

iii

CONTENT

ACKNOWLEDGEMENT ... i

ABSTRACT .. ii

1 INTRODUCTION .. 1

2 BACKGROUND .. 2

1.1 DETERMINISTIC FINITE AUTOMATA (DFA) ... 2

1.2 NON-DETERMINISTIC FINITE AUTOMATA (NFA) ... 2

1.3 REGEX ... 3

3 WHAT IS RegED? ... 5

4 WHY RegED? .. 7

5 HARDNESS OF THE RegED .. 9

6 TEST SET ... 10

7 ALGORITHM FOR CALCULATING RegED .. 11

7.1 BRUTE FORCE SEARCH ... 11

7.1.1 OPTIMIZATION 1 ... 12

7.1.2 OPTIMIZATION 2 ... 14

7.1.3 OPTIMIZATION 3 ... 14

7.1.4 OPTIMIZATION 4 ... 15

7.1.4.1 UNITIZATION ... 16

7.1.4.2 USING UNITIZATION .. 16

7.1.5 OPTIMIZATION 5 ... 17

8 REGULAR EXPRESSION EQUIVALENCE ... 19

8.1 OVERVIEW: .. 19

8.2 APPROACH 1 .. 19

8.3 APPROACH 2 .. 31

8.4 APPROACH 3 .. 33

8.4.1 DERIVATIVE OF REGULAR EXPRESSION ... 33

8.4.2 GINZBURG ALGORITHM ... 35

8.5 RESULT OF EACH APPROACH ... 49

9 FUTURE WORK .. 51

9.1 IMPROVEMENT IN EDIT RULES .. 51

20

Figure 3 Union Operation on Regex (+)

Figure 4 Star Operation on Regex (*)

The figures above are the NFAs that are used to recursively substitute for each operation for regexes R,

R1 and R2 as follows:

1. R1R2 (concatenation): Figure 2 Concatenation Operation of Regex (.) represents

concatenation.

2. R1+R2 (union). Figure 3 construction allows strings from either of the two regexes to be

transition ahead.

3. R* (Kleene star) is defined by Figure 4.

Using the above transformation, any regex can be converted to an NFA. We recursively keep applying the

above rules until a single symbol represents every transition between two states. For example, suppose we

have a regex R defined by (1+0)*+(10). We begin with a single start and final state (Figure 5). We see

that R accepts any string from the regex (1+0)* or regex 10 hence we apply the union rule as in Figure 6 .

21

Figure 5 Regex to NFA Step 0

Figure 6 Regex To NFA Step1: Applying the Union rule

The presence of (1+0)* and 10 provides us with an opportunity to substitute further using the star and

concatenation rule as in Figure 7.

Figure 7 Regex To NFA Step2: Applying the Star(*) and Concatenation(.) rule

The transitions from q0 to q2 to q7 to q8 to q3 are all represented by a single symbol and cannot be

substituted further. However, the transition between q4 to q5 is still a union of 1 and 0 and thus, we

finally apply the union rule as in Figure 8.

22

Figure 8 Regex To NFA Step 3: Applying the Union rule

Once we have an NFA N, we then use Rabin–Scott power set construction [4] to convert it to a DFA D.

The major difference between a DFA and a NFA is that there are no Epsilon(ε) transitions in a DFA and

that any state in the DFA can have a maximum of one outgoing transition per symbol. Since D is being

constructed from N, we will be using all the transition information from N to build it. To avoid any

confusion with the states in N, we name the states of D as Q0, Q1, Q2, …. The states of D will be sets of

states of N. The rules for construction remain the same across all states of D.

The NFA being used for conversion from NFA to DFA is the one in Figure 9. We are going to be calling

this NFA as N and the DFA being constructed as D. We begin with the start state of N, i.e., q0. This will

also be a member of the start state for D. We also include states reached by the Epsilon transition from the

start state in N. This is because those states would also be reachable without any input. In our case, there

are no Epsilon transitions therefore D’s start state (Q0) is comprised of only one state i.e. q0. It is

important to maintain the set of states that Q0 is made of since it is this set that helps in determining the

transitions made by Q0 (Figure 10).

Figure 9 NFA N for conversion

23

Figure 10 NFA to DFA Step 1: Start State

From now on for D, the name of the state means Q0,Q1,Q2 … and by ‘set’ we refer to the states of the

NFA, which make the state of D. For example, the set of Q0 would be {q0}. Now, we check if any of the

states from the set of Q0 is a final state in N. The presence of a final state implies that a final state is

reachable, hence, if present we mark the state as a final state in D. In this case, no state is final.

Figure 11 NFA To DFA Step 2: Q0 on input {0,1}

Now for each symbol, we look for all the states that can be reached from the set of Q0. For example, in

the current case for the transition symbol 1 we check for transition from the set {q0}. For 1 the set

transitions to q0 and q1. While doing this, we must keep the Epsilon closure in mind. Since there aren’t

any Epsilon transitions, we get our next state in D Q1 made of the set {q0, q1}. Yet again, since no state

in the set is a final state we don’t mark it final. Similarly, for the symbol 0 Q0 transitions to the set {q0}

(Figure 11). Please note the set of states reached by Q0 on 0 is the same as itself hence we do not create a

new state.

24

Figure 12 NFA To DFA Step 3: Q1 on input {0,1}

Continuing with the process we then process Q1 and we have 2 new states Q2 and Q3. They are marked

as final as the set of both states have the final state q2 as a member (Figure 12). After this no new states

are added and the process is stopped once the computation for Q3 (Figure 13) and Q2 (Figure 14) have

been finished.

Figure 13 NFA To DFA Step 4: Q3 on input {0,1}

Figure 14 NFA To DFA Step 5: Q2 on input {0,1}

Observe that the NFA had 3 states and the produced DFA 4. It can get much worse; if the NFA has n

states then the DFA could have 2n states. For example, if one tries the convert NFA in Figure 15 would

end up with a DFA with 7 states.

25

Figure 15 NFA example with exponential states in DFA

Using the above procedure any regex can be converted to a DFA. Once we have the DFA of the two

regexes we need to check for equivalence. We will be focusing on Hopcroft and Karp’s algorithm [8],

which does not use minimization.

One of the ways for checking equivalence would be by beginning with the start states of the two DFAs,

and checking if both are final or not. If only one of them is final it would imply that one DFA accepts

Epsilon and the other doesn’t. After ensuring both start states behave the same, we check if the states they

transition to on each symbol also behave in the same way. For example, in Figure 16 we check if q2 and

q6, the states reached by q1 and q5 on symbol 1, behave alike. Similarly, we also check if states reached

on symbol 0 behave the same. If the behavior is identical, we then check if the transitions made by q2 and

q6 behave the same. Notice, we don’t compare q1 and q5 again because they have been previously

compared. We continue our state comparison process until no new pairs of state are reached or we find a

pair where one member of the pair is final while the other is not (i.e. a contradiction) which would mean

that the two DFAs are not equivalent. This is the naïve approach. The worst case running time for this

algorithm will be O(MN) where M is the number of states in DFA 1 and N the number of states in DFA 2.

This would be a case where every state would end up being paired with the other.

To implement this algorithm, we need a couple of data structures.

26

Figure 16 DFA D1 and DFA D2

To begin with, we maintain a queue which we call Q. This is used to add the pair of states for comparison.

We initialize Q with the start states of the two DFA. Then for each symbol the start state transitions to is

added to the queue for example we would add (q2, q6) to Q in Figure 16. Which would further add (q3,

q5) on being processed. However, before we add a pair of states to the Q we need to check if the pair has

been previously added. To keep track of the previously added pairs we maintain a set called VisitedPair.

Using these data structures the algorithm is as follows:

Algorithm 1.1 for naïve comparison:

// Algorithm for checking if two DFAs are equivalent.

Function CheckEquivalenceDFA(DFA D1, DFA D2):

 Initialize Set VisitedPair -> {}

 Initialize queue Q -> []

 Q.push((D1.Initial, D2.Initial)) // adding the initial states of the two DFA

 VisitedPair.add((D1.Initial, D2.Initial)) // Adding it to the set

 While not Q.empty() // run loop while Q not empty

 currentStateDFA1, currentStateDFA2 = Q.pop() //getting the current state pair in Q

 if currentStateDFA1 ≠ currentStateDFA2 // check for if both final or non-final

 return False // if that is not the case

 for eachSymbol in Sigma: // for each symbol we check transitions

 DFA1Transition = ᵹ(currentStateDFA1, eachSymbol) // the transition made by

the current state on the symbol

 DFA2Transition = ᵹ(currentStateDFA2, eachSymbol)

 If ((DFA1Transition, DFA2Transition)) ∉ VisitedPair // check if present in

27

 Q.push((DFA1Transition, DFA2Transition))

 VisitedPair.add((DFA1Transition, DFA2Transition))

 return True

In the previous algorithm, we keep adding unexplored pairs of states to Q and check if all pairs from those

states also behave the same. What if both members of the pair of states have been visited before as

members of different pairs? For example, in the naïve algorithm for some DFA D1 and D2 we find a new

pair (q8, q9) to explore. Assume q8 was previously explored as part of the pair (q8, q11) and q9 as a part

of (q10, q9) and we also had explored the pair (q10,q11). Now, if all paths from q8 behave the same as

q11 and all paths from q9 behave the same as q10 then definitely all paths from q8 will behave the same

as all paths from q9 (using transitivity). Moreover, if there is a contradiction for the pair (q8, q9) then it

would be caught while exploring (q8, q11) or (q10, q9). Thus, eliminating the need to add (q8, q9) to Q

for comparison. Using this concept Hopcroft and Karp developed their near linear algorithm to avoid

unnecessary checks.

To keep track of all pairs previously explored, they merge the states in a pair into a group. Groups are sets

of states. Initially all states belong to individual groups comprising of themselves. Whenever a state pair

is added to Q (same as that of naïve algorithm) we merge the groups of the two states into a single group

using an auxiliary data structure. The groups in no way affect the two DFA structurally, they are merely a

tracking mechanism for the algorithm. Now, a state pair is added to Q if and only if the members of the

pair belong to different groups. Finally, after Q is empty we check if any groups are comprised of both

final and non-final states at the end of the algorithm. If there exists such a group, we say that the DFAs

are not equivalent. The running time of this algorithm is O(|∑|(M+N)) where M and N are the number of

states in the two DFA being compared. Lastly, complexity of this algorithm heavily depends on the time

taken to identify if two states belong to the same group. To do so effectively we use a special data

structure. It is called union-find.

To implement union and find we first number all the states of both the DFAs. Let us assume the total

number of states we have is N. We then create a 1-D array of size N called Arr1. Initially, each index is

given its own index value for example, the 3rd index would be initialized with the number 3. This means

every state forms its own group. Now each group is represented by single member of the group we call

this the representative of the group. If we were to merge any two members we would set the value of one

member in Arr1 equal to the other. For example, if we have 4 members 1,2,3 and 4. Now, if we merge 1

and 2 we would simply make Arr1[1] = Arr1[2]. Similarly, if we were to merge 3 and 4 we would make

Arr1[3] = Arr1[4]. Now, if were to merge 4 and 2. We want to make all member of 4’s group merged

28

with that of 2’s group. Hence, in such a case we make the representative of 4’s group point to the

representative of 2’s group. Therefore, for merging 4’s and 2’s group we would make Arr1[1] = Arr1[3].

But now, the question is how do we get the representative of the group? It must be noted in this structure;

the representative of the group is the only member that points to itself. Hence, this allows us to look for it

recursively till we find a member that points to itself. In our example, the representative of 4 would be the

value of Arr1[Arr1[4]].

Let us run through an example. Assume, we have two DFAs D1 and D2 (Figure 17) with ∑ = {0,1}.

Initially the queue is empty and each state forms its own group.

Figure 17 DFA D1 and DFA D2 Comparison Iteration 0

Just like the naïve algorithm we begin with the initial states of both D1 and D2 and add it to the queue, Q.

For example, in this case the two initial states (q1,q5) are added. The first state in the pair of states will

always be a member of D1 and the second of D2.

Figure 18 DFA D1 and DFA D2 Comparison Iteration 1

29

We begin with popping the first pair from Q. For the popped pair, we look for the transitions made by

each member of the pair, for each symbol and also merge the pair into a single group. In our example, the

first popped pair is (q1, q5) (Figure 18) which is merged in a single group. For the input symbol 1 q1

transitions back to q1 and q5 also back to q5 (Figure 18) thus getting the pair (q1, q5). We do not add this

to Q since both the member of the pair belong to the same group. Similarly, for symbol 0 we get new pair

(q2, q6) (Figure 19). Before adding we first check if both q2 and q6 belong to the same group. If not, only

then they are added to the queue.

Figure 19 DFA D1 and DFA D2 Comparison Iteration 2

We now pop the next element in Q i.e. (q2, q6). We merge them into a single group and then check for

transitions they make as before and add all new state pairs to the Q. For example, for the input symbol 1,

q6 and q2 loop back. Since, the pair (q2,q6) belong to the same group we do not add it to Q. This process

of popping, merging and adding continues until either a contradiction is found or all pairs have been

tested. Finally, at the end we have, different groups of different sizes (Figure 20). Now, we perform an

additional step to check if any group is comprised of both final and non-final states at the end of the

algorithm. If there exists such a group, the DFAs are not equivalent.

30

Figure 20 DFA D1 and DFA D2 Comparison Iteration 3

The near linear time algorithm from Hopcroft and Karp [8] pseudo code is as follows:

Algorithm 1.2 by Hopcroft And Karp:

// function for checking equivalence of DFA using Hopcroft-Karp algorithm

Function CheckEquivalenceDFA(DFA D1, DFA D2):

Initialize Set H -> {}

Initialize queue Q -> []

Q.push((D1.Initial, D2.Initial)) // adding the initial states of the two DFA

GroupSet -> For each State in D1 and D2 // initializing groups for each state in D1 and D2

Merge(GroupSet[D1.initial],G[D2.initial]) // merging group of D1.initial and D2.initial

While not Q.empty() // run loop while Q not empty

 currentStateDFA1, currentStateDFA2 = Q.pop() //getting the current state pair in Q

 for eachSymbol in Sigma: // for each symbol we check transitions

 DFA1Transition = ᵹ(currentStateDFA1,eachSymbol) // the transition made by

the current state on the symbol

 DFA2Transition = ᵹ(currentStateDFA2,eachSymbol)

 If GroupSet [DFA2Transition] == GroupSet [DFA1Transition] // check if group of both

not the same

 Q.push((DFA1Transition, DFA2Transition))

 Merge(GroupSet [DFA1Transition],G[DFA2Transition])

