1997

Multidimensional subset sum problem

Vladimir Kolesnikov

Follow this and additional works at: http://scholarworks.rit.edu/theses

Recommended Citation
Multidimensional Subset Sum Problem

by

Vladimir Kolesnikov

A thesis, submitted to The Faculty of the School of Computer Science and Technology in partial fulfillment of the requirement for the degree of Master of Science in Computer Science

Approved by:

Prof. Anderson

Prof. Radziszowski

Prof. Coon

September 3, 1997
Title of thesis: Multidimensional Subset Sum Problem.

I, Vladimir Kolesnikov, hereby grant permission to the Wallace Library of the Rochester Institute of Technology to reproduce my thesis in whole or in part. Any reproduction will not be for commercial use or profit.

Date: 04/04/97 Signature of Author: ________________________
Multidimensional Subset Sum Problem

Abstract

This thesis explores new modifications to the successful LLL approach to solving the Subset Sum problem. This work is an optimization of the matrix representation of an instance. Traditionally, the basis matrix contained only one column with set elements and the sum. In this thesis we suggest having several data columns (thus introducing multidimensionality). This allows us to reduce the size of column entries which changes the complexity of the problem. Splitting the data into multiple columns greatly simplifies the task of solving the Subset Sum problem. However, other problems arise when we try to generate multiple columns. Here we try to find the optimal way to do the split and present the results. Our main goal was to try to solve the current hardest Subset Sum problem instances: the ones with density slightly greater than 1. Dramatic improvement in the rate of success was observed (up to 1500 %) compared to one-dimensional implementations.

1 Overview

Subset Sum is a well-known NP-complete problem [5]. It is is defined as follows:
Definition 1 Given a vector of positive integers \(\vec{a} = (a_1, a_2, \ldots, a_n) \) and a positive integer \(M \), find a \(\{0,1\} \)-vector \(\vec{x} = (x_1, x_2, \ldots, x_n) \), such that
\[
\sum_{i=1}^{n} a_i \cdot x_i = M \tag{1}
\]

In other words, the Subset Sum problem is:

Given a set of positive integers \(S \) and a positive integer \(M \), find a subset of \(S \), the sum of the elements of which is equal to \(M \).

The Subset Sum problem is the basis for several public key cryptography systems. They are based on the intractability of finding a solution to (1) even when the solution is known to exist. In such systems, each user publishes a vector \(\vec{a} \) of \(a_i \). A plaintext message consisting of an integer vector \(\vec{v} = \{x_0, x_1, \ldots, x_{n-1}\} \) where \(x_i = \{0,1\} \) is encrypted by setting
\[
E(\vec{v}) = \sum x_i \cdot a_i.
\]

The elements \(a_i \) are chosen in such a way that the equation is easily solved if certain secret trapdoor information is known. The exact nature of this information depends on the particular system. A general property of Subset Sum (or knapsack) based public key cryptosystems is that encryption is easy: all you have to do is add. [3]

The LLL algorithm is based on the lattice basis reduction algorithm, proposed by Lenstra, Lenstra and Lovasz. It also uses techniques of linear algebra, specifically the Gram-Schmidt orthogonalization process. The authors of the original algorithm developed a notion of LLL reduction and an algorithm to LLL reduce a basis of integer lattice. The idea of the algorithm is to transform a vector basis given by an initial integer matrix into another integer vector basis, such that vectors in the latter are as short as possible. The latter basis must also be equivalent to the original one (i.e., span the same space). It appears that many NP complete problems, including the
Subset Sum problem, are representable as problems of finding short integer vectors in a vector space, called integer lattices. Here the LLL algorithm comes into play: it looks for short vectors by shortening the basis vectors.

The LLL-based approach is the most famous and well-known approach to solving the Subset Sum problem. In fact it was one of the reasons for the fall of Subset Sum based public-key cryptosystems. (See [9] and [1] for surveys in this field). Almost all of these cryptosystems have been shown to be insecure. The majority of the attacks exploited specific constructions of the relevant cryptosystems. In addition, two independent algorithms have been proposed, one by Brickell [2] and the other by Lagarias and Odlyzko [6] which show that almost all Subset Sum problems of low density can be solved in polynomial time, where density is defined as the ratio between the size of the set, and the bit size of the largest of the set elements. The Brickell and Lagarias-Odlyzko attacks reduce the Subset Sum problem to the problem of finding the Euclidian-norm shortest nonzero vector in a lattice (the job of the LLL algorithm). It is a very hard problem in general. The theoretical worst case bounds for the LLL algorithm and its variants are not encouraging. However, these techniques tend to perform much better in practice than in theory [7].

A lot of work has been done in this area, and many different approaches tried. One can point out two main research directions in applying LLL to solving Subset Sum problems. One is the improvement of the LLL algorithm itself. Many different heuristics were invented, and different definitions of a property being reduced were introduced (e.g. Korkine- Zolotarev reduction, presented in [11]). The other approach is to find better ways to represent a Subset Sum problem instance as a lattice basis reduction instance. This work definitely belongs to the second direction. There also were attempts to combine improved ways to represent the lattice with heuristic variants of lattice basis reduction implementations, for example [11]. In this thesis, a standard reduction algorithm was used, and the results observed are compared to ones obtained from experiments with similar quality LLL implementations (mainly to performance of LLLFP, presented in [11]).
Part I

The application of LLL algorithm to solving Subset Sum problem

2 Definitions

Let R^n and Z^n denote n-dimensional spaces over real numbers and integers, respectively. Consider space R^n.

Definition 2 A vector is an ordered pair of points (P, Q) which we call a vector from P to Q, and denote PQ. Define $PQ = RS$ if they have the same length and direction.

Definition 3 A vector space is a set, whose elements are called vectors, together with two operations. The first operation, called vector addition, assigns to each pair of vectors \vec{A} and \vec{B} a vector denoted $\vec{A} + \vec{B}$, called their sum. The second operation, called scalar multiplication, assigns to each vector \vec{A} and each number r a vector denoted by $r\vec{A}$. The two operations are required to have the following properties:

1. $\vec{A} + \vec{B} = \vec{B} + \vec{A}$
2. $(\vec{A} + \vec{B}) + \vec{C} = \vec{A} + (\vec{B} + \vec{C})$
3. $\exists! \vec{0}$, such that $\vec{A} + \vec{0} = \vec{A}, \forall \vec{A}$
4. $\forall \vec{A} \exists (-\vec{A})$, such that $\vec{A} + (-\vec{A}) = \vec{0}$
5. $r(\vec{A} + \vec{B}) = r\vec{A} + r\vec{B}$
6. $(r + s)\vec{A} = r\vec{A} + s\vec{A}$
7. $(rs)\vec{A} = r(s\vec{A})$
8. $\forall \vec{A}, 1\vec{A} = \vec{A}$
Let \mathbb{R}^n be the n-dimensional real vector space with the ordinary inner product $\langle \cdot , \cdot \rangle$ and Euclidean length $|y| = \sqrt{\langle y, y \rangle}$.

Definition 4 A discrete, additive subgroup $L \subseteq \mathbb{R}^n$ is called a lattice.

Every lattice is generated by some set of linearly independent vectors $\tilde{b}_1, \tilde{b}_2, \ldots, \tilde{b}_m \subseteq L$ that is called a basis of L,

$$L = \{ t_1 \tilde{b}_1 + t_2 \tilde{b}_2 + \ldots + t_m \tilde{b}_m \mid t_1, t_2, \ldots, t_m \in \mathbb{Z} \}$$

Let $\tilde{b}_1, \tilde{b}_2, \ldots, \tilde{b}_m \subseteq \mathbb{R}^n$ be a basis of lattice L. Then $\tilde{b}_1, \tilde{b}_2, \ldots, \tilde{b}_m$ is also a basis of L if and only if there exists a matrix T (of size $n \times n$), such that

$$[\tilde{b}_1, \tilde{b}_2, \ldots, \tilde{b}_m] = [\tilde{b}_1, \tilde{b}_2, \ldots, \tilde{b}_m]T$$

Here $[\tilde{b}_1, \tilde{b}_2, \ldots, \tilde{b}_m]$ denotes the $n \cdot m$ matrix in $M_{n,m}(\mathbb{R})$ with column vectors $\tilde{b}_1, \tilde{b}_2, \ldots, \tilde{b}_m$.

3 How to solve the problem

There are several ways to solve a *Subset Sum problem* using the *LLL algorithm* (the original approach by Lagarias and Odlyzko in [6], Radziszowski’s in [10], Schnorr’s in [11], etc). They all have the same idea. We need to represent an instance of the problem as a basis of integer vectors in an integer lattice in a way that the 0,1-solution vector is present in the vector space defined by the basis (it may be somewhat transformed). The vector we are looking for is very short. By applying *LLL algorithm* to the lattice representing the *Subset Sum problem* instance, we shorten the vectors. The probability that the short vector we are looking for will appear among the basis vectors is high.

Let us consider a lattice, suggested by Claus Schnorr and Michael Euchner in [11]. Consider a *Subset Sum problem* according to (1). Let us associate with integers a_i and M the following basis

$$\tilde{b}_1, \tilde{b}_2, \ldots, \tilde{b}_{n+1} \subseteq \mathbb{Z}^{n+2}$$

$$\tilde{b}_1 = (2, 0, 0, \ldots, 0, na_1, 0)$$

5
\[\tilde{b}_2 = (0, 2, 0, ..., 0, na_2, 0) \]
\[\tilde{b}_3 = (0, 0, 2, ..., 0, na_3, 0) \]
\[\vdots \]
\[\tilde{b}_n = (0, 0, 0, ..., 2, na_n, 0) \]
\[\tilde{b}_{n+1} = (1, 1, 1, ..., 1, nM, 1) \]

Every lattice vector \(\tilde{z} = (z_1, z_2, ..., z_{n+2}) \in L(\tilde{b}_1, \tilde{b}_2, ..., \tilde{b}_{n+1}) \) that satisfies
\[|z_{n+2}| = 1, z_{n+1} = 0, z_1, z_2, ..., z_n \in \{1, -1\} \] (3)
yields the following solution for the *Subset Sum problem*
\[x_i = \frac{|z_i - z_{n+2}|}{2}, \text{for } i = 1, 2, ... n \] (4)

All we need is an oracle that could transform the given basis into an equivalent basis of short vectors.

4 Lattice basis reduction

The goal of lattice basis reduction is to transform a given lattice basis into a basis that consists of short vectors or, equivalently, into a basis consisting of vectors that are pairwise nearly orthogonal.

With an ordered lattice basis \(\tilde{b}_1, \tilde{b}_2, ..., \tilde{b}_m \) we associate the Gram-Schmidt orthogonalization \(\hat{b}_1, \hat{b}_2, ..., \hat{b}_m \) together with the Gram-Schmidt coefficients
\[\mu_{i,j} = \frac{\langle \tilde{b}_i, \hat{b}_j \rangle}{\langle \hat{b}_j, \hat{b}_j \rangle} \]
by the recursion
\[\hat{b}_1 = \tilde{b}_1 \]
\[\hat{b}_i = \tilde{b}_i - \sum_{j=1}^{i-1} \mu_{i,j} \hat{b}_j \]
We have \(\mu_{i,j} = 0 \) and \(\mu_{i,i} = 1 \) for \(i < j \). The vectors \(\hat{b}_1, \hat{b}_2, ..., \hat{b}_m \) are linearly independent, but they are not necessarily in the lattice. If the basis \(\vec{b}_1, \vec{b}_2, ..., \vec{b}_m \in \mathbb{Z}^n \), then the vectors \(\hat{b}_1, \hat{b}_2, ..., \hat{b}_m \) and the coefficients \(\mu_{i,j} \) are rational. We can write the above as

\[
[\vec{b}_1, \vec{b}_2, ..., \vec{b}_m] = [\hat{b}_1, \hat{b}_2, ..., \hat{b}_m][\mu_{i,j}]^T
\]

Definition 5 An ordered basis \(\vec{b}_1, \vec{b}_2, ..., \vec{b}_m \in \mathbb{R}^n \) is called size-reduced if

\[
|\mu_{i,j}| \leq \frac{1}{2} \text{ for } 1 \leq j < i \leq m .
\]

Definition 6 An individual vector \(\vec{b}_i \) is called size-reduced if

\[
|\mu_{i,j}| \leq \frac{1}{2} \text{ for } 1 \leq j < i .
\]

Definition 7 An ordered basis \(\vec{b}_1, \vec{b}_2, ..., \vec{b}_m \in \mathbb{R}^n \) is called LLL-reduced with \(d \), where \(d \) is a constant \(\frac{1}{4} < d < 1 \), if it is size-reduced and if

\[
d|\hat{b}_{k-1}|^2 \leq |\hat{b}_k + \mu_{k,k-1}\hat{b}_{k-1}|^2 \text{ for } k = 2, 3, ..., m
\]

For practical purposes we are interested in a constant \(d \) that is close to 1, e.g. \(d = 0.99 \).

4.1 Meaning of size and LLL reduction

4.1.1 Meaning of size reduction

Recall that

\[
\mu_{i,j} = \frac{\langle \vec{b}_i, \vec{b}_j \rangle}{\langle \vec{b}_j, \vec{b}_j \rangle}
\]

It is known that \(\cos(\hat{A}, \hat{B}) = \frac{\langle \hat{A}, \hat{B} \rangle}{|\hat{A}||\hat{B}|} \) Thus

\[
\mu_{i,j} = \frac{\langle \vec{b}_i, \vec{b}_j \rangle}{|\vec{b}_i||\vec{b}_j|} \cdot \frac{|\vec{b}_i||\vec{b}_j|}{\langle \vec{b}_j, \vec{b}_j \rangle} = \cos \theta \cdot \frac{|\vec{b}_i|}{|\vec{b}_j|}
\]

Thus, size reduction imposes the condition that resulting vectors are short or nearly orthogonal.
4.1.2 Meaning of LLL reduction

Let $\lambda_1, \ldots, \lambda_m$ denote successive minima of lattice L, $\lambda_i = \lambda_i(L)$ is defined as the smallest radius r of a ball that is centered at the origin and which contains r linearly independent lattice vectors. Any LLL-reduced basis consists of relatively short lattice vectors.

\textbf{Theorem [8]} 1 Every basis $\vec{b}_1, \vec{b}_2, \ldots, \vec{b}_m$ that is LLL-reduced with d satisfies

$$\alpha^{1-i} \leq \frac{|\vec{b}_i|^2}{\lambda_i^2} \leq \alpha^{m-1}, \quad i = 1, 2, \ldots, m, \alpha = (d - \frac{1}{4})^{-1}$$

Thus, the property of a basis being LLL-reduced imposes theoretical limits on the lengths of vectors. In practice, the performance of the lattice basis reduction algorithm based on LLL-reduction is much better that in theory.

4.2 Lattice reduction algorithms

4.2.1 Algorithm for size reduction of the basis vector b_k

\textbf{INPUT} $\vec{b}_1, \vec{b}_2, \ldots, \vec{b}_m \in \mathbb{Z}^n$ (a lattice basis) $\mu_{i,j}$ for $1 \leq j < i \leq m$ (Gram-Schmidt coefficients)

\textbf{FOR} $j = k-1, \ldots, 1$ \textbf{DO}

\textbf{IF} $|\mu_{k,j}| > \frac{1}{2}$ \textbf{THEN}

$\vec{b}_k := \vec{b}_k - \lfloor \mu_{k,j} \rfloor \vec{b}_j$

\textbf{FOR} $i = 1, 2, \ldots, m$ \textbf{DO}

$\mu_{k,i} := \mu_{k,i} - \lfloor \mu_{k,j} \rfloor \mu_{k,i}$

\textbf{END}

\textbf{END IF}

\textbf{END}

\textbf{OUTPUT} $\vec{b}_1, \vec{b}_2, \ldots, \vec{b}_m$ (basis where \vec{b}_k is size-reduced) $\mu_{i,j}$ for $1 \leq j < i \leq m$

Here $\lfloor \cdot \rfloor$ denotes the nearest integer. We obtain a size-reduced basis $\vec{b}_1, \vec{b}_2, \ldots, \vec{b}_m$ by size-reducing each vector individually. Size-reducing the vector \vec{b}_k does not affect the size-reduction of other vectors [11].
4.2.2 Algorithm for LLL reduction

The following is the original algorithm, presented in [8].

INPUT \(\vec{b}_1, \vec{b}_2, ..., \vec{b}_m \in \mathbb{Z}^n \) (a lattice basis), \(d \) with \(\frac{1}{4} < d < 1 \).

(initialization) \(\ k := 2 \) (\(k \) is the stage)
- compute the Gram-Schmidt coefficients \(\mu_{k,j} \) for \(1 \leq j < i \leq m \) and \(|\hat{b}_i|^2 \) for \(i = 1, ..., m \)

WHILE \(k \leq m \) DO
- size-reduce the vector \(\vec{b}_{k-1} \) and update \(\mu_{k,j} \) for \(j = 1, ..., k - 1 \)
 - IF \(d|\hat{b}_{k-1}|^2 > |\hat{b}_k|^2 + \mu_{k,k-1}^2|\hat{b}_{k-1}|^2 \)
 THEN
 - swap \(\vec{b}_k \) and \(\vec{b}_{k-1} \), \(k := \max(k-1, 2) \)
 ELSE
 - \(k := k + 1 \)
END IF
END WHILE

OUTPUT \(\vec{b}_1, \vec{b}_2, ..., \vec{b}_m \) (a basis that is LLL-reduced with \(d \)).

REMARKS [8]:

1. Upon entry of stage \(k \) the basis \(\vec{b}_1, \vec{b}_2, ..., \vec{b}_{k-1} \) is LLL-reduced with \(d \).
2. For every SWAP \(\vec{b}_k \leftarrow \vec{b}_{k-1} \) we must update \(|\hat{b}_k|^2, |\hat{b}_{k-1}|^2 \) and the Gram-Schmidt coefficients.
3. Let \(B = \max (|\vec{b}_1|^2, ..., |\vec{b}_m|^2) \). The algorithm terminates after at most \(O(m^2 \log B) \) iterations. It performs at most \(O(m^3 n \log B) \) arithmetic operations on integers that are \(O(m \log B) \) bits long.

5 Practical algorithms to solve the Subset Sum problem

The following algorithm was suggested by Schnorr and Euchner in [11].

INPUT \(a_1, a_2, ..., a_n, M \in \mathbb{N} \)

1. Compute the basis (2)
2. Randomly permute \(\vec{b}_1, \vec{b}_2, \ldots, \vec{b}_{n+1} \) so that the permuted basis starts with the vectors \(\vec{b}_i \), satisfying \(b_{i,n+2} \neq 0 \)

3. \(LLL \)-reduce the basis \(\vec{b}_1, \vec{b}_2, \ldots, \vec{b}_{n+1} \)

4. IF some vector \((z_1, z_2, \ldots, z_{n+2})\) in the reduced basis satisfies (3) THEN
 OUTPUT \(x_i = \frac{|z_i - z_{n+2}|}{2} \) for \(i = 1, \ldots, n \) and STOP

5. (reduce pairs of basis vectors)
 \[F := FALSE \]
 Sort \(\vec{b}_1, \vec{b}_2, \ldots, \vec{b}_{n+1} \) so that \(|\vec{b}_1| \leq |\vec{b}_2| \leq \ldots \leq |\vec{b}_2| \)
 FOR \(j = 1, \ldots, n \) DO
 FOR \(k = 0, \ldots, j-1 \) DO
 IF \(|\vec{b}_j \pm \vec{b}_k| < |\vec{b}_j| \)
 THEN \(\vec{b}_j := \vec{b}_j \pm \vec{b}_k, \ F := TRUE \]
 ENDF
 END
 IF \(F = TRUE \) THEN GOTO 5

6. Repeat steps 2-5 15-100 times.

Experiments show that sometimes, depending on the instance of the problem, step 5 may take a lot of CPU time. The GOTO operation may get called thousands of times. It is effective to introduce some top line, the upper limit on the number of times allowed to execute the operation GOTO 5. According to experiments, the optimum limit is 10. Even if all pairs of vectors were not reduced after 10 iterations of step 5, after calling \(LLL \) and returning to step 5, it will reduce all pairs in less than 10 iterations.

6 Performance of the \(LLL \) algorithm

The performance of the algorithm mostly depends on the density of the instance of the problem. Density is the ratio between the size of the set and the number of bits in the largest of its elements. Precisely, the density of a
Subset Sum problem (1) is defined as

\[
density = \frac{1}{\log_2(\max \{a_i : 1 \leq i \leq n\})}
\]

(5)

Currently, the most difficult instances have density slightly larger than 1, i.e. density about \(1 + \frac{\log_2(\frac{m}{2})}{n}\). It has been proven rigorously (for example in [4]) that for almost all subset sum problems with density less than 0.9408 the shortest non-zero vector in the associated lattice basis yields a solution of the **Subset Sum problem** (1).

The **LLL** based algorithm calculates almost immediately **Subset Sum problem** instances that are still possible to compute by brute force (backtracking) algorithms. For example, an algorithm, presented in [11] solves 100% of the instances of the problem with a set size 26 and the number of bits being 27 and 28. On average it takes 0.05 seconds of CPU time and 2 **LLL** iterations to solve such a problem. (Timing produced on 195 MHz SGI R10000)

Other results in the area are presented in [4], where the authors present two other matrix representations of the **Subset Sum problem** that yield the following results:

<table>
<thead>
<tr>
<th>n</th>
<th>b</th>
<th>success rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>50</td>
<td>1.00</td>
</tr>
<tr>
<td>50</td>
<td>60</td>
<td>1.00</td>
</tr>
<tr>
<td>66</td>
<td>76</td>
<td>0.25</td>
</tr>
<tr>
<td>66</td>
<td>84</td>
<td>0.80</td>
</tr>
<tr>
<td>66</td>
<td>92</td>
<td>0.95</td>
</tr>
<tr>
<td>66</td>
<td>100</td>
<td>1.00</td>
</tr>
<tr>
<td>66</td>
<td>104</td>
<td>1.00</td>
</tr>
<tr>
<td>66</td>
<td>108</td>
<td>1.00</td>
</tr>
<tr>
<td>66</td>
<td>112</td>
<td>1.00</td>
</tr>
</tbody>
</table>

The results obtained by C. P. Schnorr and M. Euchner, presented in [11]
are the following for the experiments with the original *LLL* implementation:

<table>
<thead>
<tr>
<th>n</th>
<th>b</th>
<th>successes out of 20 attempts</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>42</td>
<td>10</td>
</tr>
<tr>
<td>50</td>
<td>46</td>
<td>6</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>12</td>
</tr>
<tr>
<td>50</td>
<td>54</td>
<td>15</td>
</tr>
<tr>
<td>50</td>
<td>58</td>
<td>17</td>
</tr>
<tr>
<td>50</td>
<td>62</td>
<td>20</td>
</tr>
<tr>
<td>58</td>
<td>41</td>
<td>15</td>
</tr>
<tr>
<td>58</td>
<td>47</td>
<td>3</td>
</tr>
<tr>
<td>58</td>
<td>53</td>
<td>1</td>
</tr>
<tr>
<td>58</td>
<td>58</td>
<td>3</td>
</tr>
<tr>
<td>58</td>
<td>63</td>
<td>6</td>
</tr>
<tr>
<td>58</td>
<td>69</td>
<td>12</td>
</tr>
</tbody>
</table>

The improved *LLL* algorithm implementation proposed in [11] combined with the same matrix representation strategy produced the following rates of success:

<table>
<thead>
<tr>
<th>n</th>
<th>b</th>
<th>successes out of 20 attempts</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>42</td>
<td>19</td>
</tr>
<tr>
<td>50</td>
<td>46</td>
<td>20</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>19</td>
</tr>
<tr>
<td>50</td>
<td>54</td>
<td>20</td>
</tr>
<tr>
<td>50</td>
<td>58</td>
<td>20</td>
</tr>
<tr>
<td>50</td>
<td>62</td>
<td>20</td>
</tr>
<tr>
<td>58</td>
<td>41</td>
<td>20</td>
</tr>
<tr>
<td>58</td>
<td>47</td>
<td>17</td>
</tr>
<tr>
<td>58</td>
<td>53</td>
<td>15</td>
</tr>
<tr>
<td>58</td>
<td>58</td>
<td>16</td>
</tr>
<tr>
<td>58</td>
<td>63</td>
<td>20</td>
</tr>
<tr>
<td>58</td>
<td>69</td>
<td>20</td>
</tr>
</tbody>
</table>
This matrix representation allowed to solve almost all *Subset Sum problems* with densities < 0.9408.

Part II

Multidimensional Subset Sum algorithm

7 Definitions and purpose of having several dimensions

In previous approaches, in the matrix representation of a *Subset Sum problem* instance, only one column carried actual data. The rest of the matrix only ensured that the solutions supplied by the *LLL algorithm* that fit the solution criteria were indeed solutions of the problem. Only one column (dimension) was used. In this thesis, we suggest having several columns (dimensions) carry the data. Thus the word 'multidimensional' emerges in the context of the *LLL algorithm*.

The purpose of having several dimensions is simple. In the context of the *Subset Sum problem*, it allows us to have less information per column, thus changing the complexity of the problem. In our most successful implementation of the *Subset Sum problem*, we have two columns of data, each of which contains only part of the information contained in the set and the number M. The two columns together, however, represent it all.
Algorithm performance estimates for N dimensions

A number of experiments was run to determine the optimal number of dimensions. We generated random matrices similar to the one in (2) with the exception that we generated not one but \(n \) columns. For every size/bits combination, 20 instances were attempted, and the tables below represent the rate of success for different numbers of dimensions (up to 100 LLL calls were allowed). It is important to note that in this experiment all data columns were independent.

Dimensions = 1:

<table>
<thead>
<tr>
<th>size/bits</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>94%</td>
</tr>
<tr>
<td>40</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>94%</td>
</tr>
<tr>
<td>50</td>
<td>100%</td>
<td>75%</td>
<td>72%</td>
<td>50%</td>
</tr>
<tr>
<td>60</td>
<td>72%</td>
<td>90%</td>
<td>72%</td>
<td>20%</td>
</tr>
</tbody>
</table>

Dimensions = 2:

<table>
<thead>
<tr>
<th>size/bits</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>40</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>50</td>
<td>93%</td>
<td>93%</td>
<td>93%</td>
<td>93%</td>
</tr>
<tr>
<td>60</td>
<td>27%</td>
<td>13%</td>
<td>13%</td>
<td>7%</td>
</tr>
</tbody>
</table>

Dimensions = 3:

<table>
<thead>
<tr>
<th>size/bits</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>40</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>50%</td>
</tr>
<tr>
<td>50</td>
<td>93%</td>
<td>100%</td>
<td>100%</td>
<td>87%</td>
</tr>
<tr>
<td>60</td>
<td>33%</td>
<td>0%</td>
<td>20%</td>
<td>50%</td>
</tr>
</tbody>
</table>

Dimensions = 5:
<table>
<thead>
<tr>
<th>size/bits</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>100%</td>
<td>93%</td>
<td>50%</td>
<td>0%</td>
</tr>
<tr>
<td>40</td>
<td>100%</td>
<td>73%</td>
<td>13%</td>
<td>100%</td>
</tr>
<tr>
<td>50</td>
<td>100%</td>
<td>7%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>60</td>
<td>60%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Dimensions = 10:

<table>
<thead>
<tr>
<th>size/bits</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>40</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>50</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>60</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Dimensions = 20:

<table>
<thead>
<tr>
<th>size/bits</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>80%</td>
<td>13%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>40</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>50</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>60</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Dimensions = 30:

<table>
<thead>
<tr>
<th>size/bits</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>40</td>
<td>60%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>50</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>60</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Dimensions = 50:

<table>
<thead>
<tr>
<th>size/bits</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>40</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>50</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>60</td>
<td>27%</td>
<td>0%</td>
<td>0%</td>
<td>7%</td>
</tr>
</tbody>
</table>
Dimensions = 100, 200:

<table>
<thead>
<tr>
<th>size/bits</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>40</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>50</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>60</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

These experiments were run on a 195MHz SGI R10000. Timings varied from up to 15 seconds per instance in 1 dimensional case to less than 0.02 seconds per instance for all 100- and 200-dimensional bit/size combinations.

Unfortunately, the condition of the columns being independent is essential to the excellent performance of the 200-dimensional case. Simple duplication of columns of data will not work, nor will different manipulations of data that keep data columns linearly dependent.

9 Use of remainders

A good way to generate linearly independent columns of data given one column of data \(\{a_i\} \) is the use of remainders and modulo arithmetic. We can select \(n \) different natural numbers \(r_1, \ldots, r_n \), and construct \(n \) independent columns of data, such that each of the new columns contains remainders of division of the original column elements by \(r_i \).

<table>
<thead>
<tr>
<th>original column</th>
<th>new column</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>(s_1 = a_1 \mod r_j)</td>
</tr>
<tr>
<td>(a_2)</td>
<td>(s_2 = a_2 \mod r_j)</td>
</tr>
<tr>
<td>(a_3)</td>
<td>(s_3 = a_3 \mod r_j)</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(a_m)</td>
<td>(s_m = a_m \mod r_j)</td>
</tr>
<tr>
<td>(M)</td>
<td>(M^* = M \mod r_j)</td>
</tr>
</tbody>
</table>

16
Obviously, if there exists a \((0,1)\) vector \(\vec{x}\), such that

\[
\sum_{i=1}^{n} \vec{x}_i \cdot a_i = M, \tag{6}
\]

it is true that

\[
\sum_{i=1}^{n} \vec{x}_i \cdot s_i = M^* \pmod{r_j}. \tag{7}
\]

The reverse implication takes place if \(r_j\) are relatively prime and \(\prod_{i=1}^{n} r_i \geq M\) (Chinese Remainder Theorem).

However, using modulo arithmetic doesn't work well with the LLL algorithm because there is no big difference between vectors' sizes. Therefore we had to use "traditional" arithmetic. But in this case serious problems arise. Instead of \(M^*\) we must use

\[
\hat{M} = M \mod r_j + k_j \cdot r_j \tag{8}
\]

where \(k_j\) are unknown. We have to guess them.

The most difficult instances of the Subset Sum problem have a ratio of ones to zeros equal to 1. These are the problems that are addressed in [4], and [11]. Notice that this is another kind of density, not the one defined by (5). In this thesis we also try to solve problems with zero-to-one ratio equal to 1, and we use this information for constructing \(\hat{M}\). Luckily, according to our large number of experiments, there is a high (around 97%) probability of guessing \(k\) within 2 if we know the approximate ratio of ones and zeros in vector \(\vec{x}\) and \(r_j\) is sufficiently large. We use the following formula to guess \(k_j\):

\[
k_j = \frac{\sum_{i=1}^{n} s_i \cdot ratio}{r_j} \tag{9}
\]

where \(ratio\) is the ratio between the approximate number of ones in the solution vector and the length of the solution vector (as mentioned above, we consider the ratio to equal \(\frac{1}{2}\)).
The necessity of guessing eliminates the possibility of having a large number of columns in the representation matrix. Indeed, guessing k’s for n columns is exponential, and thus unacceptable because good performance of the algorithm is only achieved at $n > 100$.

Preliminary runs showed that the performance of representations with two and three columns are approximately the same, but there is more to guess in the three-dimensional case. Thus, we concentrated on two-column representation matrices only.

10 The way to construct two columns

Since the optimal number of columns is two, a slightly different approach was found to be very efficient. We are still using remainders. But we have only one for the two columns. The first column contains remainders of division of set elements by the selected number. The second column contains results of integer division of set elements by the selected number. Let r be the number we select as the divisor. Let

$$s_1 = a_1 \mod r$$
$$s_2 = a_2 \mod r$$
$$s_3 = a_3 \mod r$$

$$\cdots \cdots$$

$$s_m = a_m \mod r$$

$$m = M \mod r$$

Then

$$a_1 = s_1 + p_1 \cdot r$$
$$a_2 = s_2 + p_2 \cdot r$$
$$a_3 = s_3 + p_3 \cdot r$$

$$\cdots \cdots$$

$$a_m = s_m + p_m \cdot r$$

$$M = m + p_0 \cdot r$$
Let vector \(\vec{x} \) be the problem solution vector, vector \(\vec{a} \) be the set vector \((\vec{a} = \{a_1, a_2, ..., a_m\})\), \(\vec{s}\) be the remainders vector \((\vec{s} = \{s_1, s_2, ..., s_m\})\), and \(\vec{p}\) be the vector of the results of division \((\vec{p} = \{p_1, p_2, ..., p_m\})\). Then since

\[
\vec{a} \cdot \vec{x} = M, \tag{10}
\]

it is also true that

\[
\vec{s} \cdot \vec{x} + \vec{p} \cdot \vec{x} \cdot r = m + p_0 \cdot r \tag{11}
\]

Now, if we guess the coefficient \(k\), such that

\[
\vec{s} \cdot \vec{x} = k \cdot r + m \tag{12}
\]

it is easy to see from (11) and (12) that

\[
\vec{p} \cdot \vec{x} = p_0 - k \tag{13}
\]

(simply subtract (12) from (11))

Thus, \((11) \cup (12) \Leftrightarrow (12) \cup (13)\), if \(k\) is guessed right. Thus the following two columns represent the Subset Sum problem instance:

<table>
<thead>
<tr>
<th>column 1</th>
<th>column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_1)</td>
<td>(p_1)</td>
</tr>
<tr>
<td>(s_2)</td>
<td>(p_2)</td>
</tr>
<tr>
<td>(s_3)</td>
<td>(p_3)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(s_m)</td>
<td>(p_m)</td>
</tr>
<tr>
<td>(k \cdot r + m)</td>
<td>(p_0 - k)</td>
</tr>
</tbody>
</table>

Guessing \(k\) is easy. As mentioned above, we consider the most difficult instances of the problem. They contain approximately equal number of ones and zeros, so using this knowledge, we guess \(k\) according to (9) where \(j = 1\) and \(\text{ratio} = \frac{1}{2}\).
11 Implementation details

We use the matrix representation suggested by C. P. Schnorr in [11], as described in section 3 with slight but important modifications. Firstly, instead of one column of data we have two as described above. That change forces us to make small changes in the solution criteria (3). Overall, the representation and solution criteria are the following:

Consider a Subset Sum problem according to (1). Let us associate with integers a_i, $i = 1, ..., n$ and M the following basis

$$\bar{b}_1, \bar{b}_2, ..., \bar{b}_{n+1} \in \mathbb{Z}^{n+3}$$

$$\bar{b}_1 = (2, 0, 0, ..., 0, c \cdot s_1, c \cdot p_1, 0)$$

$$\bar{b}_2 = (0, 2, 0, ..., 0, c \cdot s_2, c \cdot p_2, 0)$$

$$\bar{b}_3 = (0, 0, 2, ..., 0, c \cdot s_3, c \cdot p_3, 0)$$

$$\vdots$$

$$\bar{b}_n = (0, 0, 0, ..., 2, c \cdot s_n, c \cdot p_n, 0)$$

$$\bar{b}_{n+1} = (1, 1, 1, ..., 1, c \cdot (k \cdot r + m), c \cdot (p_0 - k), 1)$$

Here c is a multiplier (a 10-bit number proved to perform best for our tests) used to introduce longer vectors to make LLL perform more efficiently.

Every lattice vector $\mathbf{z} = (z_1, z_2, ..., z_{n+3}) \in L(\bar{b}_1, \bar{b}_2, ..., \bar{b}_{n+1})$ that satisfies

$$|z_{n+3}| = 1, z_{n+1} = 0, z_{n+2} = 0, z_1, z_2, ..., z_n \in \{1, -1\}$$

yields the following solution for the Subset Sum problem

$$x_i = \frac{|z_i - z_{n+3}|}{2}, \text{for } i = 1, 2, \ldots, n$$

In the program, we try to guess the coefficient k, and try to solve the matrices (14) for ks within 3 of the original guess. Also, variations are possible in choosing the number r. Best performance of the algorithm is achieved when the bit length of r is about 65% of that of the set elements.
12 Sample data matrices

In this section we present a really simple run with a lot of extra output that lets us peek at internal data structures and data representation. The following run attempts to solve the problem with \(size = 5 \), \(bits = 7 \):

\[
\text{[sgi64:/home/vladimir/backup_thesis]} 21 \% \text{ ss 1 5 7 123 1 65 4}
\]
\[
15
\]
Density = 0.714286
\[
0:68
\]
\[
0:43
\]
\[
0:85
\]
\[
0:53
\]
\[
0:111
\]
\[10010\text{the sum: 0:121}\]
. The matrix created is:
\[
2 0 0 0 0 8888 4444 0
\]
\[
0 2 0 0 0 14443 2222 0
\]
\[
0 0 2 0 0 11110 5555 0
\]
\[
0 0 0 2 0 8888 3333 0
\]
\[
0 0 0 0 2 6666 7777 0
\]
\[
1 1 1 1 1 17776 7777 1
\]

Checking solution on the matrix:
\[
1 -1 -1 1 -1 0 0 -1
\]
\[
6 0 2 -2 0 0 0 4
\]
\[
1 3 -7 -1 3 0 0 -1
\]
\[
-3 -1 3 -5 -3 0 0 -5
\]
\[
1 -1 3 -1 -1 -1111 0 1
\]
\[
-2 0 0 2 0 0 -1111 0
\]

\[10010\text{res1}\]
\[0:121\]

CPU TIME WAS 0.002271
solution Found 1

Solved 1 instances out of 1
Number of LLL calls: 1
Spent 0.002745CPU time

[sgi64:/home/vladimir/backup_thesis]22 %

The first line here is the call of the program to solve one-dimensional Subset Sum problem with the size of the set 5, the bit size of the set elements 7, seed 123. We are asking the program to attempt one instance, and set the bit size of the divisor \(r \) to be 65\% of that of the set elements.

The second line shows the calculated bit size of \(r \), the third line shows \(r \) itself. The density of the problem is reported on the next line. The next five lines represent the generated set. The output format of the long integers implemented for the thesis is the following: \((\text{high.part}) : (\text{low.part})\), where both high. and low. parts are long integers, and the number that they represent is \(\text{high.part} \cdot 2^{55} + \text{low.part} \). In this case high part is equal to zero, and thus the generated set is \{68, 43, 85, 53, 111\}.

The next line contains the generated solution (10010) and the generated sum (121). The hardcoded multiplier that was used in this run was 1111. Thus, the program split the set column into the following two columns:

\[
\begin{align*}
8 & \quad 4 \\
13 & \quad 2 \\
10 & \quad 5 \\
8 & \quad 3 \\
6 & \quad 7
\end{align*}
\]

Indeed, 68 = 4 \cdot 15 + 8, 43 = 2 \cdot 15 + 13, etc. The first (and as it turned out, correctly) guessed \(k \) was equal to zero, which defined the generated bottom row. This matrix was very easy to \(LLL \)-reduce, and the first round of reduction returned the next displayed matrix. Obviously, the first row of the matrix conforms to the solution criteria (15). The program processed that and returned vector 10010 as the solution. The following line shows the sum, calculated based on the obtained solution vector. The instance statistics printed show that 0.002271 seconds of CPU time were spent on solving this
instance. The next statistics represent the whole run, but because the run consisted of only one attempt, the data is the same. (The reported CPU time is slightly larger, but that is because instance generation is included in the latter statistics). This experiment was run on a 195MHz SGI R10000.

13 Results and analysis

The following table represents the results we obtained. Twenty instances were attempted for every size/bits combination. Instances were generated by randomly setting each of the bits of set elements. Then the solution vector was generated that contained 50% ones. The sum was generated based on the set and solution vector. Then the set and the sum were passed to the algorithm, and correctness of the solution obtained by the algorithm was verified by comparing the two sums (the one generated as part of the instance of the problem, and the other generated based on the produced solution.) The entries in the table represent the number of instances solved out of 20.

<table>
<thead>
<tr>
<th>size/bits</th>
<th>46</th>
<th>50</th>
<th>53</th>
<th>58</th>
<th>61</th>
<th>66</th>
<th>76</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>20</td>
<td>19</td>
<td>20</td>
<td>19</td>
<td>20</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>58</td>
<td>20</td>
<td>20</td>
<td>16</td>
<td>10</td>
<td>14</td>
<td>18</td>
<td>11</td>
</tr>
<tr>
<td>66</td>
<td>20</td>
<td>20</td>
<td>18</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>70</td>
<td>19</td>
<td>19</td>
<td>16</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Significant improvement over matrix (3) was observed. The following results were obtained by Schnorr in [11] using the simplest version of LLL algorithm (the one used in this thesis):

<table>
<thead>
<tr>
<th>size/bits</th>
<th>46</th>
<th>47</th>
<th>50</th>
<th>53</th>
<th>58</th>
<th>61</th>
<th>66</th>
<th>76</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>6</td>
<td>-</td>
<td>12</td>
<td>-</td>
<td>17</td>
<td>-</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>58</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>66</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
The most difficult problems, by Schnorr, are the ones with density slightly greater than 1, for example instances when the size of the set is 58, and the number of bits is 53. In this particular instance, the improvement was 16 times! The new representation also performs better for many other densities, both greater and smaller than 1.

An important feature of our implementation of the algorithm is single precision computations. No floating point or multiprecision arithmetic is used. The generated set elements and sums are represented as 2 long integers on a 64-bit machine. A mini-package was implemented to manipulate data that exceeds 64 bits in size. However, we do slow multiprecision computations only at the matrix generation and solution verification stages of the algorithm.

Splitting the information carried by the data column into two columns let us create matrices with single precision long integer entries. Avoiding slow multiprecision computations substantially reduced execution time. Most of the implementations don’t have it.

14 Conclusion and future work

The results obtained are very encouraging. The performance of the algorithm increased very substantially with the introduction of multidimensionality. And there is still room for experiments. The variations of the parameters that we fixed (such as multiplier coefficient c, and especially the divisor r from (11)) allow to achieve better results for some size/bits combinations. For example, the following table represents the results of running the same algorithm with bit size of r being 70% of that of the set elements:

<table>
<thead>
<tr>
<th>size/bits</th>
<th>46</th>
<th>50</th>
<th>53</th>
<th>58</th>
<th>61</th>
<th>66</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>58</td>
<td>20</td>
<td>20</td>
<td>11</td>
<td>9</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>66</td>
<td>20</td>
<td>20</td>
<td>17</td>
<td>7</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>70</td>
<td>18</td>
<td>19</td>
<td>17</td>
<td>4</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
As one can see, the latter configuration performs better for some bit/size combinations. One of the directions of future work would be theoretical explanation of the influence of this parameter on the performance of the algorithm. That would probably lead to a theoretically optimal value of r, which would improve the performance. Also, theoretical evaluation of the difficulty of multidimensional Subset Sum problem and its comparison to that of the equivalent single-dimensional problem needs to be done to find the right direction in the future research.

No matter how encouraging the results seem, similar results were achieved in [11] by using heuristic lattice basis reduction algorithms (LLL with deep insertions and Korkine-Zolotarev reduction). It seems very useful to integrate the two approaches and analyze the results because this thesis and [11] exploit completely different and independent ways to improve performance.

References

Appendix:
The Source Code
#include <math.h>
#include <stdlib.h>
#include <iostream.h>
#include "types"
#include "times.h"
#include "Integer.h"

CPUDEFS;

VARIABLES:
rmatrix bstar: holds the basis of orthogonal vectors
rmatrix mu: holds the mu matrix, of course
imatrix b: holds original integer matrix b
rvector BB: BB[j] holds the length of the bstar[j]
int k: the coefficient we guess
int n: number of rows in a matrix
int m: number of columns in a matrix
int dim: number of dimensions
l1, ss, ns, count: used in LLL implementation by Staszek
long divisor: divisor r (see thesis)
int solution: the solution vector
int number_ones: the number of ones in the solution vector
Integer the_set: array holding the generated set
Integer the_sum: 110 bit integer holding the generated sum
int lll_calls: the number of calls to the LLL algorithm
sum_lengths, dif_lengths, Used in weight reduction.
sums, difs, lengths

struct rmatrix bstar, mu;
struct imatrix b;
struct rvector BB;
int k, n, m, dim;
int l1, ss, ns, count;
int solution[MAX];
long int divisor;
int number_ones = 0;
int lll_calls = 0;
Integer the_set[MAX];
Integer the_sum(0);

double drand48();

struct imatrix sum_lengths, dif_lengths;
struct icube sums, difs;
struct ivector lengths;
Auxiliary routines for input and output and simple data manipulation

/* prints the matrix b that holds the lattice */
void printMatrixB()
{
 int i, j;
 for (i = 1; i <= n; i++)
 for (j = 1; j <= m; j++)
 cout << b.row[i].val[j] << " ";
 cout << endl;
}

/* prints integer matrix */
void printMatrix(struct imatrix matrix)
{
 int i, j;
 for (i = 1; i <= n; i++)
 for (j = 1; j <= m; j++)
 cout << matrix.row[i].val[j] << " ";
 cout << endl;
}

int floor (float a)
{
 if (a < ((int)a))
 return (int)a-1;
 else
 return (int)a;
}

Here starts the code written by Staszek Radziszowski

/****** Output routines ******/

void printk()
{
 int i;
 cout << endl << count;
 for (i=1;i<=k;i++) cout << " ";
 cout << "* ";
}

/* length of vector b[i] */
long int bi(int i)
{
 int j;
 long int part;
 part = 0;
for (j=1; j<=m; j++) part += b.row[i].val[j]*b.row[i].val[j];
return(part);

} /* inner product */
double inner(double aux1[], double aux2[])
{
 register int i;
double part;
part = 0.0;
for (i=1; i<=m; i++) part+=aux1[i]*aux2[i];
return(part);

}

void Output()
{
 int i, j;
cout << endl << "b matrix:" << endl;
for (i=1; i<=n; i++)
 { for (j=1; j<=m; j++)
 { cout << b.row[i].val[j] << " ";
 }
 cout << endl;
}
cout << endl << "BB:";
for (j=1; j<=n; j++)
cout << BB.val[j] << " ";
cout << endl;
}

/*********** size reduction algorithm ***********/
void Star(int 1) {
 int j;
 long int r, lh1, lh2;
 double aux;
 aux = mu.row[k].val[1];
 if (abs(aux)>0.5) {
 r = round(aux);
 lh1 = b1(k);
 /* b[k] := b[k] * mu[k,1]*b[1] */
 for (j=1;j<=m;j++) b.row[k].val[j]-=r*b.row[1].val[j];
 lh2 = b1(k);
 if (lh1<lh2) {
 //cout << "1"
 ll++;
 } else {
 //cout << "s"
 ss++;
 }
 count += lh2-lh1;
 /* update matrix mu */
 for (j=1;j<k-l;j++) mu.row[k-l].val[j]=mu.row[k].val[j];
 if (k>2) k--;
 } else ns++;
}

void Step2() {
 int i, j;
 long int temp;
 double muaux, tempreal, Baux;
 muaux = mu.row[k].val[k-1];
 Baux = BB.val[k] + muaux*muaux*BB.val[k-1];
 mu.row[k].val[k-1] = muaux*BB.val[k-1]/Baux;
 BB.val[k] *= BB.val[k-1]/Baux;
 BB.val[k-1] = Baux;
 for (i=1;i<=m;i++) {
 temp = b.row[k-1].val[i];
 b.row[k-1].val[i] = b.row[k].val[i];
 b.row[k].val[i] = temp;
 }
 for (j=1;j<k-1;j++) {
 tempreal = mu.row[k-1].val[j];
 mu.row[k-1].val[j] = mu.row[k].val[j];
 mu.row[k].val[j] = tempreal;
 }
 for (i=k+1;i<=n;i++) {
 tempreal = mu.row[k].val[k-1]*mu.row[i].val[k-1] +
 (1-muaux*mu.row[k].val[k-1])*mu.row[i].val[k];
 mu.row[i].val[k] = mu.row[i].val[k-1] = muaux*mu.row[i].val[k];
 mu.row[i].val[k-1] = tempreal;
 if (k>2) k--;
 } /* Output(); */
}
/* the algorithm for LLL-reduction. */
void Stepl(double y)
{
 int done, l;
double aux;
 done = 0;
 while (!done) {
 //printk();
 /* size reduction */
 Star(k-1);
 aux = mu.row[k].val[k-1];
 if (BB.val[k] < (y * aux*aux)*BB.val[k-1])
 Step2();
 else {
 for (l=k-2;l>0;l--) Star(l);
 if (k==n) done = 1; else k++;
 }
 //cout endl;
 }
}

/* applies Gram-Schmidt orthogonalization process to the basis b. Writes orthogonal basis to bstar. Sets BB[j]. */
void Initialize()
{
 int i, j, k;
double aux1[MAX], aux2[MAX];
 for (i=1;i<=n;i++) {
 for (j=1;j<=m;j++) {
 bstar.row[i].val[j] = (double) b.row[i].val[j];
 aux1[j] = (double) b.row[i].val[j];
 }
 }
 for (j=1;j<i;j++){
 for (k=1;k<m;k++) aux2[k] = bstar.row[j].val[k];
 //cout << "BB.val["<<j"" = "<<BB.val[j]<<endl;
 for (k=1;k<m;k++)
 bstar.row[i].val[k] = mu.row[i].val[j]*bstar.row[j].val[k];
 for (k=1;k<m;k++) aux1[k] = bstar.row[i].val[k];
 BB.val[j] = inner(aux1,aux2);
 } /* for i */
}

/*********** The LLL algorithm ***********/

void L3(double y)
{
 ll = ns = count = ss = 0;
 Initialize();
 k = 2;
 Stepl(y);
The end of LLL implementation by spr

****** algorithms, specific to the implementation of ssum **************

// swap vectors i and j in matrix b
void swap_vectors_in_b(int row1, int row2) {
 long int temp;
 for (int i = 1; i <= m; i ++) {
 temp = b.row[row1].val[i];
 b.row[row1].val[i] = b.row[row2].val[i];
 b.row[row2].val[i] = temp;
 }
}

// sort lattice b, such that b[1]<=b[2]<=...<=b[n]
void sort_b(){
 int i, j;
 long int b_len[MAX];
 long int temp;
 // first, calculate lengths of the vectors
 for (i = 1; i <= n; i ++) {
 b_len[i] = bl(i);
 }
 for(i = 1; i <= n; i ++) {
 for(j = 1; j < i; j ++) {
 if(b_len[i] < b_len[j]) {
 swap_vectors_in_b(i, j);
 temp = b_len[i];
 b_len[i] = b_len[j];
 b_len[j] = temp;
 }
 }
 }
}

// check if we found a solution and if we did, print it and exit
//
int check_solution(){
 int i, j, satisfy;
 for(i = 1; i <= n; i ++) {
 satisfy = 1;
 // the last coordinate value has to be +1 or -1
 if(abs(b.row[i].val[m]) != 1) continue;
 // check if the data columns are 0, so that the sum is correct
 for(j = 1; j <= dim; j ++) {
 if(b.row[i].val[m-j] != 0) {
 satisfy=0; // doesn’t satisfy
j = dim; // exit the loop
}
if(satisfy == 0) continue;

// check if the first (size) columns are equal to +/- 1
for (j = 1; j <= m-dim-1; j ++) {
 if(abs(b.row[i].val[j]) != 1) {
 satisfy = 0;
 break;
 }
}
if (satisfy == 1) {
 //
 // we found a solution. Now just make output.
 //
 //cout <<"Solution found:" << endl;
 //printIMatrixB();
 cout << endl;
 long res1, res2;
 res1 = res2 = 0;
 Integer test_sum1(0);
 Integer test_sum2(0);

 for(j = 1; j <= m-dim-1; j ++) {
 int pick = b.row[i].val[j] b.row[i].val[m];
 if(pick != 0) pick = 1;
 if (pick == 1) {
 cout << "1";
 test_sum1.add(the_set[j]);
 } else {
 cout << "0";
 test_sum2.add(the_set[j]);
 }
 }
 //
 // check if it sums up to a correct number
 //
 if(the_sum == test_sum1) {
 cout << " Correct!" << endl;
 test_sum1.print(); cout << endl;
 } else if(the_sum == test_sum2)
 cout << " Correct!" << endl;
 else {cout << "WRONG RESULT" << endl; exit(1);}
 return 1;
}
return 0;

//
// attempts to reduce a pair of vectors
// (i.e. substitute a longer vector with the sum or difference
// if they are shorter)
//
int reduce_pair(int v1, int v2) {
 int i, j;
 int pair_reduced = 0;

 if(sum_lengths.row[v1].val[v2] < lengths.val[v1]) {

for(i = 1; i <= m; i ++) {
 b.row[v1].val[i] = sums.row[v1].val[v2].coord[i];
}
lengths.val[v1] = sum_lengths.row[v1].val[v2];

// recalculate all the sums, difs, sum_lengths and dif_lengths
for(i = 1; i <= n; i ++){
 sum_lengths.row[v1].val[i] = sum_lengths.row[i].val[v1] 0;
 dif_lengths.row[v1].val[i] = dif_lengths.row[i].val[v1] 0;
 for(j = 1; j <= m; j ++) {
 sums.row[i].val[v1].coord[j] = sums.row[v1].val[i].coord[j];
 sum_lengths.row[i].val[v1] +=
 sums.row[i].val[v1].coord[j] * sums.row[i].val[v1].coord[j];
 sum_lengths.row[v1].val[i] = sum_lengths.row[i].val[v1];
 difs .row[i].val[v1].coord[j] = difs .row[v1].val[i].coord[j];
 dif_lengths.row[i].val[v1] +=
 difs .row[i].val[v1].coord[j] * difs .row[i].val[v1].coord[j];
 dif_lengths.row[v1].val[i] = dif_lengths.row[i].val[v1];
 }
}

//cout " ";
pair_reduced 1;

if(dif_lengths.row[v1].val[v2] < lengths.val[v1]) { delicious

// substitute vector by the dif and update all entries in all matrices
// for(i = 1; i <= m; i ++) {
// b.row[v1].val[i] = difs.row[v1].val[v2].coord[i];
//}
lengths.val[v1] = dif_lengths.row[v1].val[v2];

// recalculate all the sums, difs, sum_lengths and dif_lengths
for(i = 1; i <= n; i ++){
 sum_lengths.row[v1].val[i] = sum_lengths.row[i].val[v1] 0;
 dif_lengths.row[v1].val[i] = dif_lengths.row[i].val[v1] 0;
 for(j = 1; j <= m; j ++) {
 difs .row[i].val[v1].coord[j] = difs .row[v1].val[i].coord[j];
 dif_lengths.row[i].val[v1] +=
 difs .row[i].val[v1].coord[j] * difs .row[i].val[v1].coord[j];
 dif_lengths.row[v1].val[i] = dif_lengths.row[i].val[v1];
 }
}

pair_reduced 1;
return pair_reduced; // didn't reduce the pair

// The instance creation routine. it accepts the following arguments:
// _dim: the number of dimensions (for our purposes dim is always equal to 1.
// dim was not equal to 1 for our experiments with
// large number of independent columns)
// size: the size of the set
// bits: the number of bits in set elements
// num_call: the number of times the creation routine was
// called before for solving this instance
// (necessary for covering coefficients k within 3 of the
// original guess
// Here we do NOT use any knowledge of the solution vector while generating
// the matrix.

void create_instance(int _dim, int size, int bits, int num_call) {
 int ii, i, j, jj, kk;

 dim = _dim;
 n = size + 1; // set matrix dimensions
 m = size + dim + 1;
 double density = 1.0 * size / bits;
 if(num_call==0) cout << "Density = " << density << endl;

 // initialize array to 0
 for(ii = 1; ii <= n; ii ++) {
 for(int jj = 1; jj <= m; jj ++) {
 b.row[ii].val[jj] = 0;
 }
 }

 // set the diagonal to 2
 for(ii = 1; ii <= n; ii ++) {
 b.row[ii].val[ii] = 2;
 }

 // set the lower row to 1
 for(ii = 1; ii <= m; ii ++) {
 b.row[n].val[ii] = 1;
 }

 // now everything is ready, except for the columns with data

 if(num_call == 0) { // generate the set only when called for the 1st time
 for(i = 1; i <= size; i ++) {
 the_set[i] = Integer(bits, 1);
 // comment this out to remove printing of the set.
 //the_set[i].print(); cout << endl;
 }
 }

 // divisor contains the divisor r

 // initialize columns with data. Assume dim == 1 because
 // we only consider this case. Algorithm behavior
 // undefined if dim != 1
 // for(i = 1; i <= size; i ++) {
b.row[i].val[size + 1] = the_set[i].mod(divisor);
}
//initialize sums
for(jj = 1; jj <= 2; jj ++) {
 b.row[n].val[jj + size] = 0;
}

// the following is executed only once:
if(num_call == 0){
 // Now generate vector of 1's and 0's such that there is
 // equal number of 1's and 0's
 number_ones = 0;
 for(i = 1; i <= size; i ++)
 solution[i] = 0;
 for(i = 1; i <= size/2; i ++){
 solution[i] = 1;
 number_ones ++;
 }
}

// and randomly permute the vector
for(j = 1; j <= size*size; j ++)
for(i = 1; i <= size; i ++)
 if(drand48() > 0.5) {
 int pos = (int)(drand48() * size) + 1;
 // swap i and pos-th elements
 int temp_sol = solution[i];
 solution[i] = solution[pos];
 solution[pos] = temp_sol;
 }

// OK, we've got the solution vector!!
// Now generate the sum
the_sum = Integer(0);
for(j = 1; j <= size; j ++) {
 if(solution[j] == 1) {
 // add j-th element to the sum
 the_sum.add(the_set[j]);
 }
 cout << solution[j];
}
cout << " the sum: "; the_sum.print(); cout << endl;

// Let's guess the number k.
// float ratio(0);
long int col_sum(0);
for(kk = 1; kk < n; kk ++) {
 col_sum += b.row[kk].val[1+size];
} ratio = ((float) col_sum * number_ones/(n-1)) / divisor;

int int_ratio;
int_ratio = floor(ratio);
int_ratio contains our first guess of what k is
update k accordingly to the number of creation call
int adjustment;
if(num_call%2==0) {
 adjustment = num_call / 2;
}
else{
 adjustment = (num_call + 1) / 2;
}
int_ratio += adjustment;

now fill in the bottom row in the matrix
b.row[n].val[1+size] = the_sum.mod(divisor)+ divisor * int_ratio;

Now let’s set up the companion column (coord = size + 2);
for (i = 1; i <= size; i ++){
 Integer tempInt = the_set[i];
 tempInt.divide(divisor);
 int k = tempInt.lo;
 b.row[i].val[size+2] = k;
}

Integer tempInt = the_sum;
tempInt.divide(divisor);
int k_base = tempInt.lo;
b.row[size+1].val[size+2] = k_base int_ratio;

// multiply the data columns by a large number
for (i = 1; i <=2; i ++){
 for(j = 1; j <= size+1; j ++) {
 // llll is the number selected
 b.row[j].val[size+i] *= llll;
 }
}

m = size + 1 + dim * 2; //set the column size of the matrix for LLL

// and, finally, create the last column of zeros and a one.
// since we dont need dim anymore, not to change the rest of the
// program, set dim to the actual number of coulumns we want to
// sum up in our matrix. Now dim actually means the number
// of dimensions as presented in the thesis.
dim = dim * 2;

********** FINALLY, main program ***************/
int main(int argcount, char *name[]) {
 int i, j, kk, jj, il;
 int num_iter = atoi(name[5]);
 double t0, t1, t00, t11; // times
int num_solved = 0;

t00 = CPUTIME;

// calculate the divisor
//
int divisor_bits = (atoi(name[3]) * atoi(name[6])) / 100;

// cout << divisor_bits << endl;

long int temp = 1;
for (i = 0; i < divisor_bits; i++) {
temp *= 2;
}
divisor = (long)(temp * 0.9574);
cout << "The divisor r is " << divisor << endl;

if (argc <= 6) {
 exit(0);
}

srand48(atoi(name[4]));
for (il = 1; il <= num_iter; il++) {
 t0 = CPUTIME;

 // in this loop I am trying different values of k that I guess.

 for (int attempt = 0; attempt < 7; attempt++) {
 create_instance(atoi(name[1]), atoi(name[2]), atoi(name[3]), attempt);
 cout << "." << flush; // indicate that a new coefficient is being tried
 cout << " The matrix created is: " << endl;
 // printMatrixB();
 cout << endl;
 // ********************* Matrix is ready **********************
 }

 // Step 2. Randomly permute b[1], ..., b[n] so that the permuted
 // basis starts with the vectors b[i] satisfying b[i][m] != 0
 int level_of_ones = 0;
 for (i = 1; i <= n; i++) {
 if (b.row[i].val[m] != 0) {
 level_of_ones++;
 if (i != level_of_ones) {
 swap_vectors_in_b(i, level_of_ones);
 }
 }
 }

 // Step 3: LLL-reduce the basis
 //
 L3(0.99); lll_calls++;

 // cout << "Checking solution on the matrix: " << endl;
 // printMatrixB();
 // cout << endl;
// Step 4: check if we found a solution
//
int found = check_solution();
if(found == 1) {
 tl = CPU_TIME;
 cout << "CPU TIME WAS " << tl << t0 << endl;
 num_solved ++;
 cout << "solution Found " << jj << flush << endl;
 attempt = 30000;
 break;
}

// if we returned here, then no solution is found yet
// Step 5: reduce pairs of basis vectors
//
sort_b();
//cout << "Matrix b sorted:" << endl;
//printMatrix(b);

// initialize to current lengths of vectors
//
for(i = 1; i <= n; i ++) {
 lengths.val[i] = 0;
 for(j = 1; j <= m; j ++) {
 lengths.val[i] += b.row[i].val[j] * b.row[i].val[j];
 }
}

// initialize matrices of sums, difs, and their lengths
//
for(i = 1; i <= n; i ++) {
 for(j = 1; j < i; j ++) {
 sum_lengths.row[i].val[j] = sum_lengths.row[j].val[i] = 0;
 dif_lengths.row[i].val[j] = dif_lengths.row[j].val[i] = 0;
 for (kk = 1; kk <= m; kk ++){
 sums.row[i].val[j].coord[kk] =
 b.row[i].val[kk] + b.row[j].val[kk];
 sums.row[j].val[i].coord[kk] =
 sums.row[i].val[j].coord[kk];
 sum_lengths.row[i].val[j] +=
 sums.row[i].val[j].coord[kk] *
 sums.row[i].val[j].coord[kk];
 sum_lengths.row[j].val[i] = sum_lengths.row[i].val[j];
 }

 // for difs, i j <> j -i. But the length is the same
 // so we make difs[i] = difs[i][i]
 //
 difs.row[i].val[j].coord[kk] =
 b.row[i].val[kk] - b.row[j].val[kk];
 difs.row[j].val[i].coord[kk] =
 difs.row[i].val[j].coord[kk];
 dif_lengths.row[i].val[j] +=
 difs.row[i].val[j].coord[kk] *
 difs.row[i].val[j].coord[kk];
 dif_lengths.row[j].val[i] = dif_lengths.row[i].val[j];
}
}
// matrices are set
//
// cout << "Matrix b before:" << endl;
//printIMatrixB();

int max_reduce = 0;
do {
 int f;
 f = 0;
 for(j = 1; j < n; j ++) {
 for(kk = 1; kk < j; kk ++) {
 if(reduce_pair(j, kk) == 1) f = 1;
 }
 }
 max_reduce ++;
 if (f == 0 || max_reduce > 10) break;
}
while (1);

// cout << "Matrix b after:" << endl;
//printIMatrixB();
// cout << ":" << flush ;

/******************* done with permutations *******************/
} // for attempt
cout << endl;

// print statistics
// cout << "Solved " << num_solved << " instances out of " << num_iter << endl;
tll = CPUTIME;
cout << "Number of LLL calls: " << lll_calls << endl;
cout << "Spent " << tll - t00 << " CPU time " << endl << endl;
```cpp
// File: Integer.h
// Author: Vladimir Kolesnikov
// Contributors: {}
// Description: A class that represents an integer as 2 64-bit long ints
// on 64bit SGI and implements all operations necessary
// for subset sum problem

#ifndef __INTEGER_H
#define __INTEGER_H

#include <iostream.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

class Integer {
public: // public stuff
    // Name: Constructor
    // Description: constructs a random integer given the number of bits.
    // seed is not used
    // Integer( int bits, int seed); 
    
    // Default constructor. initializes Integer to 0;
    // Integer();
    
    // Copy constructor. initializes Integer to be the same as passed one;
    // Integer( Integer& other );
    
    // Default constructor. initializes Integer to passed value;
    // Integer(long int other);
    
    // Name: print
    // Description: allows to print the integer as hi:lo
    // void print();
    
    // Name: divide
    // Description: divides our integer by long
    // the value of the integer gets overwritten
    // by the result of the operation
    // void divide( long int divisor );
    
    // Name: mod
    // Description: returns mod of the Integer. values up to 40 bits
    // may be passed as a parameter.
    // long int mod( long int divisor );
    
    // Name: add
    // Description: Adds another integer to this one.
};
```

```cpp
// the value of the integer gets overwritten
// by the result of the operation
void add( Integer other );

//
// Name: add
// Description: Adds another integer to this one.
// the value of the integer gets overwritten
// by the result of the operation
//
void add( long int other );

// Name: mul
// Description: Multiplies a long integer to this one.
// the value of the integer gets overwritten
// by the result of the operation
//
void mul( long int multiplier );

// Name: operator ==
// Description: Compares the two Integers
//
int operator== ( Integer other );

// Name: operator =
// Description: Assignes an Integer to an Integer
//
void operator= ( Integer other );

long int lo, hi; //the two long ints that represent our large
//integer

private: // private stuff (of course)
    long int floor( double a );

const int LO_BITS = 55; // the number of valid bits in lo
const int HI_BITS = 55; // the number of valid bits in hi

const long int LO_MAX = 36028797018963968L; // 2^55 - 1
const long int HI_MAX = 36028797018963968L; // 2^55 - 1
const long int HI_START = 36028797018963968; // 2^55

}; // Integer

#endif
```
File: Integer.C
Author: Vladimir Kolesnikov
Description: A class that represents an integer as 2 64-bit long ints
on 64bit SGI and implements all operations necessary
for subset sum problem

#include "Integer.h"
#include <math.h>

double drand48();

// Name: Constructor
// Integer::Integer():
// lo (0),
// hi (0)

// Name: Copy Constructor
// Integer::Integer(Integer& other):
// lo (other.lo) ,
// hi (other.hi)

// Name: Copy Constructor
// Integer::Integer(long int other):
// lo (other),
// hi (0)

if(lo > LO_MAX) {
 hi += lo / HI_START;
 lo = lo % HI_START;
}

// Name: Constructor
// Integer::Integer(int bits, int seed){

if(bits > LO_BITS + HI_BITS) {
 cout << "the number of bits is too big"<< endl;
 exit(0);
}

int lo_part = bits;
int hi_part = bits - LO_BITS;

lo = 0;
hi = 0;

if (hi_part > 0) {
 lo_part = LO_BITS;
} else{
 hi_part = 0;
}
// define lo part
long int max_element = 1;
for(int ii = 0; ii < lo_part; ii ++) {
double rand_num = drand48();
 //cerr << rand_num << endl;
 if(rand_num > 0.5) {
 lo += max_element;
 }
 max_element *= 2;
}

if(lo < 0 || hi < 0) {
 cout << "Creation error!!! " << lo_part << " " << endl;
 print();
 exit(0);
}

// define hi part
//
if(hi_part == 0){
 hi = 0;
} else{
 max_element = 1;
 for(int ii = 0; ii < hi_part; ii ++) {
 if(drand48() > 0.5) {
 hi += max_element;
 }
 max_element *= 2;
 }
}

if(lo < 0 || hi < 0) {
 cout << "Creation error!!! " << lo_part << " " << endl;
 print();
 exit(0);
}

// Name: print
// void Integer::print() {
// cout << hi << ":" << lo;
// }

void Integer::divide(long int divisor) {
 long int temp_hi = hi / divisor;
 long int hi_rem = hi % divisor;
 hi = temp_hi;
 long int temp_lo = (double) 1.0 * lo / divisor + hi_rem *
 (1.0 * HI_START / divisor);
 long int lo_rem = lo % divisor + hi_rem * (HI_START % divisor);
 lo_rem = lo_rem % divisor;
 lo = temp_lo;
long int Integer::mod(long int divisor) {
 long n = HI_START;
 long m = hi % divisor;

 if(n == 0)
 return 0;

 // now we want to calculate n*m mod divisor. We cannot do it
 // brute force because it n*m may not fit into a long.
 // We use the knowledge that HI_START is a power of 2
 //
 for(int i = 0; i < 64; i ++) {
 m = (m * 2) % divisor;
 n = n / 2;
 if(n == 1) break;
 }

 long hi_mod = m % divisor;
 long lo_mod = lo % divisor;

 // and the result is:
 //
 long res = (lo_mod + hi_mod) % divisor;
 if(res < 0) {
 cout << "mod returned negative!!!" << endl;
 print();
 cout << endl << "divisor = " << divisor << endl;
 exit(0);
 }
 return res;
}

void Integer::add(Integer other) {
 hi += other.hi;
 lo += other.lo;

 if(lo > LO_MAX) {
 hi += lo / HI_START;
 lo = lo % HI_START;
 }
}

void Integer::add(long int other) {
 lo += other;

 if(lo > LO_MAX) {
 hi += lo / HI_START;
 lo = lo % HI_START;
 }
void Integer::mul(long int multiplier) {

 // we can multiply by at most 128, so we do multiplication several times
 long int half_mul;
 long int decr_mul;
 int final_stage = 1;

 if(multiplier > 2) {
 if(multiplier % 2 == 0) { // even number
 half_mul = multiplier / 2;
 mul(2);
 mul(half_mul);
 } else { // odd number
 decr_mul = multiplier - 1;
 Integer my_copy(*this);
 mul(decr_mul);
 add(my_copy);
 }
 } else {
 lo *= multiplier;
 hi *= multiplier;
 if(lo > LO_MAX) {
 hi += lo / HI_START;
 lo = lo % HI_START;
 }
 }
}

int Integer::operator==(Integer other) {
 if(hi == other.hi && lo == other.lo)
 return 1;
 else
 return 0;
}

void Integer::operator=(Integer other) {
 hi = other.hi;
 lo = other.lo;
}

long int Integer::floor(double a) {
 if(a < ((long int)a)) {
 return (long int)a-1;
 }
} else {
 return (long int)a;
}

} }
// Name: types
// Description: type definitions for the Subset Sum problem
//
#define MAX 100
#define MAX2 5000
#define abs(x) (((x)>=0) ? (x) : (-x))
#define sign(x) (((x)>0) ? 1 : -1) ? 0)
#define nsign(x) (((x)>0) ? -1 : 1) ? 0)
#define round(x) ((int) (x>0) ? (x+0.5) : (x-0.5))
#define max(x,y) ((x<y) ? y : x)
#define min(x,y) ((x<y) ? x : y)

struct rvector {
 double val[MAX];
};
struct rmatrix {
 struct rvector row[MAX];
};
struct ivector {
 long int val[MAX];
};
struct imatrix {
 struct ivector row[MAX];
};
struct reduction {
 long int ind, diff;
 char status;
};
struct triangle {
 long int ind1, op1, ind2, op2, diff;
 char status;
};

struct my_ivector{
 long int coord[MAX];
};
struct my_imatrix{
 struct my_ivector val[MAX];
};
struct icube {
 struct my_imatrix row[MAX];
};
//
// Name: times.h
// Description: definitions for the Subset Sum problem to allow computing CPU time
//

#include <sys/time.h>
#include <sys/resource.h>
extern int getrusage();
#define CPUDGEFS struct rusage ruse;
#define CPUTILME (getrusage(RUSAGE_SELF,&ruse),\
 ruse.ru_utime.tv_sec + ruse.ru_stime.tv_sec + \n
 1e-6 * (ruse.ru_utime.tv_usec + ruse.ru_stime.tv_usec))
This is the explanation how to run ‘ss’.

‘ss’ is the program written by Vladimir Kolesnikov, a student of the School of Computer Science of Rochester Institute of Technology, as a part of completion of his MS degree requirements. It applies LLL algorithm to a specially constructed matrix to solve the subset sum problem.

The format to call the program is the following:

```
ss <#dimensions>, <size of the vector>, <#bits>, <seed>,
    <#iterations> <bit size of the divisor (in % relative to the #bits)>
```

The presence of all arguments is required.

The first parameter, the number of dimensions, must be 1. Here, 1 means that a one-dimensional subset sum problem will be attempted (i.e. one set and one sum given)

Recommended value for the last parameter is 65.