2003

Improving innovation performance through IS enabled knowledge scanning

Qiang Tu

Follow this and additional works at: https://scholarworks.rit.edu/other

Recommended Citation
Tu, Qiang, "Improving innovation performance through IS enabled knowledge scanning" (2003). Accessed from https://scholarworks.rit.edu/other/478

This Conference Paper is brought to you for free and open access by the Faculty & Staff Scholarship at RIT Scholar Works. It has been accepted for inclusion in Presentations and other scholarship by an authorized administrator of RIT Scholar Works. For more information, please contact ritscholarworks@rit.edu.
Information Technology and Organizations:
Trends, Issues, Challenges and Solutions

2003 Information Resources Management Association
International Conference
Philadelphia, Pennsylvania, USA
May 18-21, 2003

Mehdi Khosrow-Pour
Information Resources Management Association, USA

IDEA GROUP PUBLISHING
Hershey • London • Melbourne • Singapore • Beijing
http://www.idea-group.com
Improving Innovation Performance Through IS Enabled Knowledge Scanning
Qiang Tu .. 647

A Framework for Knowledge Management Adoption in a Steel Company
Nabed Azab & Khaled Wahba 655

Organizational Knowledge Management: Enabling a Knowledge Culture
Steven Walczak & Dale Swart 670

Enhanced Knowledge Warehouse in the Semantic Web
Krzesztof Wecel, Witold Abramowicz & Pawel Jan Kalczynski 232

Knowledge Discovery Process in Sales Data
Katayoshi Yada .. 684

Web Services and Workflow Modeling
Vincent C. Yen 799

Object Oriented Technology
GIS-Enabled Health Services Call Center System
Brian Hilton, Tom Horan & Bengisu Tulu 187

Energy-Efficient Objects Retrieval on Indexed Broadcast Parallel Channels
Angela Maria Munoz-Avila & Ali Hurson 190

Business Components Based Design for Enterprise Systems
Tanu K. Sen, David Tegraden & Reza Barchi 590

The Concepts of Class and Object as Presented in Selected Java Textbooks:
Robert Joseph Skovira 1074

Distributed Object Based SCM Simulator: LOSIMOPU
Hiroshi Tsugi, Takerumi Konno & Ryosuke Saga 1093

Software Engineering
Using Neural Networks for Addressing Data Quality During the Software Maintenance Process
Abdullah A. Al-Namlah & Shirley Ann Becker 1

Managing the Interconnection and the Distribution of Urban Models with XML and Distributed Objects
Alain Becam, Maryvonne Miquel & Robert Laurini 20

Describing W2000 Using RDF: When the Meaning is Essential
Luca Contursi & Roberto Paiano 71

Meta Model based Approaches to Information System Engineering
Joerg Becker, Alexander Dreiling & Michael Ribbert 112

Adaptation of a Parallel Processing Technique Used to Solve Physics Problems to a Computer Network Management Application
Dennis Gartner, Renat Sultanov & Jim Chen 165

The Context of System Development
Jerome Heath 177

Implementing Software Metrics Programs: Lessons and Approaches
Helle Damborg Frederiksen & Jakob Holden Iversen 197

Design of Lowpass Narrowband FIR Filters Using IFIR and Modified RRS Filters
Gordana Jovanovic-Dolecek, Vlatko Dolecek & Tanja Karabegovic 744

Recreating Design Artefacts of Information Systems for System Evolution and Maintenance
Khaled M. Khan & Yi-chen Lan 843

The “Software Equation” Revisited
Keith B. Olson 456

From the Design to the Development: A Win2000 Based Framework, Issues and Guidelines
Roberto Paiano & Andrea Pandurino 500

Medical Information Technology
Cyber Psychiatry: A Review of Internet Self Help Sites for Depression and Related Problems
Gordana Culjak 224

Nutritional Information on the Web: An Analysis of Information Sought and Information Provided
Susan G. Doran, Caroline Eastman & Bernard Jansen 106

An Exploratory Study Exploiting Image Features for Term Assignment in Medicine
Abby A. Goodrum 346

Virtual Reality, Telemedicine and Beyond
Francesco Orsucci & Nicoletta Sala 753

Adapting the Task-Technology-Fit Model to the Development and Testing of a Voice Activated Medical Tracking Application
James Rodger & Parag Pendharkar 564

Mobile Computing and Commerce
Critical Factors for Mobile Business Success
Nabeel A.Y. Al-Qirim 10

A Comparison of CRM Implementation Across Internet and Wireless Channels
Susy S. Chan & Jean Lam 1027

Wireless Cryptographic Systems
Amanda Dambrouckas 1046

Framework for Emerging Mobile Data Services:
Survey of GSM Operators
Tomaz Jaroszkoski 904

Mobile Commerce and National IT Infrastructure
Ooki Lee & Woonghee Lee 352

Introducing Mobile Computing-Student Built Mobile Databases
W. Brett McKenzie 942

Motivations and Barriers to the Adoption of 3G Mobile Multimedia Services: An End User Perspective in the Italian Market
Margherita Pagani & Danilo Schiopiani 957

A Hypothetical Wireless Network with Mobile Base Stations in Urban Areas
G. Sampath .. 994

Information Presentation on Mobile Handhelds
B. Karstens, R. Rosenbaum & H. Schumann 628

Mobile Payments (mPayments) - An Exploratory Study of Emerging Issues and Future Trends
Melissa Soo Ding & Chandana R. Unithan 99

Rates of Change in Ad hoc Networks
Alec Yasinsac 698
Improving Innovation Performance through IS Enabled Knowledge Scanning

Qiang Tu
College of Business, Rochester Institute of Technology
Rochester, NY 14623
Phone: (585) 475-2314, Fax: (585) 475-5975
Email: tuc@rit.edu

INTRODUCTION

To remain competitive or even survive in today's highly uncertain environment, many firms are searching for a panacea that can solve all the problems. Some firms opted for business process reengineering (BPR), and even more chose the technology route by investing heavily in enterprise resource planning (ERP) systems, hoping for a quick fix. But the reality is that there are no magic pills to cure everything. Studies show that majority of BPR and ERP projects didn't achieve their original goals (Hammer and Champy, 1993; Sheer and Habermann, 2000). In the long run, the best guarantee for sustained competitiveness in today's unpredictable market is continuous innovation in products and processes to quickly adapt to the changing environment (Tushman and O'Reilly, 1987; McGrath, 2001).

Firm's capability for continuous innovation cannot be achieved by simply acquiring new technologies. It must involve constant accumulation of knowledge and information, and complex interaction among people, processes and technology (Sage, 2000). Given the importance of manufacturing innovation to the firm's long-term competitiveness (Cusumano, 1988), it will be interesting to identify the primary factors that affects a firm's innovation performance.

Previous studies have looked at the impact of some important content and process factors on innovation performance, such as types of innovation (Knight, 1967; Zaltman et al., 1973; Daft and Decker, 1978), attributes of innovation (Regen, 1983), leadership styles (Van de Ven, 1986), champions of innovation (Howell and Higgin, 1980), organizational culture and organizational structure (Nord and Tucker, 1987), absorptive capacity (Cohen and Levinthal, 1990), and organizational learning (McKee, 1992).

This is a large scale survey study focuses on innovation performance in manufacturing setting. Two new organizational level variables are introduced, i.e., information systems (IS) usage and knowledge scanning mechanism. The roles of information technology and knowledge have been discussed in innovation literature (Damangaur, 1991; Etzioni, 2000), but empirical studies concerning these important variables are scarce, especially at the organizational level (Derry and Taggar, 1994).

This paper also made an effort to develop valid and reliable measurement instruments for organizational level IS usage, knowledge scanning and manufacturing innovation, which could be a valuable tool for future related studies.

THEORETICAL FRAMEWORK AND HYPOTHESES DEVELOPMENT

The theoretical model in Figure 1 suggests that a firm's innovation performance is directly affected by the firm's level of knowledge scanning and exploration activities, while the level of knowledge scanning activities is facilitated by effective organization- wide use of information systems. The three constructs in the model are described.

![Theoretical Framework](image)

Information Systems Usage (ISU)
- Strategic Planning Support
- Operational Decision Support
- Internal Integration
- External Integration

Knowledge Scanning (KS)

Manufacturing Innovation Performance (MIF)

Information Systems Usage (ISU)

While previous studies on IS usage are extensive (Szajna, 1996), their definition of IS usage are mostly at the individual or task level. Few studies look into the organizational level and inter-organizational IS usage effectiveness issues. Meanwhile, the measures for IS usage in many existing studies are either actual usage time logs or single item instrument with limited reliability and validity. Comprehensive and reliable measurement scales for IS usage at both individual and organizational level are necessary to facilitate research in this field.

Doll and Torkzadeh (1995) are the first to develop an instrument for IT usage patterns at the task level. They conceptualize the IT usage pattern into five dimensions: 1) problem solving; the extent that an application is used to analyze cause and effect relationships; 2) customer service: the extent that an application is used to service customers; 3) decision rationalization: the extent that an application is used to improve the decision making processes or explain/justify the reasons for decisions; 4) vertical integration: the extent that an application is used to coordinate one's work vertically with superiors and subordinates; and 5) horizontal integration: the extent that an application is used to coordinate activities of others in one's work group. Although this instrument focused primarily on individual and work group mechanisms, it did offer some useful directions for conceptualizing the organizational level IS usage construct. Using Doll and Torkzadeh (1995) instrument as starting point, along with comprehensive literature review, the organizational level IS usage construct in this study is re-conceptualized as the extent to which IS is used by the firm to promote integration, support decision making and assist in strategic planning.

In summary, four major dimensions of organizational-level IS usage were proposed and their definitions are listed below.

Operational Decision Support. The extent that IS is used by the firm to help monitoring, justifying and improving daily operational decision processes (Doll and Torkzadeh - Decision Rationalization; Boynton and Zmud - Management Support).

Strategic Planning Support. The extent that IS is used by the firm to help formulating, justifying, improving long-term business planning processes and establishing competitive advantage (Boynton and Zmud: Strategic Planning & Competitive Threats).
Information Technology and Organizations

Internal Integration. The extent that IS is used by the firm to facilitate information sharing and coordinate work activities within the organization (Doll and Torkzadeh — Vertical Integration & Horizontal Integration).

External Integration. The extent that IS is used by the firm to service and communicate with external constituencies, such as customers, suppliers, government agencies, research institutions, etc. (Doll and Torkzadeh — Customer Service).

Knowledge Scanning (KS)

Knowledge Scanning is defined as the organizational mechanisms that enable the firm to effectively identify and exploit relevant external and internal knowledge and technology. There are many activities that signify the existence of such a mechanism in an organization. An important dimension of Boynton and Zmud’s (1994) conceptualization of firm’s capability to absorb new knowledge is the IT-management process, i.e., various routines and procedures that embody the pragmatic knowledge to foster appropriate IT use. Cohen and Levinthal (1990) suggest that absorptive capacity for new knowledge and technology is likely to be developed as a byproduct of routine R&D activities.

Employee training such as sending employees for advanced technical training, or encouraging them to monitor and read the technical literature in their areas of expertise, could be another important knowledge scanning activity (Cohen and Levinthal, 1994). Finally, interorganizational learning activities, such as benchmarking of best practices, strategic alliances, and customer and supplier surveys may also serve as effective knowledge scanning activities (Levissen and Asahi, 1995).

Manufacturing Innovation Performance (MIP)

In their article describing the evolution of large scale manufacturing firms, Bolwin and Kurbjue (1990) noted that many large multinational firms have passed the efficiency, quality and flexibility phase. The ideal firm in the 1990s is the innovative firm that emphasizes uniqueness. Since the concept of innovation has both a content component and a process component (Welfe, 1994), the conceptualization of manufacturing innovation in this paper will not only involve developing new products, but also creating new ways for customer service, shop floor management, and supply chain management (Casuamano, 1988).

Research Hypotheses

Swanson (1994) modified the dual core model of organizational innovation (Daft, 1978) by adding a third IS core as strategic linkage between the firm’s technical core and administrative core, but the paper did not further elaborate how this IS core will actually function to improve organizational innovation. This paper proposes that use of IS can greatly facilitate the firm’s knowledge scanning and exploration activities, which in turn impacts innovation performance (Cusano and Paolucci, 2001).

In today’s fast-changing competitive environment, there’s a strong need for easier and better knowledge sharing (Marshall, 1997). However, for many firms, a significant amount of organizational knowledge remains unmanaged, undervalued, and unorganized, thus invisible to the firm when needed (Van den Hoven, 2001). Use of IS should greatly help the firm’s knowledge management processes. Studies show that implementation of information technology can significantly enhance the knowledge workers and workforce learning (Giannouli, 1997). In fact, when the IS is fully integrated with the entire enterprise system, it becomes an organizational memory (Wang, 1999) that serves as a cumulative knowledge repository for the firm (Hackathorn and Grover, 1999). Therefore, it is hypothesized that:

Hypothesis 1: Firms with higher levels of IS usage will have higher levels of knowledge scanning.

Manufacturing innovations do not happen overnight. It requires years of learning and knowledge accumulation. There is consensus among researchers and practitioners that organizational learning is a key variable that drives innovation (Stata, 1989; McKee, 1992). Knowledge scanning and exploration are critical components of organizational learning. Empirical studies have shown that firms with higher levels of absorptive capacity, i.e., the capability to exploit and assimilate external knowledge and information, are typically more effective in new product development (Cohen and Levinthal, 1990). A survey study by Tsui (2001) also found that an organization unit’s absorptive capacity has significant positive impact on its innovation performance. McGrath (2001) study of 56 new business development projects again confirmed that higher levels of knowledge exploration is positively related to higher adaptation and innovation capacity. It is therefore hypothesized that:

Hypothesis 2: Firms with higher levels of knowledge scanning will have higher levels of manufacturing innovation performance.

RESEARCH METHODOLOGY

In this section, research methods are described for survey instrument development and hypothesis testing. The instrument development process for IS Usage (ISU), Knowledge Scanning (KS) and Manufacturing Innovation Performance (MIP) included several phases: item generation, pre-pilot study, pilot study, and large-scale data collection and analysis.

A comprehensive literature review was completed to define the constructs and identify an initial list of items. To improve content validity, a pre-pilot study was completed that involved structured interviews with four manufacturing managers and six academic experts. The interview results were carefully analyzed and a common pattern of thinking was recognized, which formed the basis for further revision of the research constructs and measurement items. A pilot study was then completed by surveying senior manufacturing managers. The study provided valuable preliminary information about the reliability and validity of the measurement scales. It also gave a real opportunity to pilot the scales. The final version of the questionnaire was administered through large-scale mailing to 2831 manufacturing managers who were randomly selected from SMI’s U.S. membership database. There were a total of 320 responses from the mailings, of which 303 were complete and usable.

Assessment of Measurement Properties

Tests of unidimensionality, discriminant validity, and reliability are important for establishing construct validity (Sethi and King, 1994). The assessment of these measurement properties will be discussed for ISU, KS and MIP.

Information Systems Usage (ISU)

The Information Systems Usage (ISU) construct was initially represented by four dimensions comprising 25 items in the large-scale survey, including Operational Decision Support (ODS) (4 items), Strategic Planning Support (SPS) (5 items), External Integration (EXI) (9 items), and Internal Integration (INI) (7 items).

Initial reliability analysis for each of the four ISU dimensions showed that the Corrected Item-Total Correlation (CITC) scores for all items were above 0.50. However, the “Alpha if deleted” score indicated that removing EXI would improve reliability of EXI dimension. Thus item EXI was dropped at this stage. Factor analysis of the INI dimension revealed two factors (Factor 1: INI1, INI2, INI3, INI6, INI7 and Factor 2: INI4, INI5). Referring to the contents of each item, Factor 2 does not make too much theoretical sense. It was thus decided that items INI4 and INI5 be removed.

The remaining 22 ISU items were submitted to construct-level exploratory factor analysis to check for discriminant validity of the measurement instrument. Four factors emerged from the factor analysis with all factor loadings above 0.50 and most above 0.60. Serious cross-loading occurred on item INI7. Hence item INI7 was dropped. Finally, construct-level exploratory factor analysis was done again. This time four clear factors emerged with all items loaded correctly on the expected dimensions. Most factor loadings were above 0.60. No cross-loading was observed.
Knowledge Scanning (KS)

KS was conceptualized as having a single dimension and 7 items. Reliability analysis showed satisfactory Alpha score of 0.80. CITC scores for all items were above 0.59. (We seek to learn from conducting R&D activities) with a CITC score of 0.48, slightly below 0.50. Considering the importance of items KS to this construct, KS was retained. To ensure unidimensionality of the 7 items, exploratory factor analysis was performed and one single factor emerged with all factor loadings close to or over 0.70.

Manufacturing Innovation Performance (MIP)

The MIP construct was conceptualized as having one dimension and 5 items. Reliability was good with an Alpha score of 0.78. CITC scores are all above 0.50. To ensure the discriminant validity of the five items, an exploratory factor analysis was performed using all 5 items that measure MIP. One clear factor emerged with all factor loadings above 0.70.

Hypotheses Testing Results

To check for the preliminary statistical validity of the two hypotheses, the Pearson correlation coefficients of the two hypothesized relationships were calculated using a composite score for ISU, KS and MIP. The composite scores were computed by taking the average score of all items in a specific construct. The results are presented in Table 1. More rigorous hypotheses testing using LISREL structural modeling can be done at a later stage.

Hypothesis 1, which claims that organizations with high-levels of ISU have high-levels of KS, is supported by the correlation analysis. The Pearson correlation coefficient is 0.50, which is statistically significant at the 0.01 level. Hypothesis 2, which states that KS will have a direct positive impact on MIP, is also supported. The Pearson correlation coefficient is 0.473, which is also statistically significant at the 0.01 level.

DISCUSSION AND CONCLUSION

As Swanson (1994) pointed out, the existing literature regarding the role of IS in innovation is both fragmented and limited. Dodgson (1993) also noted that the impact of recent technology on the processes and outcomes of organizational learning provide fertile ground for future research. This study is possibly one of the first large-scale empirical efforts to investigate and measure ISU and to examine its impact on the firm's knowledge exploration capability and manufacturing innovation performance. Measures for ISU, KS and MIP were developed through very carefully designed large-scale data collection process and rigorous instrument validation methods. The content domain of the constructs has been covered adequately because care was taken during item generation. The instruments exceed generally accepted validity and reliability standards for basic research. The resulting instrument can be widely used in future research, and they should facilitate interdisciplinary studies in IS management and manufacturing management. The instruments can also be used as a valuable tool for practitioners to evaluate their firm's level of ISU, KS and MIP.

The results of this study show that ISU has a positive and statistically significant effect on KS. It indicates that extensive use of IS at various levels and functional areas of a firm is indeed a valid way to facilitate knowledge exploration and organizational learning. Advanced information systems, especially web-based systems, offer extremely powerful and flexible tools for storing, organizing, processing and retrieving complex knowledge and information. The results also confirmed the positive relationship between KS and MIP. The ability to scan the environment for new knowledge and ideas enhances the individual and organizational knowledge base and thus increases the opportunity for innovation success.

Downs and Mohr (1976) criticized innovation research for instability in empirical findings. Damapour (1991) challenged the "insufficiency" argument and suggested a contingency approach by evaluating the moderating power of various moderators. Future research can examine the proposed relationships in a contingent manner by incorporating some contextual variables such as environmental uncertainty level, industry type and size of the firm. It will also be interesting to further examine the differing impact of the four sub-dimensions of IS usage, knowledge scanning and manufacturing innovation.

REFERENCES

