TANOS Charge-Trapping Flash Memory Structures

A Senior Design
by Spencer Pringle

5/8/15
Table of Contents

- **Motivation – Why Charge-Trapping Flash (CTF)?**
 - Charge-Trapping vs. Floating Gate Electronically-Erasable Read Only Memory (EEPROM)
 - TANOS vs. SONOS

- **Film Optimization**
 - Tantalum Nitride (TaN) (Electrode, Control Gate)
 - Alumina (Al₂O₃) (Blocking Oxide)
 - Silicon Nitride (Si₃N₄) (Charge-Trap Storage Layer)
 - Silicon Dioxide (SiO₂) (Tunnel Oxide)

- **Fabricated Capacitors (GCA Stepper C-V Mask)**

- **Planned Devices (Modified Adv_CMOS 150 Process)**
Charge Trap Flash (CTF) Basics

- CTF architecture is similar to Floating Gate EEPROM, with one significant difference:
 - The conductive Polysilicon storage layer (floating gate) is replaced with an insulating Silicon Nitride storage layer.

Figure 1. EEPROM

Figure 2. Charge-Trapping Flash (SONOS)
Charge Trap Flash (CTF) Basics

- Technology names are based on a Top-Down acronym of the Gate Stack materials.

SONOS: (Silicon, Oxide, Nitride, Oxide, Silicon)

TANOS: (TaN, Alumina, Nitride, Oxide, Silicon)

Figure 2. Charge-Trapping Flash (SONOS)

Figure 3. Charge-Trapping Flash (TANOS)
Why TANOS Charge-Trapping Flash (CTF)?

Advantages over Floating Gate EEPROM:

- **Lower Power Consumption**: Charge-Trap requires lower write-erase voltages than EEPROM and consume less power.
- **Faster Speeds**: Samsung has reported a minimum of 20% increase in CTF speed over similar Floating Gate devices.
- **Improved Reliability**: Due to lower voltages, less tunnel oxide stress, and higher data retention in the insulating storage layer.
- **Improved Scalability**: Owing to higher charge density in the storage layer allowing for thinner films and better gate control.

TANOS vs SONOS:

- Tantalum Nitride provides improved gate control
- Alumina improves data retention and suppresses erase saturation.
Objectives

Successfully show charge trapping characteristics by fabricating one or both of:

• C-V Devices of the TANOS Stack on p-well doped Si Wafers

• NMOS Devices using a modification of the Adv_CMOS 150 Process.
Process Flow: “Modified AdvCMOS150”

1. Ox05 – Pad Oxide 500Å, Tube 4
2. CV02 – 1500Å Nitrile (LPCVD)
3. PH03 – Level 1 – STI (ASML & SSI)
4. ET29 – Nitrile Etch (Lam 490)
5. ET07 – Ash (Gasonics)
6. CL01 – RCA
7. Ox04 – First STI Oxide Tube 1 (Bruce)
8. ET06 – Oxide Etch (Wet, HF Bench)
9. Ox04 - 2nd Oxide Tube 1 (Bruce)
10. ET19 – Hot Phos Nitride Etch (Wet, Phos Bench)
11. PH03 – P-Well Level 3 (ASML & SSI)
12. IM01 – 8E13 B11 80KeV (Varian)
13. ET07 – Ash (Gasonics)
14. Ox06 – Well Drive, Tube 1 (Bruce)
15. PH03 – NMOS Yt (ASML & SSI)
16. IM01 – 3E12, P31, 30KeV (Varian)
17. ET07 – Ash (Gasonics)
18. ET06 – Etch 500Å Pad Ox (10:1 BOS, 455secs, Rinse SRD)
19. CL01 – Pre-Gate RCA Clean
20. ET06 – Pre-Gate HF Etch
21. TANOS GATE
 a. 30, 50, 70Å Oxide, Tube 1 (Bruce) 3 runs, 2 wafers each
 b. 75Å Nitride, (LPCVD) all wafers, equal spacing
 c. 100, 130Å Alumina, (CHA E-Beam) 2 runs, 3 each
 d. 357nm TaN, (CVC 601) all wafers
22. PH03 – Level 6 Poly Gate (ASML & SSI) (Current Device Wafer State)
23. ET08 – Plasma or 4-step Gate Etch (Drytech/LAM490/LAM4600)
24. ET07 – Ash (Gasonics)
25. CL01 – RCA
26. Ox05 – Gate Stack Re-Ox, 500Å, Tube 4 (P-5000?)
27. PH03 – Level 8 – N-LDD (ASML & SSI)
28. IM01 – 4E13, P31, 60KeV (Varian)
29. ET07 – Ash (Gasonics)
30. CL01 – RCA Clean
31. CV01 – Nitride Spacer Dep (LPCVD)
32. ET39 – Sidewall Spacer Etch (Drytech)
33. PH03 – Level 9, N+ D/S (ASML & SSI)
34. IM01 – 4E15, P31 60KeV (Varian)
35. ET07 – Ash (Gasonics)
36. PH03 – Level 9, P+ D/S (ASML & SSI)
37. IM01 – 4E15, B11 50KeV (Varian)
38. ET07 – Ash (Gasonics)
39. CL01 – RCA Clean
40. Ox08 – DS Anneal, Tube 2, 3 (Bruce)
41. ET06 – Silicide Pad Ox Etch (Wet)
42. ME03 – HF Dip & Ti Sputter (50:1 HF Dip, CVC601 Sputter)
43. RT01 – RTP 1 min, 800C (AG610 RTP TIS1.RCP, 1min, 650C)
44. CV03 – TEOS, (P-5000)
45. PH03 – Level 11 – CC (185ml/cm^2, DEVFAC.RCP)
46. ET06 – CC Etch (Drytech FACCCUT)
47. ET07 – Ash (Gasonics)
48. CL01 – RCA Clean
49. LPCVD Tungsten Plugs??????
50. ME01 – Aluminum Sputter (5um, CHA Flash Evap)
51. PH03 – Level 12-metal 1 (ASML & SSI) (**C-V Mask for C-V Wafers**)
52. ET15 – Al Etch (Wet Al Etch)
53. ET07 – Ash (Gasonics)
54. CV03 – TEOS P-5000
55. PH03 – Via (ASML & SSI)
56. ET26 – Via Etch
57. ET07 – Ash
58. Tungsten Plugs??????
59. ME01 – Al Deposition Metal 2
 (CVC601 or P54400)
60. PH03 – Metal 2
61. ET15 – Al Etch (LAM4600)
62. ET07 – Ash (Gasonics)
63. SL01 – Sinter

C-V Wafers Only:
64. ET16 – TaN Etch (Drytech Quad)
65. ET06 – PRS Strip (PRS2000 Positive Resist Strip = Wet)
“New to RIT” Processes:

- Tantalum Nitride Sputter in CVC 601
 - Tantalum target reactively sputtered in Nitrogen partial pressure ambient (N$_2$/Ar)

- Tantalum Nitride Etching in Drytech
 - Using pre-existing Tantalum etch – SF$_6$ reactive ion.

- Very thin Alumina Deposition in CHA E-Beam
 - Correction factor for Film Thickness Monitor

- Very thin Silicon Nitride in ASM LPCVD Tube 2
 - Typical Recipes were designed for ~2500Å, this device requires ~100Å.
Film Optimization:

Silicon Dioxide (SiO₂): Bruce Dry O₂, Drytech Quad

- Test film deposition, 2 wafers, no dummies, separated by 10 slots, with 11 minute N₂O and O₂ soaks on C-V Stack wafers exhibit very uniform VASE measurements of 57.5Å ± .5Å, with reasonable refractive index measurements.

Wafers were processed yielding thicknesses of 38Å, 52Å, and 68Å (1 CV and 2 Device Wafers each).

When etching, Drytech Quad recipes are well known for etching oxide and should be used instead of HF. Such a thin oxide would be easily undercut with a wet etch.
Film Optimization:

Silicon Nitride (Si$_3$N$_4$): LPCVD Tube 2 & LAM 490

- Working from the 6” LPCVD Stoichiometric Nitride Recipe, a test film deposition with 1 minute soak reveals appropriate refractive index and very uniform ~110Å film.

C-V and Device Wafers were coated simultaneously w/ 1 minute soak, yielding very uniform ~75Å film.

Existing LAM 490 nitride etch recipe should be used for etching when patterning Device wafers.

Figure 7. TANOS C-V Structure - Storage Layer
Film Optimization:

Alumina (Al₂O₃): CHA E-beam & HF Wet Etch

- Preliminary films targeting 100Å and 200Å deposited and show promising film properties.
 - Films are very uniform
 - Film thickness monitors report 114Å and 211Å and Woollam VASE reports 160Å and 325Å, respectively.
 - Characterization using Woollam VASE, reports reasonable responses for n and k, but point to composition or surface roughness issues, seemingly confirmed by XRR on 3/6.
 - XRR exhibits low oscillation, pointing to similar thickness values but with high surface roughness.
 - Alumina Deposited on C-V Wafers, ~110Å
Film Optimization:
Alumina (Al_2O_3): CHA E-beam Scaling Factor
Film Optimization:

- Alumina (Al$_2$O$_3$)
Film Optimization:

Tantalum Nitride: CVC 601 (4” Target) & Drytech Quad

- Successfully deposited test film with characteristics which seem to describe a relatively stoichiometric and pure film. Auger and further Spectroscopic analysis will be performed to verify.

- Sputter on the C-V wafers were relatively uniform (in center) and yield ~2500A thickness with similar optical properties to test films.

![TANOS C-V Structure - Control Gate](image)
Film Optimization:

- TaN Optical Properties Extracted from VASE

Film Optimization:

Tantalum Nitride: CVC 601 & Drytech Quad

- Etching performed in the Drytech Quad, using existing Tantalum etch as a basis; etch rates were significantly slower than for pure Ta (~277Å/min).
Capacitors

- Following process flow listed on slide 7:
 - Well dope followed by well-drive anneal, RCA clean
 - 3 Levels of Oxide grown (38Å, 52Å, 68Å, 1 wafer each)
 - Nitride deposited (~75Å All) with Device wafers
 - Alumina (~110Å All) deposited with device wafers
 - TaN (2500Å All) deposited as per Film Optimization
 - Aluminum (~5000Å All) deposited with CHA Flash Evaporator.
 - GCA C-V Mask patterned, Aluminum wet etched, and TaN etched with Drytech Quad.
 - Wet photoresist strip (PRS2000) performed, rather than O₂ plasma ash, to avoid formation of Ta₂O₅ after etch.
Capacitors
Capacitors

C-V Curves after Program and Erase Sequences

A 15V Erase shifts the threshold such that it perfectly matches the fresh device.
Capacitors

$$\Delta V_{tp} = V_{tp} - V_{t0}$$ where, V_{tp} is the threshold voltage after program and V_{t0} is the threshold voltage of a fresh device.

$$\Delta V_{te} = V_{te} - V_{tp_{max}}$$ where, V_{te} is the threshold voltage after erase and $V_{tp_{max}}$ is the maximum possible programmed threshold voltage.
Further Work

Device Wafer Completion

- Once the device wafers have completed the process flow outlined in slide 7, they should prove fully functional.

- Threshold voltage adjustment by hot carrier injection should be achievable, based on the good results seen with C-V wafers.

- Theoretical scaling limits can then likely be extracted from these results.
Special Thanks to:
Dr. Santosh Kurinec
Dr. Michael Jackson
****The SMFL Staff!!!***
Matt Filmer, Nick Edwards
Dr. Robert Pearson and Dr. Ewbank
Questions?