Evolutionary spectral co-clustering

Nathan S. Green

Follow this and additional works at: http://scholarworks.rit.edu/theses

Recommended Citation
Evolutionary Spectral Co-Clustering

by

Nathan S. Green

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of
Master of Science in Computer Science

Supervised by

Dr. Manjeet Rege
Department of Computer Science
B. Thomas Golisano College of Computing and Information Sciences
Rochester Institute of Technology
Rochester, New York
July 2010

Approved By:

Dr. Manjeet Rege
Thesis Adviser, Department of Computer Science
Primary Adviser

Dr. Xumin Liu
Committee Member, Department of Computer Science
Reader

Sean Strout
Committee Member, Department of Computer Science
Abstract

The field of mining evolving data is relatively new and evolutionary clustering is among the latest in this trend. Presently, there are algorithms for evolutionary k-means, agglomerative hierarchical, and spectral clustering. These have been excellent in showing the advantages of using evolving data snapshots for better clustering results. From these algorithms the key portion of the conversion from static data handling to evolving data handling has been the addition of the historical cost function. The cost function is what determines whether or not instances should be moved from one cluster to the next between time-steps based on the historical cuts made between the instances in the dataset. These cost functions are then the method by which evolutionary clustering provides smooth transitions as there is a tunable tolerance for shifts in cluster membership. This also means that transitions between clusters become much more significant. For example, if an author-word matrix were clustered over ten years and an author changed clusters part way through the timeline it is a likely indicator that the author has changed research topics.

Methods for mining evolving data have not yet expanded into co-clustering; for this reason I have contributed a new algorithm for co-clustering evolving data. The algorithm uses spectral co-clustering to cluster each time-step of instances and features. Using the previous example, cluster changes in features (or words) for an author-word matrix is significant in that it may indicate a change in meaning for the word. This contribution to the field provides an avenue for further development of evolutionary co-clustering algorithms.
Contents

Abstract ... iii

1 Introduction ... 1

2 Background and Related Work 4
 2.1 Evolutionary Clustering .. 4
 2.2 Spectral Co-Clustering 5

3 ESCC ... 8
 3.1 RTC vs. RTH .. 9
 3.2 Handling Data Changes 10
 3.3 Piecing the algorithm together 13

4 Experiments ... 15
 4.1 Synthetic Data .. 15
 4.1.1 Synthetic Demonstrations 16
 4.1.2 Synthetic Instance Drift 17
 4.1.3 Synthetic Feature Drift 17
 4.2 Real Data ... 18

5 Conclusion .. 23

6 Acknowledgments .. 24
List of Figures

1.1 ESCC uses information from the previous time-step \((t - 1)\) to maintain cluster membership into the present time \((t)\) in order to provide a smoother transition. Here it can be seen that in order to maintain that membership, despite the evenly weighted cut in the present time, the past comes into effect to make cut 2 the better choice at time-step \(t\).

4.1 \(t_0\) is the original data in unclustered and clustered form. \(t_1\) shows consistency of clustering despite 50 instances of noise per cluster. \(t_2\) shows 10 instances added to \(C_2\). \(t_3\) shows 10 instances removed from \(C_4\) (highlighted in \(t_2\)). \(t_4\) shows cluster stability through a time-step of no change. \(t_5\) shows 2 features added to \(C_4\). \(t_6\) shows 1 feature removed from \(C_1\) (highlighted in \(t_5\)). \(t_7\) shows again the stability through an unchanged time-step.

4.2 \(t_0\) is the original data from Figure 4.1. \(t_1\) - \(t_3\) show the downward shift of the \(C_4\) features and \(t_4\) - \(t_7\) show the up shift in \(C_5\) features. Ultimately the 20 instances were shown to shift from \(C_4\) to \(C_5\) as expected.

4.3 \(t_0\) is the original data from Figure 4.1. \(t_1\) - \(t_3\) show the downward shift of the \(C_4\) instances at 2 distinct features and \(t_4\) - \(t_7\) show the up shift in \(C_5\) instances at those features. Ultimately the 2 features were shown to shift from \(C_4\) to \(C_5\) as expected.

4.4 F-measures for the ESCC clustering on PubMed data. The higher the F-measure the higher the accuracy of the clustering. This shows that RTH is generally better at sorting out the different clusters.

4.5 Using the cost formulas from Section 3.1 the two algorithms are measured for accuracy and maintaining historical clustering. A lower cost value indicates a better clustering in regard to maintaining history. As can be seen in the graph, I have found that RTH generally performs better than RTC.
List of Tables

3.1 Symbol Definitions .. 8

4.1 An outline of the pubmed dataset. 19
4.2 ESCC clustering of PubMed. Year 2000. 20
4.3 ESCC clustering of PubMed. Year 2001. 20
4.4 ESCC clustering of PubMed. Year 2002. 20
4.5 ESCC clustering of PubMed. Year 2003. 20
4.7 ESCC clustering of PubMed. Year 2005. 21
4.8 ESCC clustering of PubMed. Year 2006. 21
4.9 ESCC clustering of PubMed. Year 2007. 21
4.10 ESCC clustering of PubMed. Year 2008. 21
4.11 ESCC clustering of PubMed. Year 2009. 21
1. Introduction

Clustering refers to the grouping of instances in a dataset based on some similarity criteria when compared to other instances in the dataset. This is a key method for initial knowledge mining as no further information is needed than the dataset itself to form clusters. This provides a way of relating instances in a dataset. Unfortunately, most of the focus in clustering has been on clustering instances. Rather than focusing on the homogeneous data points alone we can further our knowledge by including the features in our clustering through co-clustering, creating a heterogeneous set of clusters. This research area has been trending upward as there are many applications for relating heterogeneous types [10, 19, 7, 16].

Co-clustering of a dataset is a method by which instances and features can be simultaneously clustered in order to better relate the instances and features. In order to run a co-clustering algorithm on a dataset the data needs to be well formed for the operation. In this case “well formed” refers to a data set with data akin to an incidence matrix (having more than one connection) or a co-occurrence matrix M where rows and columns represent the types to be interrelated through co-clustering. In this case an entry in the matrix M_{ij} would have a value representing the relationship between the instance type at row i and the feature type at column j. From this weight matrix I was able to manipulate the data to shrink it into more manageable form, keeping instance and feature ties relative to the original dataset. These manipulations are part of the co-clustering algorithm [14]. This also allows the clustering algorithm to avoid the dimensionality curse [1, 11] as all dimensions are considered. The co-clustering problem has also been modeled as a bipartite graph by [7] and [17]. Optimizations for data handling of large datasets were found using matrix factorization and block value decomposition as proposed in [4] and [13], respectively. Furthermore, the problems addressed using co-clustering are wide spanning. In biology, gene sequences and protein markers are being analyzed through co-clustering by [10] and [19].
Dhillon [7] proposed a bipartite clustering algorithm tested with documents and words. Lastly, in [16] image understanding problems were addressed using co-clustering allowing researchers to further analyze image content. However, all of these efforts have been on static data. None of these take into account the passage of time and knowledge that can be gained by observing data as it evolves.

![Diagram](image)

Figure 1.1: ESCC uses information from the previous time-step \((t - 1)\) to maintain cluster membership into the present time \((t)\) in order to provide a smoother transition. Here it can be seen that in order to maintain that membership, despite the evenly weighted cut in the present time, the past comes into effect to make cut 2 the better choice at time-step \(t\).

To the best of my knowledge there are no efforts toward the creation of evolutionary data mining algorithms for the purpose of co-clustering. In this thesis I present evolutionary spectral co-clustering (ESCC) for co-clustering of evolving data. An example of two evolutionary time-steps is shown in Figure 1.1. This figure shows a decision swayed by the incorporation of historical data. In order to incorporate historical data it is necessary to develop an historical cost function. The cost function in this case is created to handle the evolving instances and features for co-clustering. The resulting matrices formed from these cost functions are decomposed using spectral value decomposition (SVD) and the k-means clustering algorithm is then applied to obtain the desired number of clusters [14].

In order to show the features of this algorithm I perform extensive experiments on three different synthetic datasets and a real world dataset from the PubMed database. The first demonstrates the algorithm’s ability to handle noise, added and removed instances, added and removed features, and the consistency across similar time-steps. The second synthetic data set shows the algorithm’s ability to track instances through cluster shifts over time.
Finally, the third synthetic data set shows the algorithm’s ability to track features through cluster shifts over time. Additionally, in order to show the accuracy of the algorithm a real world data set is used. The dataset consists of authors and words from two separate subjects in the PubMed database over the last ten years. This dataset is clustered and cluster assignments are compared to the original subjects.

Thus the contributions of this thesis are outlined as follows:

- A new algorithm (ESCC) to the field of evolutionary data mining.
- Two new historical cost functions designed for co-clustering of heterogeneous data.
- The method for creating and formatting heterogeneous data.
- Experimentally proving the accuracy of ESCC.

The rest of the thesis is organized as follows. Chapter 2 provides a literature review of papers relevant to the thesis. Chapter 3 will show the details of the algorithm for this thesis. Chapter 4 details the experiments used in this thesis. Chapter 5 provides conclusions drawn from the experiments and details potential future work in this new field. Finally, Chapter 6 is reserved for those that have helped with my research.
2. Background and Related Work

While the concept of mining evolving data is relatively new, the concepts on which it is built are very well researched. As outlined below, many of the concepts previously researched and experimented upon will provide the building blocks for the algorithm and experiments that follow within this thesis.

2.1 Evolutionary Clustering

The concept of evolutionary clustering came into being in 2006 with the publication by Chakrabarti et al. [3]. This is not to be confused with any genetic algorithm[8] as the data itself is evolving and the algorithm is simply clustering it. An additional disambiguation is necessary in that many previous datasets have taken time into account with clustering, but not as a smoothing feature. The difference lies in the objective: where previous clustering efforts looked for information about the temporal data, Chakrabarti et al. looked for information about data which was clustered over multiple time-steps. Further disambiguations are necessary in regard to incremental clustering [18, 6] and constraint based clustering [6, 2], also known as semi-supervised learning. Incremental clustering focuses on the updating of centroids [9] or other data structures through each iteration of the algorithm. Through each update the focus is on the new clustering instead of the cluster membership of previous data points. Constraint-based clustering requires further information beyond simply having the data. In addition to the data some domain knowledge is needed to integrate heuristic decisions within the algorithm. These heuristics can be presented as hard constraints [20] wherein instances must or cannot be linked or soft constraints[12] wherein knowledge is used as an initial grouping.

K-means and hierarchical clustering were the initial clustering algorithms to be made to
handle evolving data. The addition to the field which will be used in this research includes the cost functions to properly cluster at each time-step with respect to previous steps. These were the history cost—how similar clustering at t is to $t-1$—and the snapshot quality—how well the clusters match the desired clusters. These are extended in [5] wherein further work is done to smooth the time shifts.

The authors of [5] extend the work in [3] to use the spectral clustering algorithm. Along with this addition to evolutionary clustering, further work was done to produce historical cost and snapshot cost functions. These are what drive decisions like the one shown in Figure 1.1 and what will be implemented for co-clustering in this thesis.

In a recent unpublished work, Wang et al., use low level matrix factorization to achieve a more efficient evolutionary clustering algorithm on large scale data. As stated in [11] all clustering efforts suffer from potential dimensionality curse as the number of dimensions exceed 16. The framework introduced in [21], Evolutionary Clustering based on low-rank Kernel matrix Factorization (ECKF), is one which is claimed to be extensible to any evolutionary clustering problem. This work also adds the intelligence to decide whether or not a new clustering is necessary based on the underlying changes to the data at each time-step.

2.2 Spectral Co-Clustering

Spectral clustering is intended to be a very simple algorithm for clustering many different sized data sets with accuracy greater than that of the k-means algorithm and often greater than many other traditional clustering algorithms. Its implementation relies heavily on matrix computation, graph Laplacians, and the k-means algorithm [14].

There are multiple spectral clustering algorithms making use of unnormalized and normalized Laplacians, graph cutting, random walks and perturbation all outlined in [14]. The tutorial paper provides an excellent overview of the algorithm, it’s uses and how to implement it. The pitfalls and observances within the tutorial paper have served to get a better
understanding of the spectral clustering algorithm and where to modify it to handle evolving data.

The development of co-clustering requires an understanding that the left and right singular vector matrices will present differently when the weight matrix is normalized. This normalization will properly incorporate the features. The following method from [7] was used to normalize the weight matrix starting with the generalized eigenvalue problem

\[Lz = \lambda Dz. \]

from [7] equations 2.1 and 2.2 can be rewritten to obtain the normalization formula

\[W_n = D_1^{-\frac{1}{2}} WD_2^{-\frac{1}{2}} \]

which creates the weight matrix used for co-clustering in ESCC.

The ability to cluster on multiple data sets at once is a most desirable faculty for a clustering algorithm. This provides the ability to gain further insight concerning the relationship between separate data sets. The common one-way clustering effort works well, but restricts what information can be gleaned from multiple data sets. The one-way clustering effort also suffers from the dimensionality curse [1], wherein high dimensioned data is much more difficult to cluster.

Co-clustering serves the purpose of clustering the individual data sets through relating them to each other. This partially undoes the dimensionality curse in that further refinement of clusters is made through relating the data points to the attributes and back again [11]. For instance with text mining of document sets and word sets the two data sets can be clustered individually, however more information is gained through clustering them together. This is
shown further in [7].

Dhillon starts his research with the graph partitioning problem for the purpose of clustering dyadic data sets. As of 2007 it was a novel concept to treat the data sets as vertices in a graph. The edges connecting these different data sets would represent a relationship between the two and the weight of the edge would represent the strength. With clustering this graph the goal is to partition along the least weighted edges in order to best separate the clusters.

Dhillon uses documents and words as the separate data sets the same way that was used in [13]. The graph partitioning method for co-clustering works to relate words to documents thus also clustering words to each other and the same for documents. As with previous papers, this is the goal of co-clustering. The spectral partitioning method, however, is more scalable than the previous work. Experiments from the paper show that the spectral graph partitioning method can discern a small amount of documents from other clusters of larger sets of documents.

From this research it has shown that there is a lack of co-clustering on evolving data. The research by Chi et al. on spectral clustering of evolving data combined with the research by Dhillon on using spectral clustering on bipartite graphs gives an excellent pathway to evolutionary spectral co-clustering.
3. ESCC

This is a novel algorithm to the field and will be described here in detail. First, the algorithm not only handles the insertion and deletion of instances, but features as well. This is necessary for changes over time concerning co-clustering. Next, the algorithm shows resistance to changes between time-steps in the instances as shown before [5], and shows this for changes in features as well. Finally, the algorithm shows movements of data between time-steps in the instances as well as the features.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_t</td>
<td>A matrix for time-step t</td>
</tr>
<tr>
<td>A^T, Z^T, \ldots</td>
<td>The transpose of the given matrix</td>
</tr>
<tr>
<td>A, W, \ldots</td>
<td>A manipulation of the given matrix</td>
</tr>
<tr>
<td>$W_{m \times n}$</td>
<td>A data matrix of weights of size $m \times n$</td>
</tr>
<tr>
<td>$W_{(i,j)}$</td>
<td>The value of the weight for instance i given feature j</td>
</tr>
<tr>
<td>$W_{(i,:)}$, $W_{(:,i)}$</td>
<td>The row or column at i from matrix W, respectively</td>
</tr>
<tr>
<td>$W_{\text{wrt}(W)}$</td>
<td>The matrix W with respect to W (Definition 1)</td>
</tr>
<tr>
<td>D</td>
<td>A diagonal matrix described in Section 2.2</td>
</tr>
<tr>
<td>D_1, D_2</td>
<td>Diagonal matrices for instances and features respectively</td>
</tr>
<tr>
<td>$D_{n,t}$</td>
<td>Diagonal matrix for the given dimension n and time-step t</td>
</tr>
<tr>
<td>k</td>
<td>Number of clusters</td>
</tr>
<tr>
<td>C_n</td>
<td>Cluster number n</td>
</tr>
<tr>
<td>t</td>
<td>Time-step</td>
</tr>
<tr>
<td>μ</td>
<td>Mean value</td>
</tr>
<tr>
<td>d</td>
<td>A vector of indices having differences resulting from the comparison of two matrices</td>
</tr>
<tr>
<td>\mathbf{d}</td>
<td>An index in d</td>
</tr>
<tr>
<td>svd</td>
<td>The singular value decomposition function</td>
</tr>
<tr>
<td>$n, p, 2, 3, 4$</td>
<td>For all values n to p, $[2, 3, 4]$</td>
</tr>
<tr>
<td>α, β</td>
<td>Constants for tuning the algorithm</td>
</tr>
<tr>
<td>RTC</td>
<td>RTH</td>
</tr>
<tr>
<td>X_u, X_v</td>
<td>Right and left singular vectors respectively ordered by descending eigenvalue</td>
</tr>
<tr>
<td>Z_u, Z_v</td>
<td>Computed cuts for instances and features respectively</td>
</tr>
</tbody>
</table>

Table 3.1: Symbol Definitions
3.1 RTC vs. RTH

I present two methods for including past time-step clustering into the present. These methods are each referred to as the evolutionary method by which clusters are chosen from time-step to time-step. The first of these methods is Respect To the Current (RTC), wherein the present clustering quality (CQ) is of most importance and historical cost (HC) is calculated with only one previous time-step. The second, is Respect To Historical (RTH). RTH attempts to keep instances and features tied to the same clusters between time-steps, therefore this method uses all previous time-steps when calculating historical cost. In this case the best example can be given through Figure 1.1 where either evolutionary method would choose cut 2, however if the weight of the edge on cut 2 were higher the two would disagree. If making cuts with RTC the optimal clustering for the present time will be chosen (cut 3) within a margin of tolerance dictated by the values chosen for the constants, α and β, shown in Equation 3.1. On the other hand when making cuts with RTH within the tolerance cut 2 would still be chosen as it reduces the error in historical clustering.

$$EC_t = k - \text{trace} \left[X v_t^T \left(\alpha CQ_t + \beta HC_t \right) X u_t \right]$$ (3.1)

The accuracy of the clustering for each of these is determined by the cost of each time-step, this is known as the evolutionary cost. The evolutionary cost (EC) is computed through a summation of the clustering quality and the historical cost. Historical cost being the added negative weight for choosing a cut that causes a cluster change. RTC and RTH have differing cost functions as each are modeled for different purposes. The CQ and HC for RTC is defined as in Equation 3.2 and the CQ and HC for RTH is defined in equation 3.4. As $X u$ and $X v$ are created from the left and right singular vectors from all previous time-steps, the HC for RTH is more tightly connected to the past clustering choices. In contrast, the HC for RTC is only concerned with values from the last time-step alone.
The aim is to minimize these costs to give the best possible cut through the data. The minimization is achieved by using the top k singular vectors from the left (X_{u_t}) and from the right (X_{v_t}) of the singular value decomposition performed in Algorithm 2. CQ_t refers to the cluster quality at time t, while HC_t refers to the historical cost at time t. These measures differ in that CQ measures the quality of the present clustering as if it were static data and CH measures the cost of change from the previous time-step to the present.

3.2 Handling Data Changes

The balanced insertion discussed previously is meant to make the dimensions of each time-step comparable while not compromising the cluster assignments of other instances. This need to handle changes in the data dimensions over time requires a new construct to be created. This new construct is the WRT construct.

Definition 1 Given two matrices existing on the same time-line in different time-steps H and C then H is a WRT Matrix to C \iff the instances and features found in H are equivalent to those found in C. If this is not the case H can be made a WRT Matrix by use
of Algorithm 1.

In order to accomplish this when adding instances or features to the past different methods are used based on the selection of RTC or RTH. In the case of RTC, where present quality is most important, the inserted row or column receives the average of the whole matrix at present time for each cell. In the case of RTH the inserted row or column receives the average of the new row or column in each cell.

The easier of the two operations is removal of instances or features from past time-steps. This occurs when an instance or column in the past matrices is no longer present in the current time-step. In this case the instance or column can be removed from the past in each WRT Matrix.
Algorithm 1 Generate WRT Matrices Algorithm

1: **INPUT:** $W_{1:t}', W_t$ (history), W_t (present), RTC|RTH \{ // history contains all weight matrices previous to present, present contains the current time-step for which this With Respect To (WRT) Matrix is being created, RTC—RTH is the evolutionary method chosen \}

2: **OUTPUT:** $W_wrt_{t't}$

3: **METHOD:** \{ // Start with removal of differing rows and columns \}

4: for $t' \leftarrow 1..\text{length of history}$ do

5: \hspace{1em} $\vec{d} \leftarrow W_{t'} \notin W$

6: \hspace{1em} $W_{t'}^{wrt(W_t)} \leftarrow W_{t'} - W_t(d, :)$

7: \hspace{1em} $\vec{d} \leftarrow W_{t'}^T \notin W^T$

8: \hspace{1em} $W_{t'}^{wrt(W_t)} \leftarrow \left(W_{t'}^T - W_{t'}^T \mu_{t', (:, d)} \right)^T$

9: end for \{ // Make additions next, these will be based on the evolutionary method \} \{ // Start with Row/Instance addition \}

10: for $t' \leftarrow 1..\text{length of history}$ do

11: \hspace{1em} $\vec{d} \leftarrow W \notin W_{t'}$

12: \hspace{1em} if RTC then

13: \hspace{2em} for all differences \vec{d} do

14: \hspace{3em} insert $\leftarrow \mu_{t'}(W_{t'}(\vec{d}))$

15: \hspace{3em} Add insert to $W_{t'}^{wrt(W_t)}$ based on its ID

16: \hspace{2em} end for

17: else if RTH then

18: \hspace{2em} for all differences \vec{d} do

19: \hspace{3em} insert $\leftarrow \mu_{t'}(W_{t'}(r_{\vec{d}}))$

20: \hspace{3em} Add insert to $W_{t'}^{wrt(W_t)}$ based on its ID

21: \hspace{2em} end for

22: end if

23: end for \{ // Column/Feature addition next \}

24: for $t' \leftarrow 1..\text{length of history}$ do

25: \hspace{1em} $\vec{d} \leftarrow W \notin W_{t'}$

26: \hspace{1em} if RTC then

27: \hspace{2em} for all differences \vec{d} do

28: \hspace{3em} insert $\leftarrow \mu_{t'}(W_{t'}(\vec{d}))$

29: \hspace{3em} Add insert to $W_{t'}^{wrt(W_t)}$ based on its ID

30: \hspace{2em} end for

31: else if RTH then

32: \hspace{2em} for all differences \vec{d} do

33: \hspace{3em} insert $\leftarrow \mu_{t'}(W_{t'}(c_{\vec{d}}))$

34: \hspace{3em} Add insert to $W_{t'}^{wrt(W_t)}$ based on its ID

35: \hspace{2em} end for

36: end if

37: end for
3.3 Piecing the algorithm together

As stated previously, Xu and Xv are left and right singular vectors consisting of information from all previous time-steps. These take different forms based on the evolutionary method chosen. If working with RTC the calculations for Xu and Xv are shown in Equation 3.6 and similarly for RTH they are shown in Equation 3.7. The difference lies in the statements tied to the coefficient β. Being connected with only the last time-step is the role of RTC and shown in the calculation for EC as well. However, a connection with all previous time-steps is shown with RTH through its recursive reference.

\[
\begin{align*}
[Xu_t, Xv_t] &= \text{svd} \left[\alpha W_t + \beta D_{1,t-1}^{-\frac{1}{2}} W D_{2,t-1}^{-\frac{1}{2}} \right] \\
[Xu_t, Xv_t] &= \text{svd} \left[\alpha W_t + \beta Xu_{t-1} Xv_{t-1}^T \right]
\end{align*}
\] (3.6) (3.7)

wherein all references to time-step t are of the form t with respect to the current time-step. For example, if there is an instance increase between time-step $t-1$ and t, $t-1$ with respect to t would have the additional instances as a balanced insertion to the matrix.

The collected singular vectors must be passed to k-means in order to generate clusters for each time-step. The final matrix Z is the result of the following

\[
Z = \begin{bmatrix}
D_{1,t}^{-\frac{1}{2}} X u_t(2 \ldots \lceil \log_2 k \rceil) \\
D_{2,t}^{-\frac{1}{2}} X v_t(2 \ldots \lceil \log_2 k \rceil)
\end{bmatrix}
\] (3.8)

where Xu_t and Xv_t are comprised of all left and right singular vectors, respectively, for time-step t, and k remains the number of clusters.

The result of putting all of this together is represented in the ESCC algorithm shown in Algorithm 2.
Algorithm 2 ESCC Algorithm

1: INPUT: $W_{m \times n \times t}$, k, and RTC/RTH \{ // W is an $m \times n \times t$ matrix where t is the number of time-steps, k is the number of clusters \}

2: OUTPUT: Cluster assignments for each time-step

3: METHOD:

4: for all time-steps do

5: for all time-steps previous to the current do

6: create corresponding past matrices with respect to the present time-step using Algorithm 1

7: end for

8: for all time-steps previous to the current do

9: if RTC then

10: use equation 3.6 for SVD

11: else if RTH then

12: use equation 3.7 for SVD

13: end if

14: combine left and right singular vector matrices using equation 3.8

15: run k-means on resulting matrix

16: end for

17: end for \{ // The first m cluster values for each time-step represents the instance clustering and the trailing n cluster values for each time-step represent the feature clustering. \}
4. Experiments

Two sets of experiments were run to determine the validity and effectiveness of this algorithm. The first set of experiments involved a synthetic dataset designed to show the different functions of the algorithm. The second shows the accuracy of the algorithm on real world data using a dataset from the widely used PubMed database of medical research papers.

Figure 4.1: t_0 is the original data in unclustered and clustered form. t_1 shows consistency of clustering despite 50 instances of noise per cluster. t_2 shows 10 instances added to C_2. t_3 shows 10 instances removed from C_4 (highlighted in t_2). t_4 shows cluster stability through a time-step of no change. t_5 shows 2 features added to C_4. t_6 shows 1 feature removed from C_1 (highlighted in t_5). t_7 shows again the stability through an unchanged time-step.

4.1 Synthetic Data

Three different synthetic datasets were used to show the features of the algorithm. The first, shown in 4.1.1, demonstrates the algorithm’s ability to handle noise, added instances, removed instances, added features, and removed features as well as the consistency across similar time-steps. The second (4.1.2) synthetic data set shows the algorithm’s ability to track instances through cluster shifts over time. Finally, the third (4.1.3) synthetic data set shows the algorithm’s ability to track features through cluster shifts over time.
4.1.1 Synthetic Demonstrations

I have constructed a synthetic dataset with 8 time-steps and 5 clusters of 200 instances each having 10 assigned features. The initial time-step and 5 clusters were formed by creating 5 ascending groups of data sampled from 5 normal distributions. Each normal distribution was guaranteed to be distanced from the previous through an augmented \(\mu \) value added to the previous \(\mu \). Therefore, if a cluster, \(C_n \), has an assigned \(\mu \) it is represented by \(\mu_n \) where \(n \) is the cluster number, then the distributions are determined by \(\mu_n = \mu_{n-1} + 5 \cdot n + R \) where \(R \) is a random integer bound by \([0 - 100]\). For all distributions \(\sigma = 1 \).

To form time-step \(t_1 \) Gaussian noise was added to 50 instances per cluster. It is shown in Figure 4.1 that \(t_0 \) and \(t_1 \) are unchanged, despite the added noise. Next, in \(t_2 \) instances were added to \(C_2 \) using a selection of values from a normal distribution having a \(\mu = \mu_2 \). The figure shows that the additional instances were added and appropriately clustered as indicated by the green shaded box. To show the opposing action in \(t_3 \) instances are removed from \(C_4 \). From the figure it can be seen that all clusters remain unchanged and \(C_4 \) has a smaller block size. This was also indicated in \(t_3 \) as the instances that will be removed are highlighted in blue. In \(t_4 \) the data is unchanged, simulating the stability of the clustering between time-steps.

Until this point the algorithm has behaved as any previous evolutionary algorithm would, however with \(t_5 \) features will be added to the dataset in \(C_4 \) using values selected from a normal distribution having a \(\mu = \mu_4 \). The figure shows that the additional features have not affected the clusters and the resulting new columns were correctly clustered as indicated by the green box around the column of data in Figure 4.1 time-step \(t_5 \). In \(t_6 \) features were removed from \(C_1 \) and the figure shows again that the clustering is unaffected and the block for \(C_1 \) is diminished. This was also indicated in \(t_5 \) by the blue shading around the feature column of \(C_1 \). Finally, the data is left untouched for \(t_7 \) and the figure shows this.
Figure 4.2: \(t_0 \) is the original data from Figure 4.1. \(t_1 - t_3 \) show the downward shift of the \(C_4 \) features and \(t_4 - t_7 \) show the up shift in \(C_5 \) features. Ultimately the 20 instances were shown to shift from \(C_4 \) to \(C_5 \) as expected.

4.1.2 Synthetic Instance Drift

Using the same initial time-step and 5 cluster distribution from section 4.1.1, a group of 20 instances were incrementally modified at each time-step, up to 8, to denote a cluster shift of the instances. Figure 4.2 shows the time series of clustered data. It can be seen at \(t_3 \) that the instances are discolored denoting a drop in value and in \(t_4 \) the instances change clusters when values for the next cluster’s features begin rising.

4.1.3 Synthetic Feature Drift

In the same manner as the previous example, a feature shift is shown. Two features were chosen from \(C_4 \) to have their values lowered in \(C_4 \) and raised in \(C_5 \). Figure 4.3 shows the progression over each time-step. As with the last experiment the color change indicates diminished values and at \(t_3 \) the values correlated with \(C_5 \) begin increasing and the cluster shift occurs. In \(t_7 \) it can be seen that the full shift has occurred.
Figure 4.3: t_0 is the original data from Figure 4.1. $t_1 - t_3$ show the downward shift of the C_4 instances at 2 distinct features and $t_4 - t_7$ show the up shift in C_5 instances at those features. Ultimately the 2 features were shown to shift from C_4 to C_5 as expected.

4.2 Real Data

To evaluate the accuracy of ESCC on real data, I selected a widely used database of medical papers: PubMed\(^1\). The PubMed dataset was constructed from two searches of highly researched topics in the medical field: schizophrenia treatment and stem cell research. Each search was limited to English texts published between 1990 and 2009 having authors and abstracts. The papers were then parsed by year to obtain author-word matrices for each year containing both subjects. Common stop words were removed and all words were stemmed using Porter’s suffix-stripping algorithm [15]. Authors and words were assigned unique IDs tied to the first occurrence based on the year the author or word was used and the subject matter, respectively. These unique ids are used in the generation of the WRT matrices as demonstrated in Algorithm 1. Authors that had published less than three papers in the time-span were removed from the dataset and words occurring less than 30 times throughout the abstracts were also removed. This resulted in 10 data time-steps consisting of information from 64,320 papers, 17,731 unique authors, and 8,541 unique words these are described by year in Table 4.1.

\(^1\)http://www.ncbi.nlm.nih.gov/pubmed
<table>
<thead>
<tr>
<th>Year</th>
<th># Papers</th>
<th># Authors</th>
<th># Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>2817</td>
<td>4907</td>
<td>6750</td>
</tr>
<tr>
<td>2001</td>
<td>2792</td>
<td>5254</td>
<td>6860</td>
</tr>
<tr>
<td>2002</td>
<td>3486</td>
<td>6220</td>
<td>7117</td>
</tr>
<tr>
<td>2003</td>
<td>3698</td>
<td>6734</td>
<td>7205</td>
</tr>
<tr>
<td>2004</td>
<td>4059</td>
<td>7244</td>
<td>7327</td>
</tr>
<tr>
<td>2005</td>
<td>4059</td>
<td>8023</td>
<td>7452</td>
</tr>
<tr>
<td>2006</td>
<td>4376</td>
<td>7984</td>
<td>7286</td>
</tr>
<tr>
<td>2007</td>
<td>4690</td>
<td>8365</td>
<td>7302</td>
</tr>
<tr>
<td>2008</td>
<td>4962</td>
<td>8234</td>
<td>7328</td>
</tr>
<tr>
<td>2009</td>
<td>5074</td>
<td>7988</td>
<td>7304</td>
</tr>
</tbody>
</table>

Table 4.1: An outline of the pubmed dataset.

Figure 4.4: F-measures for the ESCC clustering on PubMed data. The higher the F-measure the higher the accuracy of the clustering. This shows that RTH is generally better at sorting out the different clusters.

Each year represented was run using the RTC and RTH framework. The α and β values were 0.7 and 0.3 respectively. The following series of confusion matrices and top words from the respective clusters show the ability for ESCC to cluster authors appropriately as well as the words through each time-step. As can be seen in Figure 4.4 RTH outperforms RTC in nearly each time-step. This is because authors do not often change subjects, despite the enormous amount of noise in the words utilized in each abstract. Furthermore, Figure 4.5 shows that RTH maintains historical cluster membership as expected and better than the RTC counterpart.

The results show that the algorithm splits authors fairly well given the related studies
<table>
<thead>
<tr>
<th>RTC</th>
<th>SchizR</th>
<th>StemCell</th>
<th>RTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auth1:</td>
<td>1558</td>
<td>432</td>
<td>RTC</td>
</tr>
</tbody>
</table>
| Auth2: | 52 | 2864 | W1: disord drug mental psychiatr stress
| RTH | W2: allogen repopul graftversushost leukem posttranspl | |
| Auth1: | 1558 | 432 |
| Auth2: | 52 | 2864 |

Table 4.2: ESCC clustering of PubMed. Year 2000.

<table>
<thead>
<tr>
<th>RTC</th>
<th>SchizR</th>
<th>StemCell</th>
<th>RTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auth1:</td>
<td>1848</td>
<td>578</td>
<td>RTC</td>
</tr>
</tbody>
</table>
| Auth2: | 79 | 3714 | W1: treatment schizophrenia disord depart human
| RTH | W2: colonyform gvh osteoclast transfus leukem |
| Auth1: | 1834 | 592 |
| Auth2: | 75 | 3718 | W1: treatment schizophrenia symptom clinic antipsychot
| RTH | W2: patient transplant bone stem |

<table>
<thead>
<tr>
<th>RTC</th>
<th>SchizR</th>
<th>StemCell</th>
<th>RTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auth1:</td>
<td>2492</td>
<td>657</td>
<td>RTC</td>
</tr>
</tbody>
</table>
| Auth2: | 306 | 3788 | W1: patient treatment result effect disorder
| RTH | W2: studi bone transplant univers clinic |
| Auth1: | 2349 | 755 |
| Auth2: | 118 | 3976 | W1: patient treatment disord symptom antipsychot
| RTH | W2: studi bone transplant univers clinic |

Table 4.4: ESCC clustering of PubMed. Year 2002.

<table>
<thead>
<tr>
<th>RTC</th>
<th>SchizR</th>
<th>StemCell</th>
<th>RTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auth1:</td>
<td>2172</td>
<td>640</td>
<td>RTC</td>
</tr>
</tbody>
</table>
| Auth2: | 67 | 3854 | W1:
| RTH | W2: patient treatment result disorder ptsd
| Auth1: | 2199 | 613 |
| Auth2: | 149 | 3772 | W1:
| RTH | W2: patient studi univers |

Table 4.5: ESCC clustering of PubMed. Year 2003.

<table>
<thead>
<tr>
<th>RTC</th>
<th>SchizR</th>
<th>StemCell</th>
<th>RTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auth1:</td>
<td>2492</td>
<td>657</td>
<td>RTC</td>
</tr>
</tbody>
</table>
| Auth2: | 306 | 3788 | W1: patient treatment result effect disorder
| RTH | W2: studi bone transplant univers clinic |
| Auth1: | 2349 | 755 |
| Auth2: | 118 | 3976 | W1: patient treatment disord symptom antipsychot
| RTH | W2: studi bone transplant univers clinic |

Table 4.7: ESCC clustering of PubMed. Year 2005.

Table 4.8: ESCC clustering of PubMed. Year 2006.

Table 4.10: ESCC clustering of PubMed. Year 2008.

Table 4.11: ESCC clustering of PubMed. Year 2009.
Using the cost formulas from Section 3.1 the two algorithms are measured for accuracy and maintaining historical clustering. A lower cost value indicates a better clustering in regard to maintaining history. As can be seen in the graph, I have found that RTH generally performs better than RTC.

within the medical field. The RTH algorithm shows a better clustering through the end while the RTC algorithm did not finish as well as shown in Table 4.11. As more authors are introduced to the set, the words are fairly constant because of the constraint that each be used 35 or more times within the selected abstracts. This meant that the clusters became more saturated and blended the lines making the distinctions more difficult over time. However, by the evolutionary cost graph in Figure 4.5 where a maximum cost has a value of 2, the given costs show low changes in cluster membership, reducing noise. Observing the selection of top words clustered with each set shows that the co-clustering element of this algorithm is properly separating the words to associate with the correct authors.
5. Conclusion

I have presented a new algorithm to the field of evolutionary data mining. The research shows it as novel and contributing a new direction to this field. Evolutionary co-clustering will give a new option for mining of data collected over time with reduced noise and augmented incorporation of past data. The synthetic experiments show that the algorithm performs as it should for each of the features claimed and tested. Finally, the algorithm shows that with enough time and resources clusters will form showing accurate distinctions between separate groups of data.

Further research is necessary to determine the full range of uses for this new algorithm as this is a new direction for the field of mining evolving data. This research may lead to more datasets properly suited for the evolutionary mining process. Currently it is very difficult to find a dataset with a focus on time-steps. An interesting direction would be datasets with time-steps which are less than a year in length, something like a blog server or a mashup of RSS feeds with daily updates, users, and words to be clustered. In any case, more data well-formed for evolutionary data mining would be an excellent next step.

Additionally, there are far more efficient, much more complicated algorithms that could also be converted to handle evolving data. This research provides a road map for those that would venture to take on the endeavor of creating a novel algorithm in the evolving data mining field. Incorporating matrix factorization or block value decomposition were outside the scope of this research, but would make an excellent comparison for the research within this thesis.
6. Acknowledgments

A grand thank you to Professor Rege, my committee, and Patrick Saeva and Peter Erhardt of the RIT Office of Development for their assistance with this thesis. I was unable to use the dataset provided by them for this research, however their assistance was most appreciated. Additionally, much thanks to Vickie for making me sit down and work when all I wanted to do was run CSH. My thanks also goes to the Research Computing group at the Rochester Institute of Technology for the compute time that could not be accomplished by my personal machine.
Bibliography

[17] Manjeet Rege, Ming Dong, and Farshad Fotouhi. Co-clustering documents and

