5-24-2006

The impact of genetic variations in bipolar disorder

Lee Edsall

Follow this and additional works at: http://scholarworks.rit.edu/theses

Recommended Citation

This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact rit.scholarworks@rit.edu.
The Impact of Genetic Variations in Bipolar Disorder

Approved: ________________________________
Thesis Advisor

Director of Bioinformatics or
Head, Department of Biological Sciences

Submitted in partial fulfillment of the requirements for the Master of Science degree
in Bioinformatics at Rochester Institute of Technology

Lee Edsall
May 2006
THESIS COMMITTEE

Advisor
Dr. Shuba Gopal, Assistant Professor, Biological Sciences, Rochester Institute of Technology

Committee Members
Dr. James Halavin, Professor, Mathematics & Statistics, Rochester Institute of Technology
Dr. Elizabeth Perry, Senior Research Administrator, College of Science, Rochester Institute of Technology
Title of thesis or dissertation: The Impact of Genetic Variations in Bipolar Disorder

Name of author: Lee Edsall
Degree: M.S.
Program: Bioinformatics
College: Science

I understand that I must submit a print copy of my thesis or dissertation to the RIT Archives, per current RIT guidelines for the completion of my degree. I hereby grant to the Rochester Institute of Technology and its agents the non-exclusive license to archive and make accessible my thesis or dissertation in whole or in part in all forms of media in perpetuity. I retain all other ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Print Reproduction Permission Granted:

I, Lee Edsall, hereby grant permission to the Rochester Institute Technology to reproduce my print thesis or dissertation in whole or in part. Any reproduction will not be for commercial use or profit.

Signature of Author: _____________________________ Date: ____________

Inclusion in the RIT Digital Media Library Electronic Thesis & Dissertation (ETD) Archive

I, Lee Edsall, additionally grant to the Rochester Institute of Technology Digital Media Library (RIT DML) the non-exclusive license to archive and provide electronic access to my thesis or dissertation in whole or in part in all forms of media in perpetuity.

I understand that my work, in addition to its bibliographic record and abstract, will be available to the world-wide community of scholars and researchers through the RIT DML. I retain all other ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I am aware that the Rochester Institute of Technology does not require registration of copyright for ETDs.

I hereby certify that, if appropriate, I have obtained and attached written permission statements from the owners of each third party copyrighted matter to be included in my thesis or dissertation. I certify that the version I submitted is the same as that approved by my committee.

Signature of Author: _____________________________ Date: ____________
ABSTRACT

Bipolar disorder is a devastating illness that affects the quality of life for millions of Americans. The current diagnostic system depends on an extremely subjective interview and can frequently result in an incorrect diagnosis and ineffective treatment. An improved, biologically based, classification system requires a thorough understanding of the genetic basis of bipolar disorder. This understanding has been hampered by the difficulty in diagnosing patients and by the heterogeneity of the illness. The number of linkage analysis studies and lack of organization have also added to the challenges involved in understanding the biological basis of the disorder.

The Bipolar Disorder Genetics Database web application, located at http://www.bipolardisordergenetics.com, resolves the issue of organization, allowing researchers to quickly identify promising chromosomal regions that merit further investigation which will lead to understanding the functions of the affected genes and the impact of the various mutations. Understanding these functions will lead to significant advances in the areas of diagnosis and treatment.

The intuitive web-based interface is a novel approach to creating a big picture view of our existing knowledge. The application will become the premiere resource for researchers and will assist them as they make significant advances in treating this illness.
ACKNOWLEDGMENTS

Thesis Advisor
Dr. Shuba Gopal, Rochester Institute of Technology

Committee Members
Dr. James Halavin, Rochester Institute of Technology
Dr. Elizabeth Perry, Rochester Institute of Technology

Scientific Feedback
Dr. Terry Gaasterland, Scripps Institution of Oceanography, University of California, San Diego
Ms. Olga Likhodi, Centre for Addiction and Mental Health, University of Toronto

Additional Feedback
Mrs. Virginia Edsall
Ms. Sue Ann Tongue
TABLE OF CONTENTS

THESIS COMMITTEE ..ii

THESIS/DISSERATION AUTHOR PERMISSION STATEMENTiii

ABSTRACT ..iv

LIST OF FIGURES ...v

ACKNOWLEDGMENTS ...vi

TABLE OF CONTENTS ..vii

INTRODUCTION ..1

BACKGROUND ..1

FUTURE RESEARCH AND BENEFITS ...6

THE ROLE OF THE BIPOLAR DISORDER GENETICS DATABASE8

METHODS ..9

PUBMED SEARCH ...9

DATABASE DEVELOPMENT ..10

HOSTING ...13

SITE DEVELOPMENT ...13

USER TESTING ..15

SITE PROMOTION ..15

RESULTS ..16

TARGET AUDIENCE ...18

SITE LAYOUT AND PAGE STRUCTURE ..18

SEARCH FUNCTIONALITY ...19
INTRODUCTION

Background

Bipolar disorder, an illness that affects an estimated 2.3 million American adults,\(^1\) has been characterized in many different ways. The original diagnosis of “manic-depressive insanity,”\(^2\) described by Emil Kraepelin in his 1899 edition of *Clinical Psychiatry*, has evolved through the years to the current classification system of four subtypes: Bipolar I Disorder, Bipolar II Disorder, Cyclothymic Disorder and Bipolar Disorder Not Otherwise Specified.\(^3\) This evolution and elucidation of subtypes rests on the realization that not all cases of the illness are the same. These subtypes are not based on the underlying biology of the illness but rather on the consensus opinion of mental health professionals and have changed significantly over the years. These subtypes will continue to change until there is a biological basis for the diagnoses.

The primary mood disturbance in Bipolar I Disorder is either mania or a mixed episode and it is usually accompanied by episodes of depression.\(^3\) The primary mood disturbance in Bipolar II disorder is depression and it is accompanied by at least one episode of a mild form of mania called hypomania.\(^3\) An individual with Cyclothymic Disorder cycles between periods of hypomanic symptoms and periods of depressive symptoms.\(^3\) The hypomanic symptoms are never severe enough to be considered a manic episode and the depressive symptoms are never severe enough to be considered a depressive episode.\(^3\) Bipolar Disorder Not Otherwise Specified captures all of the other variants of the disease that do not fit neatly into one of the above categories.\(^3\)

A major depressive episode lasts at least two weeks.\(^3\) The major symptom is either
a depressed mood or a loss of enjoyment in activities nearly every day.3 An individual also needs to have at least four other symptoms.3 Three of the possible symptoms involve either an increase or a decrease in normal functioning. They are a change in appetite, a change in sleeping patterns and a change in the speed of physical movements.3 Other possible symptoms include fatigue, feeling guilty or worthless, poor concentration and thoughts of death or suicide.3

A hypothetical example of someone suffering from a major depressive episode is a college student named Frieda. She constantly feels exhausted even though she sleeps for nearly 14 hours every day. She skips her classes more times than she attends them and spends most of her time staring out her dorm room window because nothing seems interesting anymore. She rarely goes to the dining hall to eat since she has almost no appetite. Her homework assignments have piled up and she can never seem to get more than a few pages of reading done before her mind wanders. When her friends ask her what’s wrong all she can say is she feels down because she doesn’t know any other way to explain it.

A manic episode lasts at least one week and consists of an abnormally elevated mood with at least three other symptoms.3 Probably the most noticeable symptoms are a decreased need for sleep, being unusually talkative and having an inflated self-esteem.3 The other possible symptoms are racing thoughts, being easily distracted, an increase in activity and an excessive involvement in activities that are enjoyable but could result in serious consequences.3

A hypothetical example of someone suffering from a manic episode is a grocery store cashier named Fred. Fred feels like he is on top of the world and can do anything. Ever since he realized he needs only four hours of sleep a night he’s been incredibly
productive. He started writing three different novels, partially assembled six jigsaw puzzles and redesigned the layout of the grocery store. He showed the plans to the store manager who seemed annoyed rather than interested. Fred decided the manager was missing a golden opportunity so he quit his job to open his own store. He then went on a large shopping spree to celebrate the success he knew was just around the corner.

A hypomanic episode lasts at least four days and, with the exception of the mood disturbance, has the same possible symptoms as a manic episode. Where as in a manic episode the mood is abnormally elevated, in a hypomanic episode the mood is only persistently elevated. A mixed episode occurs when an individual has symptoms of both a major depressive episode and a manic episode nearly every day for at least a week.

Currently, a patient afflicted with bipolar disorder is diagnosed based on the displayed symptoms. While blood tests and physical exams can be used to rule out other illnesses with similar symptoms, there are no medical tests that can diagnose bipolar disorder. The diagnosis is based on an interview with the patient and, if possible, input from the patient's friends and family members. The focus of the interview is to review the list of possible symptoms with the diagnosis dependent on the answers. Although this subjective method of diagnosis is inherently flawed, unfortunately it is the best method available.

An accurate diagnosis depends on the patient's recognition and recollection of symptoms along with the physician’s knowledge and experience. Communication issues, especially if the patient and the physician do not speak the same primary language, can lead to confusion about the symptoms. One of the biggest challenges
is a direct result of the cyclic nature of the illness. If a patient with bipolar disorder has symptoms of depression and either hasn't experienced a manic or hypomanic episode, or doesn't recall having experienced one, an incorrect diagnosis of unipolar depression can be made.

Treatment decisions are equally difficult with medication choices largely dependent on the physician's knowledge and experience. In many cases, the choice of medication is based on what works for other people. A small number of very fortunate patients will respond to the first medication tried and start to experience relief from symptoms within two months. For many of the patients, this trial and error method of medication selection will last much longer since most of the medications take up to two months to be effective. For some patients, the choice of medication can make the illness worse. Some individuals experience a manic episode as a result of taking certain antidepressants. While this information might be widely known among researchers and psychiatrists, it’s possible that primary care physicians are unaware of the danger. This risk to patients will continue to increase as more and more of them seek treatment from a primary care physician instead of a psychiatrist. A primary care physician is also unlikely to be able to provide the same level of follow-up care as a psychiatrist.

Years of research, most notably homozygous twin studies, have lead to the conclusion that there are genetic and environmental components to bipolar disorder. The search for the genes involved has been both encouraging and discouraging with replication studies failing to validate earlier promising results. Bipolar disorder is a complex disease that results from interactions between an unknown number of genes and the environment. How many mutations are needed? Are there some mutations more potent than others? How much of an influence does the
environment have? Does the amount of environmental impact required vary depending on the genes affected? Is there a simple "on or off" threshold or does the severity of the illness increase as the number of mutations increase? Questions like these need to be answered in order to aid the research but can't be answered without the results of the research.

Linkage analysis studies, the best method for understanding the biological causes of bipolar disorder, are used to isolate chromosomal regions of susceptibility and the genes those regions contain. The primary result of a linkage analysis study is a set of LOD scores. LOD scores, short for “logarithm of odds”, are a ratio of the likelihood that two sections of a chromosome are inherited together. If two sections of a chromosome appear together more often in people with a particular disease compared to people without that disease then it’s possible those chromosomal locations contain susceptibility genes. Larger scores indicate a higher likelihood with values greater than three considered significant.

There are three commonly used types of linkage analysis studies. A Parametric Analysis study type requires that researchers specify parameters regarding mode of inheritance, allele frequency and penetrance. Penetrance is the probability that a particular mutation will result in a person having bipolar disorder. A Parametric Analysis study is powerful but incorrectly specifying a parameter could result in flawed results. An Affected Sibling Pair study calculates the number of alleles shared between two siblings that have a particular disorder and compares that to the number that would result from a completely random assortment. One of the biggest advantages of the Affected Sibling Pair study type is that researchers don't have to specify the parameters required by a Parametric Analysis study type. Nonparametric Analysis is another study type that doesn't require researchers to
specify parameters. The primary disadvantage of a Nonparametric Analysis is the lack of power to detect linkage compared to the other study types.

Schizophrenia, another devastating mental illness, is also believed to have genetic and environmental causes. Currently classified as two separate disorders, schizophrenia and bipolar disorder have a common set of symptoms such as hallucinations, a change in sleeping patterns and diminished concentration. In fact, diagnosis of one subtype of schizophrenia, schizoaffective disorder, requires that the individual have an episode of mania or depression. Linkage analysis studies of schizophrenia have identified chromosomal regions of susceptibility that have also been identified as regions of susceptibility for bipolar disorder. Furthermore, many of the linkage analysis studies of bipolar disorder include individuals who have been diagnosed as having schizophrenia. The common set of symptoms, combined with the overlapping regions of susceptibility, have led some researchers to believe that the illnesses are part of one broader spectrum rather than two distinct disorders.

Future Research and Benefits

Conducting linkage analysis studies to identify the genes responsible for bipolar disorder is the first step in finding improved methods of diagnosis and treatment. Linkage analysis studies are currently indexed in PubMed, a repository of articles from all of the sciences. The articles are not organized and the search functionality is not robust enough to meet the needs of psychiatric genetics researchers. The Bipolar Disorder Genetics Database web application, located at http://www.bipolardisordergenetics.com, focuses solely on linkage analysis studies and intelligently organizes them. A researcher can use the application to identify studies in a matter of minutes instead of spending days reading abstracts in PubMed.
The next, and perhaps most critical, step is to understand the functions of the affected genes and the impact of the various mutations. Understanding these functions will lead to significant advances in the areas of diagnosis and treatment. Do certain mutations affect different copies of the same genes? Are certain mutations silent with no biological impact? What is the impact of a different set of genes being mutated in different individuals? Do the different genes all perform the same function or are they different functions? Is this difference in function the reason why the symptoms vary so much from individual to individual?

Understanding the functions will allow for a more granular classification system and a decrease in the amount of heterogeneity in the illness and symptoms. Patients will be more easily diagnosed and the accuracy of the initial diagnosis will improve. The long term ambitious goal is an objective diagnostic tool that does not rely on the symptoms, patient or physician. The importance of an early accurate diagnosis can’t be overstated since “the correct treatment at the first onset of symptoms may reduce the patient’s degree of lifelong suffering.”

An improved classification system will increase the effectiveness of the genetic research by eliminating much of the statistical noise that results from including a heterogeneous mix of illnesses. These advances in genetic research will further improve classification, continuing the cycle of advances in one area fueling advances in another.

Pharmaceutical researchers will also benefit and be able to more narrowly focus on the affected functions when creating the next generation of medications. These new medications will be more targeted and have fewer side effects, resulting in an
improved quality of life for patients. It will also decrease the number of patients who don’t take medication because they feel the side effects are worse than the illness.

The Role of the Bipolar Disorder Genetics Database

The human curated Bipolar Disorder Genetics Database includes only the papers containing linkage analysis studies. The details extracted from these papers and included in the database will assist a researcher in deciding whether a study is relevant to his or her research. If it is then the paper can be obtained from the publisher’s website. If it isn’t then the researcher can set it aside and focus on the studies that are.

This application will become a primary resource for researchers studying the genetics of bipolar disorder. Database population will be a continuous endeavor and future enhancements will include incorporating gene and function information, a full-text search, a glossary and a reference section with recommendations about books and tutorials.
METHODS

PubMed Search
The first phase of the thesis involved searching through PubMed for all papers that include linkage analysis studies of bipolar disorder (see Figure 1). The search criteria were all papers that contained the term “Bipolar Disorder” or the term “Manic Depression”. This search was initially performed on November 28, 2005 and resulted in 20,008 records ordered chronologically. The search was performed multiple times over the course of the next few weeks with an increasing number of records. The final search was performed on January 6, 2006 and resulted in 21,016 records. Of those records, 16,006 were from papers published between 1980 and the present. I read the abstracts of those papers and identified 1,178 that referred to linkage analysis studies.

I then re-reviewed the abstracts published from 2000 to the present and identified 175 papers that were either reviews or positive findings of a linkage analysis study. Publication dates from 2000 to the present were selected partly to limit the results to a reasonable number and partly because that is when the current classification system was approved. Of those 175 papers, I identified five to serve as a pilot project by highlighting the range of features available in the web application.
Database Development

The database was originally developed in MySQL on a Unix server located in the Bioinformatics department. The database is comprised of 31 normalized tables as shown in Figure 2 and described in Appendix A.
Figure 2 - Database Schema
There are three main tables used by the application. tblPaper (in red in Figure 2) contains details about the paper, tblStudyDetails (in green in Figure 2) contains details about the studies and tblLODScores (in blue in Figure 2) contains details about the linkage analysis LOD scores. A study was defined as a set of parameters under which the LOD scores were calculated. Since multiple studies can be discussed in one paper, the decision was made to create one table to contain study details and one table to contain paper details.

Tables tblChromosomes and tblPaperChromosomes contain details about the chromosomes studied. Tables tblGenes and tblPaperChromosomesGenes contain details about the genes studied.

Tables tblAuthors and tblPaperAuthors contain details about the authors of the papers. Tables tblSoftware and tblPaperSoftware contain details about the software packages used by the authors. Details about the journals in which the papers were published are contained in tblJournals.

Details about the populations being studied are contained in tables tblPopulations and tblPaperPopulations. Details about the ethnicities being studied are contained in tables tblEthnicity, tblPaperEthnicity and tblPopulationsEthnicity.

Tables tblDiagnosis and tblPaperDiagnosis contain details about the diagnoses studied in the papers. Tables tblDiagnosticGroups, tblDiagnosticGroupsDiagnosis and tblPedigrees contain details about the diagnostic groups used in the studies.

Table tblStatisticalAnalysisType contains the possible study types. Table tblDiagnosticTool contains the possible diagnostic tools.
Feedback from site visitors is contained in two tables. `tblSuggestionsApplication` contains suggestions about the application and `tblSuggestionsPaper` contains suggestions for papers to index.

Tables `tblStudyDetailsNotes` and `tblPaperNotes` contain miscellaneous information about the study and the paper respectively.

Three tables are used for administrative purposes. Table `tblPaperUpdates` is used to record changes to any of the information contained in the database. Table `tblSearchesPerformed` is used to capture details about searches performed by users. Table `tblMailingList` is used to store the e-mail addresses of all users who want to receive notification when new papers are indexed.

After creating the database, I read the five papers identified during the PubMed search, extracted the relevant details and entered them into the database using the command-line MySQL client.

Hosting
I purchased the domain `www.bipolardisordergenetics.com` through the GoDaddy domain name registration company. I am using GoDaddy’s Windows servers to host the MySQL database and the website. The website uses Microsoft’s Active Server Pages technology and therefore must reside on a Windows server. I moved the database from the Bioinformatics server to the GoDaddy server in order to keep response time at an acceptable level.

Site Development
The web pages are primarily a combination of the HyperText Markup Language (HTML) and Active Server Pages (ASP) programming languages. The ASP code
The code was developed using a text editor (TextEdit from Apple Computer, Inc) on an Apple iBook G4. Image manipulation was done using a graphics program (Adobe Photoshop CS from Adobe Systems Incorporated). The files were transferred to the Windows server using an FTP client (CuteFTP Mac by GlobalSCAPE Texas, LP). The pages were viewed with the Firefox Internet browser on the iBook.
User Testing
The site was tested on multiple browser and platform combinations to ensure compatibility. The testing found that the site works well on all of the common browser and platform configurations. Users with a screen resolution of 800 x 600 will find it necessary to scroll from left to right. The online tool Dr. HTML (by Imageware, Inc., http://www2.imageware.com/RxHTML/) was used to check the code for errors. Six individuals, two of whom have psychiatric research experience, performed additional testing. Their feedback, combined with the results of the testing and Dr. HTML analysis, was incorporated into the site.

Site Promotion
The website was submitted to the Google search engine as part of a search engine optimization plan. The plan also includes adding a listing in Yahoo!, MSN and several other popular search engines. Additionally, a manuscript is being written for submission to the peer-reviewed journal Neuropsychiatric Genetics.
The primary result of this thesis is a database driven web application that will be a central repository of linkage analysis studies. The user-friendly interface will allow researchers to quickly and easily find relevant studies without having to read through thousands of abstracts.

Phil is a hypothetical researcher investigating possible bipolar disorder susceptibility regions on chromosome 8. Figure 3 shows how he uses the Bipolar Disorder Genetics Database web application to quickly identify papers that contain positive results of linkage analysis studies on chromosome 8. He uses the “Search By Chromosome” feature and retrieves four results. For each result, he views the study and paper details. On the study details page he sees the chromosomal regions, number of subjects, subjects’ diagnoses, population and ethnicity. He then goes to the paper details page and reads the abstract. Two of the papers are relevant to his research so, using the citation information and the link from the paper details page, he goes to the publishers’ websites and purchases them.
Figure 3 - Searching By Chromosome
Target Audience

The example of Phil searching by chromosome 8 is not merely hypothetical but is also indicative of the types of searches that will be performed. The primary users of the Bipolar Disorder Genetics Database web application will be researchers in the field of psychiatric genetics studying bipolar disorder. Researchers studying the genetics of schizophrenia will also benefit from using the application because they will be able to search for studies that included individuals with schizophrenia. Researchers can use the site to identify chromosomal regions to investigate prior to undertaking initial linkage analysis studies. Researchers can also identify studies they want to try and replicate in order to verify results. Researchers who have already completed a linkage analysis study can use the application to identify similar studies for comparison of results.

Site Layout and Page Structure

The site is divided into seven main sections and three minor sections. The main sections are listed in the navigation pane as shown in Figure 4. The minor sections are listed in the footer pane (see Figure 4). The page structure is divided into four panes using include files and tables (see Figure 4). The header, navigation and footer are identical on every page.
Search Functionality

The main Search page, accessed by clicking the Search link in the navigation pane, displays links to ten search forms, as shown in Figure 5. Nine of the forms allow the user to search by only one characteristic and are categorized as “simple searches”. The results page for each form displays the search terms, number of results, chromosomal region, LOD score range and a link to the study details (see Figure 6). The tenth form allows a user to search by a combination of chromosome, population, ethnicity and diagnosis. The results page displays the search terms, number of results, population, ethnicity, diagnosis, chromosomal region, LOD score range and a link to the study details (see Figure 7).
Figure 5 - Main Search Page

Figure 6 - Simple Search Results
All Papers and All Scores Pages
The All Papers and All Scores pages allow users to quickly see an overview of the information contained in the database. The All Papers page displays the paper title, publication year and a link to the paper details (see Figure 8). The All Scores page displays the population, ethnicity, diagnosis, chromosomal region, LOD score range and a link to the study details (see Figure 9).
Figure 8 - All Papers

Figure 9 - All Scores
Study and Paper Details

Every search result page and the All Scores page contain links to the study details page. The study details page is divided into categories about the study, the subjects, the genotyping and additional information (see Figure 10). The page also contains the paper’s citation and a link to the paper details.

The study category contains the type of study and the chromosomal regions investigated. The rest of the information in the study category depends on the type of study. For an Affected Sibling Pair (ASP) study, the number of ASPs is displayed. For a Parametric Analysis study, the allele frequencies and penetrance values are displayed.

The subjects category displays the diagnostic tool used, the kappa score, onset age, interview age, number of pedigrees, ethnicities and populations. The kappa score is a measure of how well multiple doctors agree on the diagnoses of the subjects in the study. The values range from zero to one with higher scores better than lower ones. The category also contains information about the diagnoses and diagnostic groups being studied.

The genotyping category contains the number of individuals, number of markers and marker density.

The additional information category contains the names of the software programs used and all miscellaneous notes. Clicking on the name of a software program will load the program’s website in a separate browser window.
Figure 10 - Study Details
The study details page and the All Papers page link to the paper details page. The paper details page displays the paper title, publication year, journal, PubMed ID, authors, abstract and citation (see Figure 11). The page also contains links to the study details. Clicking on the journal name will open the journal’s website in a new browser window. Clicking on the PubMed ID will open the PubMed entry in a new browser window.

![Figure 11 - Paper Details](image-url)
User Feedback

There are three forms that allow users to provide feedback and two forms relating to a mailing list. Two forms allow users to make suggestions regarding the application and papers to index. The two mailing list forms allow users to subscribe and unsubscribe. When new papers are indexed in the database a notification message is sent to all users on the mailing list. A general-purpose contact form is provided for all other types of comments and inquiries.

The Bipolar Disorder Genetics Database is a fully functional research tool. The application allows users to search for information in many different ways. The interface is intuitive and, because it is web-based, requires no installation or maintenance by the user.
DISCUSSION

The proposal for this thesis outlined several goals including identifying all papers containing linkage study information published since 2000 and developing an application publicly available to the research community. Both of those goals were met and provide a valuable tool for psychiatric researchers as well as a strong foundation for future application enhancements.

Prior to the development of this application there were no tools available to provide a high-level overview of linkage analysis study results. Analysis of the studies required a lengthy and cumbersome manual review of the literature. This laborious process had to be repeated by every researcher interested in the results. The human curated Bipolar Disorder Genetics Database eliminates that duplication of effort.

The identification of all relevant papers allows researchers to focus on the most promising chromosomal regions and proceed to the next phase of understanding the biological basis of bipolar disorder, the identification of genes. Once the genes have been identified, their functions can be determined, a significant step in finding improved methods of diagnosis and treatment.

As one indicator of how the community views the importance of a user-friendly application, more than one journal agreed to publish a manuscript describing it. As a second indicator, a presentation to the researchers at the Centre for Addiction and Mental Health in Toronto was enthusiastically received.
Content Considerations

During user testing the amount of content provided by the application was reviewed to ensure that it does not infringe on the copyright of the authors and publishers of the papers. The content was also reviewed to ensure that users would not be able to obtain enough information from the database to make reading the paper unnecessary. Since most of the articles are published in journals that require a subscription, allowing users to circumvent the subscription process would be unfair to the publishers. After consulting with several sources, including psychiatric researchers and members of Rochester Institute of Technology’s Publishing and Scholarship Support Center, several changes were made to the application.

The main concern was that displaying all of the LOD scores, a major component of the study, could be interpreted as plagiarizing proprietary information. Originally the specific values were displayed and because these were actual data it could be copyright infringement. Two changes were made to address this concern. The first was to change the way LOD scores are displayed in the search results. Instead of displaying the actual data, the scores are now displayed as one of the following ranges: 0.00 – 0.99, 1.00 – 1.99, 2.00 – 2.99 and >= 3.00. These ranges provide enough information to allow the user to determine if the scores are significant enough to warrant further review. Displaying ranges instead of actual data protects the author’s work without reducing the user experience. The second change was the removal of the page allowing users explicit access to all of the LOD scores published in a particular paper.

In addition, the paper’s citation was included in the study details page and the paper details page. Furthermore, a disclaimer at the bottom of every page states “The owner of this site respects the rights of the individuals who published the indexed
papers. The owner apologizes if there is any accidental copyright violation and will remove the indexed paper upon request.” These changes resulted in an application that protects the rights of authors and publishers while still providing a venue for highlighting relevant peer reviewed literature without revealing proprietary information.

Future Enhancements

There are several enhancements planned for the application. Inclusion of a full-text search will allow a researcher to easily search all of the content in the database for specific items not listed on any of the current search forms. A glossary and recommendations on books and tutorials will help researchers who are new to the field. Creation of an administrative interface will simplify entering paper information, allowing that function to be turned over to other individuals. The last planned enhancement will benefit individuals with bipolar disorder and their family members. Since it is likely that non-researchers may be directed to the site by a search engine, a section will be added that focuses on their needs. The section will contain information about online resources, mental health organizations and book recommendations. These enhancements, an ongoing project over the next few years, will add to the application’s importance and make it one of the premiere tools in the field. The application is fully functional and will be a valuable resource to the community.

The focus of this thesis was to create a user-friendly web application that would serve as an organized repository of linkage analysis study information. By identifying relevant research, creating a database and developing the application, I created a tool to allow researchers to spend less time getting linkage analysis study results and more time interpreting them.
CONCLUSIONS

Bipolar Disorder is a devastating mental illness that affects an estimated 2.3 million American adults\(^1\). Interpretation of linkage analysis studies of the illness is the best hope for improved diagnosis and treatment by allowing researchers to identify the biological causes. This interpretation has suffered from the lack of organization of linkage analysis studies because there is no central repository specifically designed for linkage analysis studies of bipolar disorder. Without a central repository, researchers are unable to quickly and easily locate relevant papers.

The Bipolar Disorder Genetics Database web application, located at http://www.bipolardisordergenetics.com, is an intuitive user-friendly central repository that will allow researchers to quickly and easily search peer-reviewed literature for relevant studies. Using the application will allow researchers to spend less time getting the results and more time interpreting them.
REFERENCES

APPENDIX A – DATABASE DEFINITION

tblStudyDetails
Table comments: Contains details about the studies

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tblStudyDetails_pk</td>
<td>Primary Key</td>
</tr>
<tr>
<td>tblStudyDetails_fk_tblPaper</td>
<td>Foreign Key - tblPaper</td>
</tr>
<tr>
<td>tblStudyDetails_fk_tblDiagnosticTool</td>
<td>Foreign Key - tblDiagnosticTool</td>
</tr>
<tr>
<td>tblStudyDetails_fk_tblStatisticalAnalysisType</td>
<td>Foreign Key - tblStatisticalAnalysisType</td>
</tr>
<tr>
<td>tblStudyDetails_onsetAge</td>
<td>Onset Age</td>
</tr>
<tr>
<td>tblStudyDetails_interviewAge</td>
<td>Interview Age</td>
</tr>
<tr>
<td>tblStudyDetails_kappaScore</td>
<td>Kappa Score</td>
</tr>
<tr>
<td>tblStudyDetails_markerDensity</td>
<td>Genotype Marker Density</td>
</tr>
<tr>
<td>tblStudyDetails_numberOfMarkersGenotyped</td>
<td>Number of Markers Genotyped</td>
</tr>
<tr>
<td>tblStudyDetails_numberOfIndividualsGenotyped</td>
<td>Number of Individuals Genotyped</td>
</tr>
<tr>
<td>tblStudyDetails_numberOfPedigrees</td>
<td>Number of Pedigrees Studied</td>
</tr>
<tr>
<td>tblStudyDetails_numberOfASPs</td>
<td>Number of Affected Sibling Pairs Studied</td>
</tr>
<tr>
<td>tblStudyDetails_dominantAlleleFrequency</td>
<td>Allele Frequency in the Dominant Model</td>
</tr>
<tr>
<td>tblStudyDetails_dominantPenetranceCarriers</td>
<td>Penetrance of Carriers in the Dominant Model</td>
</tr>
<tr>
<td>tblStudyDetails_dominantPenetranceNoncarriers</td>
<td>Penetrance of Noncarriers in the Dominant Model</td>
</tr>
<tr>
<td>tblStudyDetails_recessiveAlleleFrequency</td>
<td>Allele Frequency in the Recessive Model</td>
</tr>
<tr>
<td>tblStudyDetails_recessivePenetranceCarriers</td>
<td>Penetrance of Carriers in the Recessive Model</td>
</tr>
<tr>
<td>tblStudyDetails_recessivePenetranceNoncarriers</td>
<td>Penetrance of Noncarriers in the Recessive Model</td>
</tr>
</tbody>
</table>

tblDiagnosticTool
Table comments: Contains diagnostic tools used to diagnose subjects

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tblDiagnosticTool_pk</td>
<td>Primary Key</td>
</tr>
<tr>
<td>tblDiagnosticTool_name</td>
<td>Name of the Diagnostic Tool</td>
</tr>
</tbody>
</table>

tblStatisticalAnalysisType
Table comments: Contains the study types used

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tblStatisticalAnalysisType_pk</td>
<td>Primary Key</td>
</tr>
<tr>
<td>tblStatisticalAnalysisType_name</td>
<td>Name of the Study Type</td>
</tr>
</tbody>
</table>

Table tblStudyDetails contains fields for a foreign key to the tblPaper table and for 16 parameters. Three of the fields relate to genotyping and contain the number of individuals genotyped, the number of markers genotyped and the marker density. Five fields relate to the subjects and contain the age of onset, age at the interview,
number of pedigrees, the kappa score and a foreign key to tblDiagnosticTool. Table tblDiagnosticTool contains the different possible diagnostic tools, such as the Diagnostic Interview for Genetic Studies (DIGS). The remaining eight fields contain details about the study model. The first field is a foreign key to tblStatisticalAnalysisType, a table that contains the different possible study types. The second field, used only when the study type is Affected Sibling Pair, contains the number of Affected Sibling Pairs. Six fields are used only for the Parametric Analysis study type. There are two fields for allele frequency, one for a dominant model of inheritance and one for a recessive model. The penetrance values are contained in four fields and are carrier penetrance in the dominant model, noncarrier penetrance in the dominant model, carrier penetrance in the recessive model and noncarrier penetrance in the recessive model.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tblPaper_pk</td>
<td>Primary Key</td>
</tr>
<tr>
<td>tblPaper_fk_tblJournals</td>
<td>Foreign Key - tblJournals</td>
</tr>
<tr>
<td>tblPaper_publicationYear</td>
<td>Year Published</td>
</tr>
<tr>
<td>tblPaper_pages</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>tblPaper_PMID</td>
<td>PubMed ID</td>
</tr>
<tr>
<td>tblPaper_abstract</td>
<td>Abstract</td>
</tr>
<tr>
<td>tblPaper_enteredBy</td>
<td>Entered By</td>
</tr>
<tr>
<td>tblPaper_dateEntered</td>
<td>Date Entered</td>
</tr>
<tr>
<td>tblPaper_title</td>
<td>Paper Title</td>
</tr>
<tr>
<td>tblPaper_citation</td>
<td>Paper Citation</td>
</tr>
</tbody>
</table>

Table tblPaper contains seven fields for details about the paper, a field for the name of the person who entered the information and a field for the date the information was entered. The paper details include the title, abstract, PubMed ID, citation and publication year. The table also contains the paper’s page numbers and a foreign key to tblJournals, a table that contains information about journals.
Table tblLODScores contains 12 fields for details about the linkage analysis study results. One field is the foreign key to tblStudyDetails to link the score information with the appropriate study. Three fields contain the score information. One contains the LOD score value, one contains the Nonparametric Linkage (NPL) value and one contains the probability value (p value). The NPL value is entered only if the study type is Nonparametric Linkage. Four fields are used to contain details about the location within the genome. The first is a foreign key to tblPaperChromosomes, a table that contains the chromosomal regions being studied. The other three contain the marker name, the position measured in centiMorgans and the position measured in megabases. Two of the fields contain additional details about the type of analysis. The first one indicates whether the analysis is two point, comparing two markers, or multipoint, comparing multiple markers. The second, used only if the study type is Parametric Analysis, contains the type of genetic model. The remaining two fields contain details about the subjects. One is for the gender of the subjects and the other is a foreign key to tblDiagnosticGroups, a table that contains details about the diagnostic groups studied by the authors.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tblLODScores_pk</td>
<td>Primary Key</td>
</tr>
<tr>
<td>tblLODScores_fk_tblStudyDetails</td>
<td>Foreign Key - tblStudyDetails</td>
</tr>
<tr>
<td>tblLODScores_fk_tblDiagnosticGroups</td>
<td>Foreign Key - tblDiagnosticGroups</td>
</tr>
<tr>
<td>tblLODScores_fk_tblPaperChromosomes</td>
<td>Foreign Key - tblPaperChromosomes</td>
</tr>
<tr>
<td>tblLODScores_gender</td>
<td>Gender of the subjects - Male, Female or Both</td>
</tr>
<tr>
<td>tblLODScores_multipointOrTwoPoint</td>
<td>Type of Comparison - Two Point or Multipoint</td>
</tr>
<tr>
<td>tblLODScores_geneticModel</td>
<td>Type of Genetic Model Used</td>
</tr>
<tr>
<td>tblLODScores_LODScore</td>
<td>LOD Score</td>
</tr>
<tr>
<td>tblLODScores_NPLScore</td>
<td>NPL Score</td>
</tr>
<tr>
<td>tblLODScores_pValue</td>
<td>p Value for the Score</td>
</tr>
<tr>
<td>tblLODScores_marker</td>
<td>Chromosomal Marker</td>
</tr>
<tr>
<td>tblLODScores_positionCM</td>
<td>Position in centiMorgans</td>
</tr>
<tr>
<td>tblLODScores_positionMB</td>
<td>Position in Megabases</td>
</tr>
</tbody>
</table>
Table tblChromosomes contains details about all of the human chromosomes. There is a field for the number and a field for the arm. Table tblPaperChromosomes is used to associate the chromosomes to the papers that study them. The table also contains a field for the region being studied.

Table tblAuthors contains all of the authors that contributed to at least one of the indexed papers. Each individual is listed only once, regardless of how many papers he or she authored. Table tblPaperAuthors is used to associate the authors with their papers.
Table tblPopulations contains all of the populations studied in the papers, with each population listed only once. Table tblPaperPopulations is used to associate the papers with the populations.

Table tblEthnicity contains all of the ethnicities studied in the papers, with each ethnicity listed only once. Table tblPaperEthnicity is used to associate the papers with the ethnicities. Table tblPopulationsEthnicity associates a population with its ethnicity.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tblPopulations_pk</td>
<td>Primary Key</td>
</tr>
<tr>
<td>tblPopulations_name</td>
<td>Name of the Population</td>
</tr>
</tbody>
</table>

tblPaperPopulations
Table comments: Link the Paper and Populations tables

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tblPaperPopulations_pk</td>
<td>Primary Key</td>
</tr>
<tr>
<td>tblPaperPopulations_fk_tblPaper</td>
<td>Foreign Key - tblPaper</td>
</tr>
<tr>
<td>tblPaperPopulations_fk_tblPopulations</td>
<td>Foreign Key - tblPopulations</td>
</tr>
</tbody>
</table>

tblEthnicity
Table comments: Contains ethnicities of subjects

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tblEthnicity_pk</td>
<td>Primary Key</td>
</tr>
<tr>
<td>tblEthnicity_name</td>
<td>Name of the Ethnicity</td>
</tr>
</tbody>
</table>

tblPaperEthnicity
Table comments: Link the Paper and Ethnicity tables

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tblPaperEthnicity_pk</td>
<td>Primary Key</td>
</tr>
<tr>
<td>tblPaperEthnicity_fk_tblPaper</td>
<td>Foreign Key - tblPaper</td>
</tr>
<tr>
<td>tblPaperEthnicity_fk_tblEthnicity</td>
<td>Foreign Key - tblEthnicity</td>
</tr>
</tbody>
</table>

tblPopulationsEthnicity
Table comments: Link the Populations and Ethnicity tables

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tblPopulationsEthnicity_pk</td>
<td>Primary Key</td>
</tr>
<tr>
<td>tblPopulationsEthnicity_fk_tblPopulations</td>
<td>Foreign Key - tblPopulations</td>
</tr>
<tr>
<td>tblPopulationsEthnicity_fk_tblEthnicity</td>
<td>外国关键字 - tblEthnicity</td>
</tr>
</tbody>
</table>
Table tblSoftware contains details about software mentioned in the papers. It contains a field for the software title and a field for the URL to the software’s website. Table tblPaperSoftware associates the papers with the software.

Table tblJournals contains details about the journals in which the papers are published. One field contains the journal’s name, one contains the publisher’s name and one contains the URL for the journal’s website.
Table tblDiagnosis contains information about mood and psychotic disorder diagnoses. The table contains the name, diagnostic code and version of the *Diagnostic and Statistical Manual of Mental Disorders* (DSM) in which it appears.

Table tblPaperDiagnosis associates a paper with the diagnoses studied by the authors. The table also contains a field to indicate whether it’s the proband or a relative that needs to have the diagnosis.

Table tblDiagnosticGroups contains information about the diagnostic groups studied in the papers. Table tblDiagnosticGroupsDiagnosis associates these diagnostic groups with the DSM diagnoses that are contained in them.
Table tblPedigrees contains additional details about the diagnostic groups. The table contains foreign keys to tblDiagnosticGroups and to tblPaper. There are also fields for the number of pedigrees in a diagnostic group, the total number of individuals and the mean number of individuals.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>tblPedigrees_pk</td>
<td>Primary Key</td>
</tr>
<tr>
<td>tblPedigrees_fk_tblPaper</td>
<td>Foreign Key - tblPaper</td>
</tr>
<tr>
<td>tblPedigrees_fk_tblDiagnosticGroups</td>
<td>Foreign Key - tblDiagnosticGroups</td>
</tr>
<tr>
<td>tblPedigrees_numberOfPedigrees</td>
<td>Number of Pedigrees</td>
</tr>
<tr>
<td>tblPedigrees_totalNumberOfIndividuals</td>
<td>Total Number of Individuals</td>
</tr>
<tr>
<td>tblPedigrees_meanNumberOfIndividuals</td>
<td>Mean Number of Individuals in a Pedigree</td>
</tr>
</tbody>
</table>

Table tblGenes contains names of genes. Table tblPaperChromosomesGenesGenes associates the gene with a chromosomal region studied in one of the papers.
Table tblSuggestionsPaper contains suggestions for papers to index with three fields for details provided by the user. The fields are title, author and year. The table also contains the date the suggestion was made. Table tblSuggestionsApplication contains suggestions about the application itself. This table contains fields for the suggestion and the user’s e-mail address. There are also fields to contain the date the suggestion was entered and the page the user was on prior to filling out the suggestion form.
Table tblStudyDetailsNotes contains additional information about the study. Table tblPaperNotes contains additional information about the paper. Both tables contain fields for the note, the name of the person who entered it and the date it was entered. Table tblStudyDetailsNotes includes a foreign key to the tblStudyDetails table. Table tblPaperNotes includes a foreign key to the tblPaper table.
Table tblPaperUpdates is used to record changes to any of the information contained in the database. The table contains fields for the name of the person who made the change, the date the change was made and a note about the nature of the change. The table also contains a field for a foreign key to the tblPaper table. Table tblSearchesPerformed contains information about the searches executed by users. One of the fields contains the type of search, such as by chromosome or by diagnosis. The table also has fields to contain the date the search was performed and the number of results returned. The last field contains the SQL command that was executed. Table tblMailingList is used to store the e-mail addresses of all users who want to receive notification when new papers are indexed. The table contains a field for the e-mail address and a field for the date the address was entered.
APPENDIX B – CORBIS CONTENT LICENSE AGREEMENT

Corbis Content License Agreement

PLEASE READ THIS AGREEMENT CAREFULLY. THE FOLLOWING TERMS AND CONDITIONS APPLY TO THE CONTENT-SPECIFIC INVOICE ("INVOICE") AND THE CONTENT-SPECIFIC ORDER ("ORDER") ISSUED TO YOU BY CORBIS.COM AND/OR SPECIFIED CORBIS CONTENT PROVIDER ("CORBIS") FOR ANY OF THE CONTENT IMAGE, VIDEO, DATA, SOFTWARE, SOFTWARE APPLICATIONS ("SOFTWARE") OR ANY OTHER MATERIAL, INFORMATION, CONTENT, ARTWORK, PHOTOGRAPHIC OR COLLECTIVE "CONTENT" AVAILABLE FROM CORBIS AND CONSTITUTE A BINDING AGREEMENT ("AGREEMENT") BETWEEN YOU AND CORBIS. BY COMPLETING AN ORDER OR PAYING FOR ANY CONTENT FROM CORBIS, YOU AGREE TO BE BOUND BY AND COMPLY WITH ALL OF THE TERMS OF THIS AGREEMENT. IF YOU DO NOT AGREE WITH ANY OF THE APPLICABLE TERMS, CORBIS CONTENT LICENSE AGREEMENT

1. Definitions:
 All capitalized terms shall have the meanings set forth in Section 24 hereof (defined Terms) and elsewhere in these terms and conditions.

2. Parties:
 This Agreement is binding between Corbis and you. "You" means either: (i) the individual listed as the registrant of the Corbis account through which this Agreement and the licenses granted hereunder are provided ("Registrant"); or (ii) if Registrant is entering into this Agreement and the licenses granted hereunder for the benefit of, and in the name of, an agent or representative of Registrant ("Authorized User"), then such Authorized User and/or Registrant. If Registrant is entering into this Agreement and the licenses granted hereunder for the benefit of, and in the name of, an agent or representative of Registrant ("Authorized User"), then such Authorized User and/or Registrant shall be deemed to have entered into this Agreement, and the licenses granted hereunder for the benefit of, and in the name of, an agent or representative of Registrant ("Authorized User").

3. License Grant:
 (a) Generally:
 Any and all licenses granted by Corbis are conditioned upon (i) your compliance with all provisions of this Agreement, and (ii) your receipt of full payment by Corbis for the applicable Invoice. Any and all licenses granted by Corbis to you hereunder are non-exclusive, non-transferable, and non-sublicensable. You may not sublicense any such licenses to any third party. Any and all rights granted to you hereunder shall expire upon your failure to comply with any of the terms and conditions of this Agreement. You may not assign, transfer, sublicense, or otherwise assign any such licenses to any third party. Any and all licenses granted by Corbis to you hereunder shall expire upon your failure to comply with any of the terms and conditions of this Agreement.
 (b) Rights Managed Content:
 Subject to the terms and conditions of this Agreement, and excluding the rights granted in Section 3(a) and (b) hereof, Corbis grants you a limited, non-exclusive, non-transferable, non-sublicensable rights to use the Rights Managed Content subject to the license terms hereof and for the purposes of the applicable Invoice. You may not assign, transfer, sublicense, or otherwise assign any such licenses to any third party. Any and all rights granted by Corbis to you hereunder shall expire upon your failure to comply with any of the terms and conditions of this Agreement.
 (c) Royalty-Free Content:
 Subject to the terms and conditions of this Agreement, Corbis grants you a limited, non-exclusive, non-transferable, non-sublicensable right to use the Royalty-Free Content subject to the license terms hereof and for the purposes of the applicable Invoice. You may not assign, transfer, sublicense, or otherwise assign any such licenses to any third party. Any and all rights granted by Corbis to you hereunder shall expire upon your failure to comply with any of the terms and conditions of this Agreement.

4. Ownership and Intellectual Property:
 Corbis and its Content sources retain all right, title, and interest in and to all copyrights, trademarks, trade secrets, and all other proprietary rights in the Content. No rights in any Content are

B1
9. Corbis' Indemnification of You: Corbis agrees to indemnify and hold You harmless against all claims, liability, damages (except punitive damages), costs and expenses, including reasonable legal fees and expenses, awarded against You arising out of any claim related to Content breaches of the warranties to You as described in Section 8 above. Notwithstanding the preceding, Corbis shall have no obligation under this Section 9 unless You provide Corbis with written notice within ten (10) days of Your receipt of any claim subject to indemnify and the right to defend or control the defense of such claim shall not, in any case, have any obligation with respect to any claims covered under Section 8 above.

10. Releases and Clearances: Content may contain listed restrictions (either on the invoice, the Specific Content Web Page and/or Editorial and Fine Art Content License, including, without limitation, restrictions as to time, manner, industry and territory of use, and required pre-approval by a depicted person or their representative. Your ability to access Content does not entitle You to use that Content. Except as may be specifically stated in the invoice or the Specific Content Web Page applicable to the licensed Content, the rights Corbis grants to You do not include a license to and Corbis makes no warranties that it owns or licenses any rights related to or in any persons, places, properties (real, personal or of any kind) or subject matter depicted in any Content. All Content may be subject to copyrights, trademarks, designs, patents, moral rights, property rights or other rights belonging to another party. You are solely responsible for determining whether your use of any Content requires the consent of any other party. You should not rely solely on the information provided by Corbis. You are solely responsible for obtaining any and all releases and clearances as may be required, including without limitation (b) rights from any representative guild, union, professional organization, or other authorized representative of any organization that claims ownership, title, or interest in any Public Domain or copyrighted works, public domain works, or works created for hire, or in any other work subject to any copyright, trade mark or other proprietary rights of any person or entity. You do not acquire, and shall not claim, any rights (commercial, copyright or otherwise) in the Content itself from the Content User. Unauthorized use of Content constitutes infringement of copyright and other applicable rights and shall entitle Corbis to exercise all rights and remedies under applicable copyright and other laws, including but not limited to, monetary damages against all persons and beneficiaries of the use of such Content. Corbis in its sole discretion reserves the right to bill You (and You hereby agree to pay for all) twice the license fee for any unlicensed use, in addition to any other fees, damages and penalties Corbis may be entitled to under this Agreement and applicable law. The foregoing are not a limiting statement of Corbis' or its Content source rights or remedies in connection with any unauthorized use of the Content or breach of the Agreement.

12. Payment/Reporting: You hereby agree to and are required to pay Corbis for all Content that You obtain under the terms of this Agreement, regardless of whether You use the Content (except as may be provided in Section 15 below entitled "Cancelling/Termination"). This may, as set forth in the applicable invoice, include an obligation to pay Corbis, a use based royalty and to submit an accounting or other records verifying Your use of the Content. Payment is due within thirty (30) days of the date the applicable invoice is issued, or the date specified in the invoice, whichever comes first. A late payment charge of one and one-half percent (1.5%) per month or the greatest amount allowed under applicable law may be added to any unpaid balance after thirty (30) days. The maximum amount permitted by state law shall be imposed on each overdue charge.

13. Footage-Specific Content (Footage Type): All Footage is licensed by the "cut" unless specifically noted. A "cut" shall be defined as one continuous scene from camera shot to camera shot. All "cuts" are licensed at a per second charge with a minimum maximum charge per "cut." The maximum amount permitted by state law shall be imposed on each overdue charge.

14. Taxes: You are responsible for the payment of all sales and use taxes, when applicable. Corbis does not accept resale certificates without prior written approval and at Corbis' discretion.

15. Cancellation/Expiration: (a) You may cancel rights granted in the invoice within seven (7) days from the date of the invoice, You will be charged a fifty dollar ($50.00) transaction fee per invoice or Footage Clip. If the cancellation notice is received more than seven (7) days, but less than thirty (30) days after the invoice date, a cancellation fee (50%) of the amount of the invoice will be charged. After thirty (30) days, no cancellations will be accepted. You may not cancel for any reason and must pay the full amount of the invoice. For any cancellations, You must also pay any and all service charges, production fees, processing and handling fees and shipping fees. All licenses applicable to the cancellation will be void. All cancellations are final.

(b) By Corbis: Corbis may, without further obligation or any liability to You or any other person or entity, terminate this Agreement and Your license to use the Content by written notice in the event You fail to comply with any provision of this Agreement, or in the event of any termination, cancellation or expiration of this Agreement, neither You nor any other person or entity covered by the license will be entitled to any compensation from Corbis under this Agreement even if signed by Corbis. If Corbis performance of any of its obligations hereunder is delayed by labor disputes, civil power or other causes beyond Corbis' control, including, but not limited to, flood, fire, explosion, martial law, orders of any nature, the public enemy, or any other matter not within Corbis' reasonable control, then the date for performance shall be extended by the time of such delay. If any provision of this Agreement is found invalid or unenforceable, the remainder of this Agreement shall remain valid and enforceable according to its terms. Accordingly, the parties agree that if any provision hereof is deemed unenforceable, they shall be deemed to modify the extent necessary to make them enforceable and in such manner as comes closest to the intention of the parties to this Agreement. In the event of any such termination, cancellation or expiration of this Agreement, You will not receive any refund or credit for any portion of the purchase price paid to Corbis. Corbis will not be liable to You, your successors or assigns, except that You may not assign or transfer this Agreement without Corbis' prior written consent.

18. Storage of Content: In producing the End Use authorized hereunder, You shall limit access to the Content to those having a bona fide need to facilitate production or creation of any such authorized End Use. Upon termination or expiration of the Term of this Agreement, "Corbis" shall cease to make available all End Use of the Content and shall promptly destroy any digital copies, except that You may retain one copy of the permitted End Use, for a period necessary for You to complete the final production for which it was licensed and cannot be searched by and downloaded to or otherwise made available to any other person or entity, either on line or otherwise.

19. Protection of Content: If use of Content is permitted on the Internet, or any other online or interactive media, You shall use Your best efforts to protect the Content to ensure that it cannot be copied, and in the case of Footage, ensure that it remains in the linear production for which it was licensed and cannot be searched by and downloaded to or otherwise made available to any other person or entity, either on line or otherwise.

20. Corbis Trademarks: Except for credits as required above, You may not use the trademarks or service marks of Corbis without Corbis' prior written consent.

21. Choice of Law / Jurisdiction / Attorneys' Fees: Any dispute regarding this Agreement shall be governed by the laws of the State of New York, and by Titles 15, 17 and 36 of the U.S.C., as amended, and the parties agree to subject the exclusive jurisdiction of the state and federal courts located in New York, New York, to the jurisdiction and venue of such courts.

22. Confidentiality: During this Agreement, Corbis may provide You with certain pricing, technical marketing and other confidential information. You acknowledge that such confidential information encompasses valuable trade secrets and is proprietary to Corbis. You agree to hold such confidential information in confidence and not to disclose the same without the prior written consent of Corbis. You may not assign or transfer this Agreement without Corbis' prior written consent. "Confidential information" includes any information that is either designated as confidential by Corbis or that, under the circumstances surrounding the disclosure, ought in good faith to be treated as confidential by You.

23. Survival: Sections 2, 3(a), 4, 5, 8, 10, 11, 12, and 14 - 25 will survive termination or expiration of the Agreement.

24. Defined Terms:

(a) "Agreement" means, collectively, the terms and conditions hereof, (b) in the invoice(s) and (ii) in the Specific Content Web Page(s) applicable to the Content licensed hereunder, all of which are incorporated into this Agreement by this reference.

(b) "Compes" means Content licensed without a fee solely for Your internal evaluation to determine whether the Content is appropriate for Your intended use as either Rights Managed Content or Royalty-Free Content.

(c) "End Use" means the final work product created with the Content as authorized hereunder and excluding Compes use.

(d) "images" and "footage clips" shall mean all images and footage clips, respectively, and related informational materials in any medium obtained from or furnished by Corbis hereunder, including without limitation related metadata, text, captions, or information.

(e) "Rights Managed Content" means Content licensed for a fee on a per-use basis and expressly designated as "Rights Managed" or "RM" by Corbis.

(f) "Royalty-Free Content" means Content licensed for an unlimited number of uses for a one-line fee and expressly designated as "Royalty-Free" or "RF" by Corbis.

(g) "Term" means (1) with respect to each license granted hereunder, the term specified herein or in the applicable invoice and/or Specific Content Web Page, unless earlier terminated as provided herein and, (2) with respect to this Agreement, the term shall end on the earlier of (i) termination or cancellation of this Agreement as provided herein or (ii) the expiration of all licenses issued under this Agreement.

26. Miscellaneous: This Agreement and any listed restrictions constitute the entire agreement between the parties with respect to the subject matter hereof and merge all prior and contemporaneous communications. This Agreement shall not be modified except by a written agreement signed by duly authorized representatives of Corbis, provided that no purporting or attempted modification of this Agreement shall be effective, unless in writing and signed by both parties.