Reconstruction (CSSR) for discovering patterns in data, proposed in [41], is used. CSSR algorithm is
preferred over conventional methods like subtree-merging algorithm introduced by Crutchfield and Young [10] or topological merging procedure of Perry and Binder [36]. This is because the conventional methods fit hidden Markov models to data, but CSSR makes no assumptions about the process’s causal architecture and actually infers it from the data. And the causal states it infers have important predictive properties that the states inferred by other techniques lack. It builds a minimal set of hidden, markovian states that are statistically capable of producing the behavior exhibited in the data. Also the set of processes that it can represent are more than the set of processes that a VLMM can represent. CSSR algorithm is tested with the data sets from a simulation model used in [8] for VLMM. The performance of both these algorithms is compared for the various data sets.

It should be noted that the mentioned models calculate the probabilities of the future attacks assuming that the IDS has detected all attacks without any missed alerts. But in reality, even the most efficient IDS is not perfect and will likely miss some attacks. As the calculated predictions are based on the counts of past attacks (symbols), a change in the count would result in erroneous probabilities. An important part of this research is to study the effect of missed alerts on the VLMM model and its estimated predictions. In practice, a false negative is much more serious and critical than a false positive because of the damage caused by that missed intrusion. Based on the analysis of the results, the network analyst can infer the predictive performance of VLMM algorithm when IDS has missing alerts. This research basically takes one more step in creating a comprehensive report to help the analyst in assessing the model. This work uses the real-time VLMM model in [8] for gathering the results.

Chapter 2 gives a brief overview of Markov Models and Hidden-Markov Models. It then discusses the suffix tree model and the VLMM algorithm used to predict future actions with some examples. It also covers the modified real-time version proposed by Byers [8]. It should be noted that the model in [19] required pre-training of data, whereas the new real-time model in [8] is more like a self-learning system that does not require any pre-training. Chapter 3 discusses in detail about the CSSR algorithm and its methodology with
an example. We then compare CSSR with other state-based models and also with context-based models like VLMM. Chapter 4 covers the error analysis of the algorithms. We also discuss about the different possible errors and their significance. Chapter 5 has the results and their discussion, including the design of experiments. Chapter 6 has conclusions and possible extensions of this work.
Chapter 2

Related Work

2.1 Markov and Hidden-Markov Models

A Markov Model is basically a probabilistic process over a finite set, \((S_1...S_k)\), usually called its States. It is a simple stochastic process in which the distributions of the future states depend only on the present state, and is independent of the path in which it arrived to the present state. According to [34], a stochastic process \(x(t)\) is called Markov if for every \(n\) and \(t_1 < t_2 < ... < t_n\), we have equation 2.1.

\[
P(x(t_n \leq x_n | x(t) \forall t \leq t_{n-1}) = P(x(t_n) \leq x_n | x(t_{n-1}))
\]

(2.1)

An order ’0’ Markov model is equivalent to a multinomial probability distribution. An order ’1’ (first-order) Markov model has a memory of size ’1’. The order of a Markov model of fixed order is the length of the history or context upon which the probabilities of the possible values of the next state depend. For example, the next state of an order ’2’ (second-order) Markov model depends upon the two previous states. In a Markov process, the current state of a system depends on the previous states. Finite context models are also known as Markov models. They assign a probability to a symbol based on the context in which the symbol appears. In an \(n\)th order finite-context model, an event depends on \(n\) previous observations. The simplest Markov Model is the Markov Chain, in which the states are discrete and directly observable. The other forms of Markov process include hidden-Markov process and semi-hidden Markov process. Markov chains have wide applications.
in various fields of engineering, physics and biology. As a practical example, any board game whose moves are determined by a dice is a Markov Chain. Because in such board games, the next state of the board depends only on the current state and the next roll of dice but not on how things got to the current state. Figure 2.1 can be considered as a Markov process. It has two states and their corresponding transitions are shown with arrows. Given an observed symbol, we can infer the next possible symbol based on the conditional probabilities. For example, if the observed symbol is A, the probability that the next symbol will be B is 0.7 and the probability that the next symbol will again be A is 0.3.

![Figure 2.1: Markov Process](image)

On the other hand, finite-state models, also known as Hidden Markov Models (HMMs), are composed of an observable part (events), and a hidden part (states). Events are observed with different probability distributions depending on the state of the system. A Hidden Markov Process (HMP) is a special type of Markov process in which the generation of observation symbols depends on the emission properties of the states. Therefore a state can usually generate more than one symbol and we cannot directly observe the state sequence from the observation sequence. A simple HMP can be explained with an example as follows. Suppose we have three boxes and each box contains balls of three different colors namely red, green, and blue. We randomly select a box according to some probability distribution and pick a ball from that box. After noting the color of the ball, we place the ball back in the same box and then select another box. This newly selected box can be the same box or a different box. We now pick a ball from the newly selected box and note its
color. If we repeat this process, we have a sequence of balls that we picked from the boxes. Note that looking at a particular ball does not identify the box from which it was taken. We can observe that there is an underlying hidden process, which is the selection of box. This hidden process is not directly observable when we look at the sequence of balls. To build a HMM to capture any process, there are three important factors to consider [31]. The first one is to determine how many states are really needed to include the properties of the process. The second factor is to choose the model parameters like state transition probabilities. The third factor is the size of the observed sequence. Because if we are restricted to a small observed sequence, we may not be able to reliably estimate the optimal model parameters.

![Hidden-Markov Process](FIGURE_2_2.png)

Figure 2.2: Hidden-Markov Process

For example, Figure 2.2 can be considered as a Hidden-Markov process. The circles A and B represent the states. The arrows connecting them represent the transitions of the model from one state to another and the labels shown indicate what symbol is emitted and its prediction to go to a particular state. For example the label at the left side $1 \mid 0.5$ implies that the model can emit symbol 1 with a probability of 0.5 and remain in state A. Observe that in this process, just by knowing the last observed symbol, one cannot always determine the current state. If a 0 has been observed as last symbol, we can say that the current state of the process is A but if a 1 was observed, we cannot determine which state the process is in. Though we can infer the conditional distribution on the future based on the last observed symbol, we cannot deduce the state the model is in. Since it has hidden states, this process is an example of a hidden Markov process. Hidden Markov models have wide range of applications in various fields including ecology, cryptanalysis and speech recognition.
Usage of Markov chains in the field of intrusion detection has given better performance in terms of hit rate and false alarm rates compared to Hotelling’s T-square test and chi-square multivariate test. These results have been proved by applying same testing set of audit data on all the models in [52]. The hit rate is computed by dividing the total number of hits with the total number of intrusive events in the testing data. The false alarm rate is computed by dividing the total number of false alarms with the total number of normal events in the testing data. 100% hit rate and 0% false alarm rate is ideal, which is the best detection performance by the intrusion detection technique.

2.2 Intrusion Detection System and events happening beyond detection

There are many efficient IDSs that have been proposed and a survey is included in [5]. In [26], Kosoresow and Hofmeyr explained an intrusion detection technique via tracing of system calls and discussed the issues of describing regular structure and calculating the macros. [53] presented a cyber-attack detection technique through anomaly-detection, and discussed the robustness of the modeling technique employed. This study also showed that the performance of the Markov chain techniques is not always robust to the window size: as the window size increases, the amount of noise in the window also generally increases. Paxson [35] described Bro, a stand-alone system for detecting network intruders in real-time by passively monitoring a network link over which the intruder’s traffic transits. [24] presented a new approach in representing and detecting computer penetrations in real-time. The approach, called state transition analysis, models penetrations as a series of state changes that lead from an initial secure state to a target compromised state. Valdes and Skinner [47] proposed a high performance, adaptive, model based technique for attack detection, using bayes net technology to analyze bursts of traffic. This has the attractive feature of both signature based and statistical techniques. The events that happen beyond intrusion detection include Alert Tracking (Alert Aggregation, Alert Correlation),
Projection of future alerts, and Impact Analysis. For large networks, the number of alerts generated by the IDSs will be very large and hence analysts started making use of techniques that would create comprehensive alert reports, categorized as alert aggregation [11], [13], alert correlation [32], [44], [48],[49], [55], current and future threat analysis [4], [23], and projection of likely future attack actions [29], [39]. The mentioned techniques fall under the name of Alert Tracking, where the alerts that are related to each other would be grouped. Such grouping of the alert data gives network defenders a more complete picture of the traffic on their network. [27] explains that alert verification is a process that is launched in response to an alert raised by an intrusion detection system to check whether the corresponding attack has succeeded or not. When the attack has not succeeded, the alert can be suppressed or its priority reduced. This provides an effective means to lower
the number of false alarms that an administrator has to deal with. It also improves the results of alert correlation systems by cleaning their input data from spurious attacks. The proposed approach in [33] constructs attack scenarios by correlating alerts on the basis of prerequisites and consequences of intrusions. Based on the prerequisites and consequences of different types of attacks, the proposed approach correlates alerts by (partially) matching the consequence of some previous alerts and the prerequisite of some later ones. [54] describes an intrusion alert management system called TRINETR. The architecture is composed of three parts: Alert Aggregation, Knowledge-based Alert Evaluation and Alert Correlation. The architecture is aimed at reducing the alert overload by aggregating alerts from multiple sensors to generate condensed views, reducing false positives by integrating network and host system information into alert evaluation process and correlating events based on logical relations to generate global and synthesized alert report. The definition of attack correlation is extended in [12] to correlate attacks with intrusion objectives and to introduce the notion of anti correlation. This approach provides the security administrator with a global view of what happens in the system. It controls unobserved actions through hypothesis generation, clusters repeated actions in a single scenario, recognizes intruders that are changing their intrusion objectives and is efficient to detect variations of an intrusion scenario. This approach can also be used to eliminate a category of false positives. A novel threat assessment scheme called TANDI was proposed in [23] to predict future attacker actions. TANDI predicts future attack actions accurately as long as the attack is not part of a coordinated attack and contains no insider threats. Even in the presence of abnormal attack events, TANDI will alarm the network analyst for further analysis. A novel approach to assess the threat of network intrusions was proposed in [29]. This approach assesses the attack threat from a forwarding perspective. To every attack type and some attack scenarios, their Probabilities of having Following Attacks (PFAs) are calculated by a data mining algorithm and then the threats of real time intrusions are assessed by these probabilities. A graph-based approach to network vulnerability analysis was proposed in [37]. This method allowed analysis of attacks from both outside and inside the network.
It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. This method is based on the idea of an attack graph which represents attack states and the transitions between them. The attack graph can be used to identify attack paths that are most likely to succeed, or to simulate various attacks. The major advantage of this method over other computer security risk methods is that it considers the physical network topology in conjunction with the set of attacks. The report in [50] examines the applicability of current risk assessment techniques to assess modern electronic threats. It also analyses the concepts of risk, vulnerability, threat agent and threat, and examine threat statistics from around the world and from various sources, and the state of the art on the various risk and threat analysis techniques.

2.3 Sequence Modeling and Prediction using Context-based Algorithm (VLMM)

The problem of projecting cyber attacks by looking at the sequential properties of correlated IDS alerts belonging to multi-stage attack tracks was addressed by Fava [19]. The basic methodology includes attack track pre-processing, sequence modeling and prediction. Attack tracks consist of ordered collections of alerts belonging to a single multi-stage attack. Sequence modeling techniques used in the fields like DNA analysis have been applied in the context of cyber attack projection by interpreting attack tracks as a sequence of symbols. Finite-context models or Markov models have been used to characterize their corresponding sequences of malicious actions.

Figure 2.4 shows an example of Extensible Markup Language (XML) representation of an attack track. Each alert within the attack track is defined by various fields and we can divide these alerts based on any of the attributes like Description, Destination Internet Protocol (IP) or Category. For example for Description, the algorithm converts all the alerts with Description field as ’WEB-MISC http directory traversal’ to one symbol and all alerts with Description field as ’SMTP RCPT TO overflow’ to another symbol and so on.
Figure 2.4: Attack Track Example
Suffix Tree:

Different order Markov models can be implemented using a *Suffix Tree*. The actual suffix tree training algorithm was originally motivated by the work of Begleiter, El-Yaniv and Yona [7]. It was modified by Fava [19] to take a set of finite length sequences instead of a single long sequence of observations. For example, let us consider the sequence ‘+A,B,A,C,B,A,-’, where + and – represent the start and end of the sequence, A and B may represent any alert descriptions. Edges are weighted with the number of times the suffix tree has traversed through that branch. The suffix tree for the sequence ‘+A,B,A,C,B,A,-’ is shown in Figure 2.5.

![Figure 2.5: Suffix Tree for sequence: +ABACBAC-](image)

We can observe that Fava’s work [19] defines the start and end of sequence characters, however the real-time algorithm proposed by Byers [8] trains the suffix tree with partial sequences instead of finite completed sequence. Basically Byers algorithm [8] is more like a self-learning system without the need for any pre-training. Now consider the same sequence and consider the construction of tree one symbol at a time, where the end of
track is not known. The sequence ’A,B,A,C,B,A,C’ is now trained as ’A’, ’A,B’, ’A,B,A’, ’A,B,A,C’ and so on as the track goes. The real-time version of building the suffix tree for the sequence is shown in Figure 2.6, but without the end of sequence character ’-’. Note that the path ’+’ to ’C’ has an edge weight of 2, whereas the summation of its child node weights is only one. This is because there is no end of sequence character in this real-time suffix tree implementation.

Figure 2.6: Real-time Suffix Tree for sequence: +ABACBAC

Prediction :

The probable future attack steps and behavior have been inferred based on previously observed attacks using Variable Length Markov Model (VLMM), which is formed by blending the different order Markov models. A simple VLMM could attribute fixed weights to each model order. A more complex way is to adapt weights as compression proceeds to give more emphasis to high-order models later on. Neither of these take into account the fact that the relative importance of the models varies with the context and its counts.
The weights in [19] have been derived from escape probabilities. The probability of encountering a previously unseen character is called the Escape Probability. Denoting the probability of an escape at level j by e_j, equivalent weights can be calculated from the escape probabilities by:

$$W_j = (1 - e_j) \times \prod_{k=j+1}^{l} e_k, -1 \leq j \leq l$$

(2.2)

where l is the highest order context making a non-null prediction. In this formula, the weight of each successively lower order is reduced by the escape probability from one order to the next. The weights will be plausible provided that the escape probabilities are between 0 and 1 and it is not possible to escape below order -1; hence $e_{-1} = 0$. The advantage of expressing things in terms of escape probabilities is that they tend to be more easily visualized and understood than the weights themselves, which can become small very rapidly. Several methods have been proposed but Fava’s work [19] was not able to identify any particular method to be better than others. One of the methods allocates one additional count over and above the number of times the context has been seen to allow for the occurrence of new characters. This was chosen as the default value in Byers work [8].

$$e_0 = \frac{1}{C_0 + 1}$$

(2.3)

Using the equations of escape probabilities and weights, VLMM estimates the probabilities using the following equation:

$$P(A) = \sum_{j=-1}^{l} W_j \times P_j(A)$$

(2.4)

According to the results gathered by Fava [19], the first order model performs better than 0, or second or higher order models, because any next event has a strong correlation with the immediate previous event. It was also shown that VLMM has the best prediction rate due to the reason that an n^{th} order model introduces more information that is not captured by the $(n - 1)^{th}$ order model.
For example, with the sequence ’A,B,A,C,A,B,C’ trained using the real-time algorithm [8], Table 2.1 shows the probabilities of the next occurring symbol given, let’s say, an observed sequence of ’A,B’.

<table>
<thead>
<tr>
<th></th>
<th>P(X)</th>
<th>P(X given A)</th>
<th>P(X given A,B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X=A</td>
<td>3/7</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>X=B</td>
<td>2/7</td>
<td>2/3</td>
<td>0</td>
</tr>
<tr>
<td>X=C</td>
<td>2/7</td>
<td>1/3</td>
<td>1/2</td>
</tr>
</tbody>
</table>

Table 2.1: Probabilities of predicted symbols given observed sequence ’A, B’

Another interesting concept to notice is that this real-time algorithm [8] also predicts the occurrence of new symbols. When a new symbol occurs, the suffix tree is first trained as normal and then trained again with the suffix history added with the special new symbol definition.

Graphical User Interface and Metrics used:

A Graphical User Interface (GUI) was designed in [8], that displays real-time visualization of suffix tree. This GUI, as shown in Figure 2.7, has various options including threshold options and various metrics like prediction accuracy and number of total predictions. This real-time system tracks only overall metrics for each alphabet and tracks detailed metrics if requested by the user via the GUI. Whether a particular prediction is correct or in-correct is determined by a set of predictions against the next event. This set of predictions is determined by a threshold number. Traditionally top-3 predictions are considered relevant and are used in our analysis. The XML files that contain the alert tracks can be loaded into the GUI from File menu. It also has the option to use only the ground truth instead of the entire file. Once a file is loaded, we can inject the alerts inside it by clicking Inject Next Alert or Inject All Remaining Alerts buttons. After all the alerts are injected, we can observe the metrics in the GUI. Under the settings menu, we can select the prediction threshold like top-1, top-2 or top-3 and so on. In this research, we use this GUI to collect results related to various performance metrics.
Figure 2.7: GUI used for projection system [8]
A new algorithm for discovering patterns in data, called Causal-State Splitting Reconstruction (CSSR), was proposed in [41]. It builds a minimal set of hidden, markovian states that are statistically capable of producing the underlying process’s causal states.

Below are some properties related to Causal states that have been proved in [40]:

- Causal states are the minimal sufficient statistics needed for predicting futures of all lengths.
- Causal states are not only minimum sufficient but also unique.
- Causal states are prescient. The causal states themselves form a Markov process.
- The causal states of a process are the members of the range of the function that maps from histories to sets of histories.
- Each causal state has a unique associated distribution of outputs, called its morph. In general every state has a morph, but two states in the same state class may have the same morph.
- Causal states have the important property that all of their parts have the same morph.
• However each causal state has a unique morph, which means no two causal states will have the same conditional distribution of the future.

• The past and the future of a process are independent, conditioning on the causal states.

• A process’s causal states are the largest subsets of histories that are all strictly homogeneous with respect to futures of all lengths.

The current causal state and the next value of observed process will determine the next causal state. These possible next symbols have well defined conditional probabilities. The Transition Probability can be defined as the probability of making a transition from one state to another while emitting a symbol. The combination of the function ϵ from histories to causal states with the labeled transition probabilities is called the ϵ-machine of the process [10]. ϵ-machines are deterministic and Markovian in nature, which means that given a causal state at time t, the causal state at time $t + 1$ is independent of the causal states at earlier times. ϵ-machine reconstruction is any procedure that given a process produces the process’s ϵ-machine. An algorithm was developed for ϵ-machine reconstruction [10] [9], which merged distinct histories together into states when their morphs seemed close. Because it works by merging, it effectively makes the most complicated model of the process it can. Though the causal states are deterministic, the states it returns often aren’t. A new ϵ-machine reconstruction algorithm called CSSR, which improves on the old algorithm, was proposed in [41]. It operates on the opposite principle, by creating or splitting new states only when absolutely forced to. The operation of CSSR is summarized in Figure 3.1.

3.1 Methodology

There are three procedures in CSSR: Initialize, Homogenize, and Determinize.

1. Initialize: The initial model is that the process is a sequence of independent, identically-distributed random variables. Initially, it contains only the null sequence.
Figure 3.1: Flow chart of CSSR [40]
2. Homogenize: Generates states whose members are homogeneous for the next symbol, which means these histories all lead to the same morph. In other words, generate states whose member histories have no significant differences in their individual morphs.

3. Determinize: Eliminates transient states from the current state-transition structure, leaving only recurrent states.

To illustrate CSSR, consider an example how this algorithm works by taking an even process as shown in Figure 3.2. Observe that this is an example of a hidden-Markov process. Data from a simulation of process has been used with typical parameter settings for the algorithm.

<table>
<thead>
<tr>
<th>Word</th>
<th>Count</th>
<th>Word</th>
<th>Count</th>
<th>Word</th>
<th>Count</th>
<th>Word</th>
<th>Count</th>
<th>Word</th>
<th>Count</th>
<th>Word</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3309</td>
<td>00</td>
<td>1654</td>
<td>000</td>
<td>836</td>
<td>0000</td>
<td>414</td>
<td>1000</td>
<td>422</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6687</td>
<td>01</td>
<td>1655</td>
<td>001</td>
<td>818</td>
<td>0001</td>
<td>422</td>
<td>1001</td>
<td>396</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>1655</td>
<td>010</td>
<td>0</td>
<td>0010</td>
<td>0</td>
<td>1010</td>
<td>0</td>
<td>1010</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5032</td>
<td>011</td>
<td>1655</td>
<td>011</td>
<td>837</td>
<td>0111</td>
<td>818</td>
<td>1011</td>
<td>837</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>818</td>
<td>0100</td>
<td>0</td>
<td>1100</td>
<td>818</td>
<td></td>
<td></td>
<td>1101</td>
<td>836</td>
</tr>
<tr>
<td></td>
<td></td>
<td>101</td>
<td>837</td>
<td>0101</td>
<td>0</td>
<td>1101</td>
<td>836</td>
<td></td>
<td></td>
<td>1110</td>
<td>841</td>
</tr>
<tr>
<td></td>
<td></td>
<td>110</td>
<td>1654</td>
<td>0110</td>
<td>814</td>
<td>1110</td>
<td>841</td>
<td></td>
<td></td>
<td>1111</td>
<td>2537</td>
</tr>
<tr>
<td></td>
<td></td>
<td>111</td>
<td>3378</td>
<td>0111</td>
<td>841</td>
<td>1111</td>
<td>2537</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.1: Count statistics for words of length 4 and shorter from 10^4 samples of the even process [42]
Considering $L_{\text{max}}=3$ and $\alpha=0.01$ for simplicity, simulations have been done on the even process for 10^4 time steps and accumulated the sequence statistics for words of length 4 and shorter. The entire data contains 3309 0’s and 6687 1’s. The initial state $A_L=0$ formed at $L=0$, containing the null suffix λ, therefore produces 1’s with probability ≈ 0.669.

The null suffix λ has two children, $*0$ and $*1$. At $L=1$, the probability of producing a 1, conditional on the suffix $*0$, is $P(1|*0) = 1655/3309 \approx 0.500$, which is significantly different from the distribution for the null suffix. Similarly, the probability of producing a 1, conditional on the suffix $*1$, is $P(1|*1) = 5032/6690 \approx 0.752$, which is also significantly different from that of the parent state. We thus produce two new states $B_L=1$ and $C_L=1$.

Similarly, in this way, by examining the next generation of children and finding the conditional probabilities of children, add those that match parent’s distribution and split off those that doesn’t match parent’s distribution till L_{max} is reached. Finally we will be left with four states, which contain the following suffixes: $A_{L=0}=\{\lambda, *11\}$, $B_{L=1}=\{*1, *111\}$, $C_{L=1}=\{*0, *00, *10, *000, *100, *110, *011\}$, and $D_{L=2}=\{01, *001, *101\}$.

After we reach longest histories, i.e., $L_{\text{max}}=3$ in our example, phase II is complete. Phase III is done by checking which states have incoming transitions. State C can be reached from State D on a 1 and State D can be reached from State C on a 1. State C can be reached
from itself or from States A or B on a 0. Observe that State A can only be reached from State B on a 1 and State B can only be reached from State A on a 1.

Continuing the process of determinization, we eliminate the two transient states A and B. Since every suffix in State C goes to one in State C by adding a 0 and to State D by adding a 1, we do not split C. Similarly we do not change State D because every suffix in State D goes to one in State C by adding a 1. The process of determinization ends here. The final result is an \(\epsilon \)-machine with two states C and D as shown in Figure 5. These are the causal states sufficient to capture the behavior exhibited in the data.

3.2 Comparison of CSSR with other state-based algorithms

The \(\epsilon \)-machine captures all patterns in the process which have any predictive power. An algorithm was initially developed for \(\epsilon \)-machine reconstruction by Crutchfield and Young in [10], [9]. Their default assumption is that each history that we come across in the data is a causal state. The merging procedure can be explained as follows. Consider all the nodes with subtrees of depth L, and take any two of them. If all the probability distributions attached to the length-L path in their subtrees are within some constant, then the two nodes are equivalent and will be merged. This procedure is repeated until no merging is possible. All other \(\epsilon \)-machine reconstruction methods are also based on merging. For example in the 'topological' merging procedure of Perry and Binder [36], they consider the relationship between histories and futures. Two histories are assigned to a same state, if sets of futures
they yield are identical. Then they estimate the distribution for each state, not for each history. The problem with state-merging methods lies in their default assumption that each history is its own state. Because of this assumption, the state-merging methods start by producing the most complex possible null model of the process, given the length of histories, and then trim it by merging.

Instead of using state-merging methods, a new reconstruction algorithm based on state-splitting (CSSR) was proposed. CSSR starts off with a zero-complexity null model by putting every history in one state and then adds states only if the current set of states are not sufficient according to the statistical tests. Unlike conventional algorithms, which tune the parameters in a fixed architecture, CSSR is capable of inferring the appropriate architecture as well. The causal states it infers have important predictive optimality properties. These predictors take the form of minimum sufficient statistics, arranged into a hidden Markov model (HMM). Hence they preserve the features of HMMs without making any assumptions about the nature of the process. Also as explained in [42], CSSR must estimate \(2^k\) probabilities for each history, one for each member of the power set of the alphabet, but the state-merging algorithm must estimate the probability of each member of the power set of future sequences which is \(2^{kL}\) probabilities. In [41], CSSR is compared to the use of cross-validation to select an HMM architecture, and the results imply that CSSR’s predictive performance is at least comparable to cross-validated expected-maximization, but it is constructive and faster.

Though CSSR does not require any prior knowledge about system dynamics, it cannot exploit such information when it exists.

3.3 Comparison of CSSR with context-based algorithms

Context-based algorithms construct so called Variable Length Markov Models from sequence data. Contexts are considered to be the suffixes of history and the algorithms work by examining the long histories, creating new contexts by splitting existing ones based on...
a threshold. VLMMs, similar to CSSR, do not rely on domain specific information. Each state in a VLMM is represented by a single suffix, and consists of all and only the histories ending in that suffix. For many processes, where the causal states contain multiple suffixes, multiple contexts are needed to represent a single causal state, so VLMMs are generally more complicated than the HMMs build in CSSR. The causal state model is the same as the minimal VLMM if and only if every causal state contains a single suffix.

For the even process in Figure 3 that is used to illustrate CSSR, clearly A and B both contain infinitely many suffixes, and so correspond to an infinite number of contexts. If we let the length of histories grow, a VLMM algorithm will increase the number of contexts it finds without bound. VLMM algorithms are incapable of capturing such even processes. Hence the class of processes that CSSR can represent is larger than those that a VLMM can represent. However the process involved in CSSR is a lot more complicated than VLMM, which is far simpler. And also for CSSR to perform better with less error probability, we need to have infinitely long sequences.
Chapter 4

Error Analysis

4.1 Possible Errors and their Significance

In the field of statistics, to describe particular flaws in any process, there are two major kinds of possible errors:

- **Type I error**: It is the wrong decision that is made when a test rejects a true null hypothesis. False Positive (FP) comes under this kind.

- **Type II error**: It is the wrong decision that is made when a test fails to reject a false null hypothesis. False Negative (FN) comes under this kind.

The definitions of these two kinds of errors change depending on the application. In the field of Intrusion Detection, they can be defined as follows:

- A False Positive is raising an alarm for a non-malicious activity.

- A False Negative is failing to identify an attack and not raising an alarm for a malicious activity.

False Positives and False Negatives can happen to any Intrusion Detection System, no matter how efficient it is. Both types of errors cause various problems to the network security. A false positive of the IDS will not result in an intrusion and it may be caused because of two reasons: the detection mechanism of the IDS is faulty or the IDS has detected an
anomaly that turns out to be benign. Therefore, the false positives may cause security analysts to expend unnecessary effort. On the other hand, a false negative is a missed attack, which may put networks or computer systems in danger. Clearly these are undesirable, and every organization strives to avoid them. However, no detection system detects all the attacks. Hence, the goal is to provide good coverage against high priority attacks. Several other reasons may also cause a false negative. For example, in order to elude the IDS, the attack may incorporate obfuscation techniques. Another possibility is to overwhelm the IDS with traffic beyond its processing capacity, so that the IDS will drop the packets needed to detect the attack. If an IDS raises an alert that did not happen, the worse that can happen would be wastage of resources and time till the network administrator realizes that it is a false alarm. But if an IDS fails to identify an alert, that alert might be malicious enough to damage the whole network and hence risking the security. A mechanism proposed in [21] collected more than two thousand FPs and FNs during sixteen months. It reported that 92.85% of false cases were FPs and 7.15% were FNs. Out of all the FPs, about 91% of FP alerts occur because of IDS’s policy or company management policies, but not due to security issues. Hence in practice, a false negative is much more serious and critical than a false positive because of the negative effects it has and because of the damage caused by that missed intrusion. Therefore it is necessary to analyze the effect of the false negatives in detail to improve the network security. If reported data from IDS has some false negatives, it impacts both the sequence model (suffix tree of VLMM or \(\epsilon \)-machine of CSSR) that is build and also the estimated probabilities that are calculated based on the model. This research studies the effects of false negatives/missing alerts on the predictive performance of the model being used. This would help the analyst in assessing the model (VLMM in our case) in terms of its predictive performance in the presence of missed alerts.
4.2 VLMM

In case of a model like VLMM, the amount of effect a missing alert would have on the suffix tree or the probability estimations would depend on many factors including:

- the occurrence rate of missing alert and its estimated probability
- the position of the missing alert in the sequence
- length of the sequence
- symbol space within the sequence

The future alerts are predicted based on weights and escape probabilities, which depend on the occurrence rates of the symbols in the sequence. Hence missing alerts would result in erroneous probability calculations. This change could be positive or negative depending on the mentioned factors.

In order to have a comprehensive analysis, we will study the effect in two ways: one with respect to the position of the missing alert and another with respect to the occurrence of the missing alert. We will randomly remove alerts while doing the analysis. This random removal in the design is based to reflect the scenarios where the attacker uses obfuscation techniques to confuse the system by attacking at different positions at different times. We will study the effect in terms of occurrence of missing alerts by defining the common and rare alerts and compare it against the results based on position.

In addition to various factors like occurrence, position, length of sequence and symbol space, the prediction accuracy of a model like VLMM will also be affected when missing alerts cause a change in the order of probability within the threshold predictions. Depending on the occurrence rate of missing symbols and their probabilities, missing alerts can result in change of the order of symbol probabilities. However, it does not mean a change in the order of probabilities will always affect the prediction performance. If the estimated probabilities of two symbols are close enough, it is likely that they will have a change in their ranking due to the effect of missing alerts. Figure 4.1 shows a simple example of such
4.3 CSSR

Error analysis of CSSR is done in [41] by considering the statistical errors that each of the algorithm’s three procedures can produce. Since it merely sets up parameters and data structures, nothing goes wrong in 'Initialize' step. 'Homogenize' step can make two kinds of errors. First, it can group together histories with different distributions for the next symbol. Second, it can fail to group together histories that have the same distribution. Let S_i and S_j are suffixes in the same state, with counts n_i and n_j. There is always the variational distance t such that the significance test will not separate estimated distributions differing by t or less. If we make n_i large enough, then with probability arbitrarily close to one, the estimated distribution for i is within $t/2$ of the true morph, and similarly for j. Hence, the estimated morphs for the two suffixes are within t of each other and will be merged. If any state contains any finite number of suffixes, by obtaining a sufficiently large sample of each, we can ensure that they are all within $t/2$ of the true morph and so within t of each other and thus merged. In this way, the probability of inappropriate splitting can be made arbitrarily small. If each suffix’s conditional distribution is sufficiently close to its
true morph, then the test will eventually separate suffixes belonging to different morphs. Since the step 'Determinization' always refines the partition with which it starts, there is no chance of merging histories that do not belong together. In summary, if the number of causal states is finite and \(L_{\text{max}} \) is sufficiently large, the probability that the states estimated are not the causal states becomes arbitrarily small, for sufficiently large \(N \).

To analyze the bounds of the error probability, CSSR used the Chernoff’s inequality [51], which states that:

\[
P(|A_n - \mu| \geq t) \leq 2e^{-2nt^2}
\]

where \(A_n \) is the mean of the first \(n \) of the \(X_i \) (\(X_1, X_2, \cdots, X_n \) are Bernoulli random variables), with probability \(\mu \) of success.

The convergence of CSSR algorithm was shown in [41] based on Kolmogorov-Smirnov test (KS test) [22], and Chernoff’s inequality [51], as follows:

\[
P(d(P_n(S^{-1}|S^{-L} = s^{-L}), P(S^{-1}|S^{-L})) \geq t) \leq \sum_{A \in 2^A} 2e^{-8nt^2} = 2^{k+1}e^{-8nt^2}
\]

Two kinds of errors are possible in CSSR algorithm:

- It can group together histories with different distributions for the next symbol.
- It can fail to group together histories that have the same distribution.

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Description</th>
<th>Values according to Table 2.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>suffix count</td>
<td>-</td>
</tr>
<tr>
<td>(N)</td>
<td>length of the sequence</td>
<td>1000</td>
</tr>
<tr>
<td>(L)</td>
<td>length of histories considered</td>
<td>3</td>
</tr>
<tr>
<td>(p^*)</td>
<td>probability of the most improbable string</td>
<td>(\frac{396}{9996} \approx 0.039)</td>
</tr>
<tr>
<td>(k)</td>
<td>constant</td>
<td>2</td>
</tr>
<tr>
<td>(t)</td>
<td>difference between suffix and it’s true morph (magnitude of the prediction error)</td>
<td>0.461 (0.5-0.039)</td>
</tr>
<tr>
<td>(q(t))</td>
<td>probability of seeing an error of size (t) or larger</td>
<td>(\approx 0)</td>
</tr>
</tbody>
</table>

Table 4.1: CSSR variables description

Probability that one or more suffixes differ from its true morph by \(t \):
\[q(t, n) \leq \sum_{i=1}^{s} 2e^{-8n_it^2} = 2^{k+1}se^{-8mt^2} \quad (4.3) \]

where \(m \) is the least of the \(n_i \) and \(s \) is the number of histories actually seen or as the number of histories needed to infer the true states. We can upper bound \(s \) by the maximum number of morphs possible as:

\[s \leq \frac{(k^{L+1} - 1)}{(k - 1)} \quad (4.4) \]

\[\implies q(t, n) \leq 2^{k+1}\frac{(k^{L+1} - 1)}{(k - 1)}e^{-8Np^*t^2} \quad (4.5) \]

The equation 4.5 approaches zero for large values of \(N \).

We have applied the CSSR convergence formula for the data given in Table 3.1. An example is shown in Table 4.1, where the error probability was almost zero. Hence by obtaining a sufficiently large sample of each suffix, the error probability of CSSR can be made small.
Chapter 5

Results and Discussion

In this research, we will run two sets of simulations. One is by using the true data sets assuming that they do not have any missing alerts and another is by removing the alerts from those true data sets. We will compare the performance of VLMM and CSSR in terms of prediction accuracy for the true data sets. Prediction Accuracy is the percentage of symbols occurring within a set based on a threshold, consisting of symbols with highest probabilities according to the chosen model. Hence if an observed symbol was one of the top three predictions with the highest probability, that would be included in the Top-3 prediction accuracy section. The prediction accuracy is calculated by dividing the number of correct predictions to the total number of predictions made by the model used. The choice of ‘three’ is arbitrary and can be changed to any reasonable number. Traditionally top-3 predictions are considered relevant and so we have used it in our error analysis.

5.1 VLMM and CSSR on True Data

5.1.1 Experiment Design

In previous work [19], the experimental dataset of attacks was randomly split into two halves. One-half of the tracks were used to pre-train the model, and the other half to test the algorithm’s predictive performance. But this research is based on the real-time implementation done in [8], which processes one alert at a time. This system generates
symbols, dynamically trains models for each alphabet definition in parallel, and generates next-step prediction sets for each attack track based on those changing models as events unfold. This approach facilitates investigation into the adaptive qualities of the system to new attack scenarios. For the first set of simulations, we will run the true data sets on two different algorithms - VLMM and CSSR, and will compare their performance in terms of prediction accuracy.

Figure 5.1: Interface used to generate a simulated network [28]

In order to enable testing of situational awareness tools that are being developed to detect and analyze attacks on computer networks, a simulation model was proposed in [28]. This simulation model has been developed to generate representative cyber attacks and intrusion detection sensor alert data. This model provides the user with the ability to construct a computer network and setup and execute a series of cyber attacks on certain target machines within that network. IDS sensors that are setup within this network produce appropriate alerts based on the traffic they observe within the network. A user-interface is used to specify the desired scenario. Figure 5.1 shows an example network interface setup. When a computer network has been created, an attack scenario can be setup and run on the network. Once the simulation is run and the scenario is executed, it generates the output files containing IDS alerts that can be used to test the situational awareness tools.
The outcome of this simulation model is a set of IDS alerts that can be used to test and evaluate the various cyber security tools. Taking into account the need for ground truth (list of actions executed during each attack), this research utilizes experimental datasets generated by the simulation model, implemented by RIT’s Industrial and Systems Engineering. We have used five sets of data, containing ground truth without any noise, to test VLMM and CSSR algorithms. The data sets used along with the length of the sequence and the number of symbols in the sequence is shown in Table 5.1.

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Alerts</th>
<th>Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>BVT-2A</td>
<td>376</td>
<td>61</td>
</tr>
<tr>
<td>BVT-2B</td>
<td>336</td>
<td>57</td>
</tr>
<tr>
<td>BVT-2F</td>
<td>378</td>
<td>55</td>
</tr>
<tr>
<td>BVT-2H</td>
<td>293</td>
<td>52</td>
</tr>
<tr>
<td>BVT-2I</td>
<td>496</td>
<td>60</td>
</tr>
</tbody>
</table>

Table 5.1: Data Sets used to compare VLMM and CSSR

5.1.2 Results and Discussion

Table 5.2 shows the prediction accuracies for the data sets without considering any repetitions. Here the data sets used are assumed to be true data sets, which do not have any missed alerts. The accuracies achieved by both VLMM and CSSR are encouraging given the relatively large number of symbols in the corresponding symbol spaces. Consider for BVT-2A, where a blind guess of 3 out of 61 would give a prediction rate of around 4.9% which is much smaller than 41.30% by VLMM and 51.91% by CSSR.

If we consider the average values of all data sets as shown in Figure 5.3, we can observe that in terms of top-3, top-2, and top-1 prediction accuracies, both VLMM and CSSR give very similar results. However we can observe from Figure 5.2 that for some cases, there is some significant difference in top-1 accuracies of VLMM and CSSR. For example for data set BVT-2B the top-1 accuracy by VLMM is 23.83% whereas CSSR has only 11.59%. This is likely because the symbol CSSR assigned highest probability most of times, has occurred less frequently whereas the symbol that VLMM assigned highest probability has
Table 5.2: Prediction Accuracy of VLMM and CSSR for true data

<table>
<thead>
<tr>
<th>Dataset</th>
<th>VLMM</th>
<th>CSSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>BVT-2A</td>
<td>Top-3: 41.30%</td>
<td>CSSR: 51.91%</td>
</tr>
<tr>
<td></td>
<td>Top-2: 34.06%</td>
<td>CSSR: 42.01%</td>
</tr>
<tr>
<td></td>
<td>Top-1: 23.19%</td>
<td>CSSR: 29.16%</td>
</tr>
<tr>
<td>BVT-2B</td>
<td>Top-3: 42.19%</td>
<td>CSSR: 52.17%</td>
</tr>
<tr>
<td></td>
<td>Top-2: 32.42%</td>
<td>CSSR: 40.94%</td>
</tr>
<tr>
<td></td>
<td>Top-1: 23.83%</td>
<td>CSSR: 11.59%</td>
</tr>
<tr>
<td>BVT-2F</td>
<td>Top-3: 47.48%</td>
<td>CSSR: 46.90%</td>
</tr>
<tr>
<td></td>
<td>Top-2: 39.93%</td>
<td>CSSR: 35.59%</td>
</tr>
<tr>
<td></td>
<td>Top-1: 24.46%</td>
<td>CSSR: 24.59%</td>
</tr>
<tr>
<td>BVT-2H</td>
<td>Top-3: 37.77%</td>
<td>CSSR: 37.55%</td>
</tr>
<tr>
<td></td>
<td>Top-2: 27.47%</td>
<td>CSSR: 27.70%</td>
</tr>
<tr>
<td></td>
<td>Top-1: 18.03%</td>
<td>CSSR: 22.9%</td>
</tr>
<tr>
<td>BVT-2I</td>
<td>Top-3: 36.78%</td>
<td>CSSR: 33.33%</td>
</tr>
<tr>
<td></td>
<td>Top-2: 30.29%</td>
<td>CSSR: 24.82%</td>
</tr>
<tr>
<td></td>
<td>Top-1: 19.23%</td>
<td>CSSR: 17.6%</td>
</tr>
</tbody>
</table>

Figure 5.2: VLMM vs. CSSR for true data
Because of the nature of different data sets, the results by VLMM and CSSR may not always be consistent. From the results gathered, we can observe that CSSR does not give any superior results in terms of predictive performance. Since we need to have infinitely long sequences for CSSR to perform better and VLMM being a simpler process, we have used VLMM for the error analysis of missed alerts.

5.2 VLMM in presence of Missed Alerts

For the second set of simulations, we analyze the effect of missing alerts using VLMM by observing the change in prediction accuracies. One way to study the effect of missing alerts using a particular algorithm is by adding alerts to data, where we assume that the data gathered from the simulation model is as a result of IDS failing to identify alerts. However this method is unclear and complicated because lot of factors need to be considered like the various attributes of the alert and whether to introduce new alert or one of the already occurred alerts. An easier way is by removing alerts from the data sequence, where we assume that the data from simulation model is a result of IDS identifying each and every alert without missing any attack. In order to have a more comprehensive analysis, we study the effect of missing alerts both in terms of the position and in terms of the occurrence. In
the process, we repeat this analysis for sequences of different lengths and different symbol spaces, as they would also influence the prediction accuracies.

5.2.1 Analysis based on Position

5.2.1.1 Experiment Design

Since position of the alert is one of the factors that can influence the prediction accuracy, we first study the effect of missing alerts based on its position. For this, we have chosen to split the entire sequence into 3 parts (3 is arbitrary), referring them as Beginning, Middle and End of sequence. Then we have randomly selected the positions within those 3 parts and removed alerts. In order to have a complete analysis, we will also remove alerts randomly from the whole sequence. Although any data set contains multiple tracks, while removing alerts we look at the total data set as a single sequence generated by VLMM after combining all the multiple tracks in an order. This random removal in the design is based to reflect some real world scenarios where the attacker, in order to elude the IDS, may incorporate obfuscation techniques and confuse the system by sometimes attacking at the beginning and sometimes at the middle or at the end. We have run simulations by varying the percentage of missing alerts: 5%, 15%, 25%, 40%. In this work, the Beginning of any sequence is defined as a set ranging from start to 40%, the Middle of the sequence is defined to range from 30%-70% and the End of the sequence is defined to range from 60%-100%. The overlap is to allow us to remove more percentage of alerts. These percentages are calculated with respect to the total length of the sequence. We know that, because of missing alerts, each symbol’s prediction accuracy will either increase or decrease or remain the same. We will then calculate the change in prediction accuracies to make observations. The data sets used and their true prediction accuracies are shown in Figure 5.3.
Table 5.3: Data Sets used for error analysis of VLMM based on position

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Alerts</th>
<th>Symbols</th>
<th>True Top-3</th>
<th>True Top-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description-1</td>
<td>376</td>
<td>63</td>
<td>41.30%</td>
<td>23.19%</td>
</tr>
<tr>
<td>Destination IP-1</td>
<td>376</td>
<td>9</td>
<td>87.32%</td>
<td>58.70%</td>
</tr>
<tr>
<td>Category-1</td>
<td>376</td>
<td>12</td>
<td>61.23%</td>
<td>28.99%</td>
</tr>
<tr>
<td>Description-2</td>
<td>478</td>
<td>77</td>
<td>36.24%</td>
<td>19.58%</td>
</tr>
<tr>
<td>Destination IP-2</td>
<td>478</td>
<td>9</td>
<td>91.53%</td>
<td>56.61%</td>
</tr>
<tr>
<td>Category-2</td>
<td>478</td>
<td>12</td>
<td>56.61%</td>
<td>25.13%</td>
</tr>
<tr>
<td>Description-3</td>
<td>599</td>
<td>69</td>
<td>39.88%</td>
<td>19.24%</td>
</tr>
<tr>
<td>Destination IP-3</td>
<td>599</td>
<td>9</td>
<td>95.19%</td>
<td>71.94%</td>
</tr>
<tr>
<td>Category-3</td>
<td>599</td>
<td>11</td>
<td>57.52%</td>
<td>24.25%</td>
</tr>
</tbody>
</table>

5.2.1.2 Results and Discussion

After different percentages of alerts are removed from the sequence, we first gather the results of new prediction accuracies. Figure 5.4 shows the change in prediction accuracies for ten trials in each case for various percentages of missed alerts at different positions in the sequence.

Figure 5.4: Change in Prediction Accuracy for data sets with 376 alerts

We have calculated the difference between the new prediction accuracy and the true prediction accuracy, to know by how much the value got deviated (could be positive or negative). For this, we use the metric 'Change in Prediction Accuracy’, which is the difference in prediction accuracies with and without missed alerts for different test cases.

The change in prediction accuracy can be positive or negative. In other words, the prediction accuracy can decrease or increase due to the missed alerts. It can be observed
that the change is not always exponential to the number of missing alerts. This is due
to the fact that prediction accuracies also depend on various other factors like length of
the sequence and number of symbols in the sequence. However if the alerts that were
missing have higher assigned probabilities, it is more likely that they will result in larger
values of change in the prediction accuracies. Though 'Description-1', 'Destination IP-1'
and 'Category-1' data sets have data of same length (376), it can be observed that their
behavior in presence of missed alerts is different because they have different number of
symbols implying a different behavior in their data set.

The change in prediction accuracy varies for each scenario depending on the weights
of symbols that are missed. Generally, when the percentage of missing alerts is about 5%,
the change in prediction accuracies seems to be very small in the range of 0.5%-1%. We can observe from Figures 5.8, 5.9, 5.10 that the values for all the ten trials do not deviate much from the average value.

When the percentage of missing alerts increases to more than 10%, we can observe from Figures 5.5, 5.6, 5.7 that the change in prediction accuracy is worse when the alerts are missing in the whole sequence as opposed to missing in a particular section. We can observe that this conclusion is valid for all the data sets with different attributes (Description, Destination IP, Category). This could be likely because many sequences will have the alerts with higher weights dispersed throughout the sequence than only at the beginning or middle or end. When there is highest percentage of alerts missing, in our case 40%,
the performance is affected the most if they were missing throughout the entire sequence. The next badly affected case is if they were missing at the beginning of the sequence. The change in prediction accuracy is in the range of 4%-7% when the alerts are missing in the whole sequence and 0-2% when alerts are missing at the beginning or middle or end of the sequence. From Figures 5.8, 5.9, 5.10, we can also observe that this observation is consistent across different trials, datasets and attributes. For example, in all the Figures 5.8, 5.9, 5.10, for the case when 25% alerts are missing, the change in prediction accuracy is more for the case when alerts are missing throughout the sequence (circular dots highlighted in light green) as opposed to when alerts are missing at the beginning (triangle dots highlighted in dark green) or at the middle (plus sign dots highlighted in blue) or at the end.
5.2.2 Analysis based on Occurrence

5.2.2.1 Experiment Design

Occurrence rate of the missing alerts is another important factor that will influence the VLMM model and the prediction accuracies. For this analysis, we first identify the top-m as common alerts and bottom-n as rare alerts based on their occurrence rates. Selection of these numbers m and n depends on the symbol space in the sequence and varies from one sequence to another. Generally for sequences of higher symbol space, if l is the length of the
sequence, we can consider top-5 as common alerts and remaining \((l - 5)\) as the rare alerts. Since we have chosen top-3 in our results as the threshold for prediction accuracy values, it is sufficient if we define the top-5 alerts as common alerts, because a change in the order of symbols will also change the prediction accuracy. So if the \(4^{th}\) or \(5^{th}\) ranked symbols are close enough to the \(3^{rd}\) ranked symbol, the order of these symbols might change because of the missing symbols and cause a change in their ranking, which in turn will change the prediction accuracy. And it is less probable for a symbol beyond \(5^{th}\) rank to change the order with the \(3^{rd}\) or lesser ranked symbol. Hence 5 is a reasonable number to choose for those sequences with larger symbol space. However for sequences with relatively less number of symbols, the numbers will change and we can probably choose top-3 as the common alerts and the remaining as rare alerts. This is because, for sequences with less number of symbols, the sequence is usually dominated by the top-3 ranked symbols, and hence higher prediction accuracies for such cases. The data sets used for this analysis are shown in Figure 5.4 along with their true prediction accuracies.

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Alerts</th>
<th>Symbols</th>
<th>True Top-3</th>
<th>True Top-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description-1</td>
<td>376</td>
<td>63</td>
<td>41.30%</td>
<td>23.19%</td>
</tr>
<tr>
<td>Destination IP-1</td>
<td>376</td>
<td>9</td>
<td>87.32%</td>
<td>58.70%</td>
</tr>
<tr>
<td>Category-1</td>
<td>376</td>
<td>12</td>
<td>61.23%</td>
<td>28.99%</td>
</tr>
<tr>
<td>Description-2</td>
<td>478</td>
<td>77</td>
<td>36.24%</td>
<td>19.58%</td>
</tr>
<tr>
<td>Destination IP-2</td>
<td>478</td>
<td>9</td>
<td>91.53%</td>
<td>56.61%</td>
</tr>
<tr>
<td>Category-2</td>
<td>478</td>
<td>12</td>
<td>56.61%</td>
<td>25.13%</td>
</tr>
<tr>
<td>Description-3</td>
<td>599</td>
<td>69</td>
<td>39.88%</td>
<td>19.24%</td>
</tr>
<tr>
<td>Destination IP-3</td>
<td>599</td>
<td>9</td>
<td>95.19%</td>
<td>71.94%</td>
</tr>
<tr>
<td>Category-3</td>
<td>599</td>
<td>11</td>
<td>57.52%</td>
<td>24.25%</td>
</tr>
</tbody>
</table>

Table 5.4: Data Sets used for error analysis of VLMM based on occurrence

5.2.2.2 Results and Discussion

After identifying the common and rare alerts, we have randomly removed the alerts from the entire sequence for ten trials. After observing the new prediction accuracy, we use the same metric 'Change in Prediction Accuracy', which is the difference in prediction
accuracies with and without missed alerts for different test cases. We have compared these results with the scenarios where random alerts were removed from the whole sequence.

Figure 5.11: Change in Prediction Accuracy for data sets with 376 alerts

For all common alerts missing cases, the prediction accuracy decreased. For all rare alerts missing cases, the prediction accuracy increased. This is reflected in the graphs shown in Figures 5.12, 5.13, 5.14. We can observe that this observation is consistent for data sets with different attributes. This can be explained as follows. As the top-1, top-2 and top-3 prediction accuracies depend on the occurrence rates of alerts, in most cases, if
the missing alert actually occurs more frequently in the data, it will decrease the prediction accuracies. If we think mathematically, this result makes sense. Because if a rare alert is missing, while calculating let’s say top-1 prediction accuracy, the numerator remains the same but the denominator decreases by 1, which increases the net result. Whereas if a common alert is missing, both the numerator and denominator will decrease by 1. In other words, let’s say the top-3 true prediction accuracy is \(\frac{x}{y} \), then because of \(n \) common missing alerts (assuming they all fall under top-3), the new top-3 accuracy will be \(\frac{x-n}{y-n} \), and because of \(n \) rare missing alerts, the new top-3 accuracy will be \(\frac{x}{y-n} \) and clearly \(\frac{x}{y-n} > \frac{x-n}{y-n} \). So in terms of prediction performance of VLMM, it is better for IDS to miss a rare event than a more frequent event. Also if we think analytically, when rare alerts are removed, the model should make better predictions. When rare alerts are missing, for data sets with attribute 'Description', the increase in prediction accuracy is in the range of 3%-30%, for data sets with attribute 'Destination IP', the increase in prediction accuracy is in the range of 1%-6%, and for data sets with attribute 'Category', the increase in prediction accuracy is in the range of 2%-10%. When common alerts are missing, for data sets with attribute 'Description', the decrease in prediction accuracy is in the range of 3%-8%, for data sets with attribute 'Destination IP', the decrease in prediction accuracy is in the range of 1%-2%, and for data sets with attribute 'Category', the decrease in prediction accuracy is in the range of 1%-2%. Also, we can observe from Figures 5.12, 5.13, 5.14 that the change in accuracy when common alerts are
missing is similar to when random alerts are missing. This is because, usually sequences are dominated by common alerts and when we randomly remove alerts it is more probable for these random alerts to fall under common alerts. This can be observed clearly in Figures 5.15, 5.16, 5.17 that show different trials. For example, in 5.16, for the case when 25% random alerts are missing in the sequence (circular dots highlighted in light green), we can observe that for only one trial the prediction accuracy has increased, and for all other trials, the prediction accuracy has decreased similar to the case when 25% common alerts are missing (triangle dots highlighted in dark green).

From Figures 5.15, 5.16, 5.17, we can observe that the conclusion we made is consistent across all the trials and across data sets with different attributes. For example, in Figure 5.15, for the case where 15% common alerts are missing (square dots highlighted in dark red), we can observe that for all trials the prediction accuracy decreases and for the case
where 15% rare alerts are missing (circular dots highlighted in orange), we can observe that for all trials the prediction accuracy increases. We can also observe that the magnitudes of change for rare alerts missing cases are higher compared to random and common alerts missing cases. This is because it is more probable for random alerts to have a combination of common and rare alerts, and since one will try to bring down the accuracy and the other will try to bring it up, the net change might not be too large for most of the cases.

For all rare alerts missing scenarios, we can observe that the change in prediction accuracy is proportional to the percentage of missing alerts. Since $\frac{x}{(y - n)}$ increases with n, the change also increases with n. In some cases for rare alerts missing scenarios, like in 'Destination IP-3' and 'Category-3', note that the graphs do not show beyond the 25% value. This is because these data sets have only 9 and 11 symbols respectively. If we try to remove more alerts beyond this point, we will be removing common alerts and not rare
Figure 5.17: Change in Prediction Accuracy for 'Category' data sets based on occurrence for different trials.

We can observe from Figure 5.18 that usually the change in prediction accuracy for rare alerts missing scenarios is less for sequences with less symbol space and more for sequences with more symbols space. In our case, 'Destination IP' and 'Category' data sets have smaller change in prediction accuracy than that of 'Description' data sets. This is because of their higher true prediction accuracies. For example 'Destination IP-1' data set has a top-3 true prediction accuracy of 87.2%, whereas 'Description-1' has a top-3 true prediction accuracy of 41.3%. It is obvious that no matter what the percentage of missing alerts is, 'Destination IP-1' cannot result in a change of more than 12.8%. However for one data set that has 69 symbols (Description-3), the change is comparable to the data set with 12 symbols (Category-1). For sequences with symbol space of around 9-12 symbols, the increase in prediction accuracy is in the range of 1%-11%, and for sequences with
symbol space of around 63-77 symbols, the increase in prediction accuracy is in the range of 2%-19%.
5.3 Summary of results

- For true data (without any missing alerts), VLMM and CSSR give comparable results, with VLMM being a simpler process.

- For analysis based on position, for small percentages of missed alerts (about 5%-10%), the decrease in prediction accuracy is very small in the range of 0.5%-1%, irrespective of whether the alerts are missing at the beginning or middle or end or in the whole sequence.

- When the percentage of missing alerts increases to more than 10%, the prediction accuracy is worse (reduction is in the range of 4%-7%) when the alerts are missing in the whole sequence as opposed to missing at the beginning or middle or end of the sequence (reduction is in the range of 0-3%). This could be likely because many sequences will have the alerts with higher weights dispersed throughout the sequence than only at the beginning or middle or end.

- When there are common alerts missing, the prediction accuracy decreases and when there are rare alerts missing, the prediction accuracy increases. When rare alerts are missing, for data sets with attribute 'Description’, the increase in prediction accuracy is in the range of 3%-30%, for data sets with attribute 'Destination IP’, the increase in prediction accuracy is in the range of 1%-6%, and for data sets with attribute ‘Category’, the increase in prediction accuracy is in the range of 2%-10%. When common alerts are missing, for data sets with attribute 'Description’, the decrease in prediction accuracy is in the range of 3%-8%, for data sets with attribute ‘Destination IP’, the decrease in prediction accuracy is in the range of 1%-2%, and for data sets with attribute 'Category’, the decrease in prediction accuracy is in the range of 1%-2%.

- The magnitude of change in prediction accuracy is more when rare alerts are missing than when common or random alerts are missing in the sequence.
The change in prediction accuracy is less for sequences with small symbol space and more for sequences with large symbols space. For sequences with symbol space of around 9-12 symbols, the increase in prediction accuracy is in the range of 1%-11%, and for sequences with symbol space of around 63-77 symbols, the increase in prediction accuracy is in the range of 2%-19%.

5.4 Error Analysis on CSSR

In this research, error analysis is done using VLMM. This work can be expanded to do a similar analysis using CSSR algorithm.

As mentioned earlier in 4.5, the error probability of CSSR can be defined as:

\[q(t,n) \leq 2^{k+1} \left(\frac{k^L+1 - 1}{k - 1} \right) e^{-8Np^*t^2} \] (5.1)

This equation approaches to zero for large values of \(N \), the length of the sequence. In other words, by taking \(N \) large enough, the probability that the correct states are inferred becomes arbitrarily close to 1. According to [41], if the number of causal states is finite and \(L_{max} \) is sufficiently large, the probability that the states estimated are not the causal states becomes arbitrarily small, for sufficiently large \(N \).

Because CSSR’s performance depends on so many parameters, a similar analysis on CSSR will yield different results as compared to VLMM based on the settings. Because \(\epsilon \) machine and suffix tree are two different types of models, the effect of missed alerts on these will be different and accordingly, the change in prediction accuracies will be different. For example, if \(L_{max} \) is too large relative to \(N \), the probabilities of long strings will not be consistently estimated, so CSSR tends to produce too many states, which might result in erroneous prediction accuracies. Since CSSR relies heavily on the length of the sequence, the change in prediction accuracies might be worse for higher percentages of missed alerts compared to VLMM. The percentage of the missing alerts and the parameters selected
might result in CSSR not having enough data, in which case CSSR will not reconstruct the true model.
Chapter 6

Conclusion and Future Work

6.1 Conclusions

One of the contributions of this thesis is the use of a state-based model called Causal-State Splitting Reconstruction (CSSR) in the context of projecting cyber attacks and its comparison against a context-based model called Variable Length Markov Model (VLMM). Because other state-based models start by producing the most complex possible null model of the process, and then trim it by merging, whereas CSSR starts off with a zero-complexity null model by putting every history in one state and then adds states only if the current set of states are not sufficient. And the causal states it produces have important predictive properties. Hence CSSR is chosen over other state-based methods like state-merging algorithms. Although CSSR, similar to VLMM, does not make any priori assumptions about the architecture of the system, it cannot exploit such information when it exists.

An important contribution of this research is the study of the effect of missed alerts on the model (VLMM) used for projecting cyber attacks, and its predictive performance. Since VLMM is simpler in terms of building the model and it does not need to have infinitely long sequences, this research used VLMM for the error analysis. With a thorough design of experiments, we have studied the effects of missing IDS alerts, by having missed alerts at different locations of the attack sequence with different rates. The experimental results suggested that the change in prediction accuracy is low when there are missed alerts in one part of sequence and higher if they are throughout the entire sequence. Also, the
prediction accuracy increases when there are rare alerts missing, and it decreases when there are common alerts missing. In addition, change in the prediction accuracy is less when the sequence has a smaller symbol space and relatively more if it has a larger symbol space. Overall, the results demonstrate the robustness and limitations of VLMM when used for cyber attack prediction. Based on such error analysis, the network analyst can infer and assess the predictive performance of VLMM model when there are missed alerts.

This research basically provides one more significant step in creating a comprehensive report to help the security analyst. This will also compliment the related work and contribute to the overall architecture of network security.

6.2 Future Work

- This research focused on studying the error analysis of missed alerts using VLMM model, but a similar analysis could also be done on any other model.

- The problem of selecting the data sets is always a major factor in testing any situational awareness tool. This could be done in two ways: testing on data from a simulated network and testing on data from a physical network. Both approaches have their own capabilities and limitations. In this work, we have used data gathered from a simulation model consisting of a simulated network. Similarly we can test on the data gathered from a real physical network as opposed to an abstract representation.

- Because of a limitation in the CSSR implementation, we have only run CSSR on data sets with less symbol space (62) for comparing it against VLMM. It would be interesting to observe its performance when there are more symbols.

- In previous works and in this work related to the field of projecting cyber attacks, a prediction is considered correct if it occurs as the next event irrespective of the time window in the future. In other words, an attack that is predicted to occur in the next
two or three events could in reality occur within the next second, or within the next hour, depending on the attacker behavior. The determination of this window could be investigated to have a better analysis report to the network analyst.

- In this analysis, we have removed the alerts assuming that the data sets from simulation model are true without any missed alerts. A similar analysis could also be done by adding alerts, assuming that the data sets from simulation model are not true.

