Exploration of Directed Self Assembly Polymers

PAUL BISCHOFF
33RD ANNUAL MICROELECTRONIC ENGINEERING CONFERENCE
SPRING 2015
Introduction

Current Challenges to manufacturing
- Approaching limits of 193i
 - 10nm resolution has been demonstrated with multiple patterning
 - EUV as an alternative is expensive with low throughput

Advantages of Directed Self Assembly
- Low resolution
 - Down to 10nm resolution and possibly smaller with multiple patterning
- Can be integrated with current patterning techniques and equipment
- Inexpensive

Disadvantages of DSA
- Complex patterns can be difficult or impossible to form
- Has to be integrated into an existing lithography process
- Processing times may be long
- Defects in the directed pattern
Polymer Structure

- Polymer consists of 2 blocks
- Volume fraction of the polymer (f), Flory interaction parameter (χ), and degree of polymerization (N) determine the structure
- The polymers used in the experiment were large enough to be in the highlighted region and above
- Lamellae and horizontal cylindrical used for creating lines
- Vertical cylindrical used for via holes

Phase diagram of di-block co-polymer, Ref [4]
Via Hole Formation

A) The block co-polymer is coated with random orientation.
B) Annealing causes the polymer to orient so that one of the blocks forms vertical cylinders
C) The vertical cylinders are etched leaving via hole structures

Ref [3]
Polymers Used in This Work

PS-PDMS
- Di-block of polystyrene and polydimethylsiloxane
- PDMS contains silicon that becomes SiO2 when etched
- PDMS will form features while PS is etched away
- Molecular weight of the polymer was 67k-b-22k g/mole
 - This will create cylindrical structures

PS-PEO
- Di-block of polystyrene and polyethylene oxide
- PEO etches faster than PS
- PS will form the features
- Two sets of molecular weights were used
 - 52.5k-b-35.6k g/mole PS-b-PEO 26.9%mole PEO to create cylindrical structures
 - 40%mole PEO to create lamellae structures

Locations of project polymers. PS-b-PEO shown in red and PS-b-PDMS shown in blue
"Formation of Long-Range Stripe Patterns with Sub-10-nm Half-Pitch from Directed Self-Assembly of Block Copolymer" by M. Takenaka, et al. [2]
- Molecular weight of PS-b-PDMS was 1.03k-b-0.74k g/mole
- Coated on both native oxide surface and PDMS brush coated wafers
- Annealed at 170°C for 24h in vacuum
- Both resulted in block separation and horizontal (cylindrical) lines

"Defect Analysis and Alignment Quantification of Line Arrays Prepared by Directed Self-assembly of a Block Copolymer" by C. Simao, et al. [5]
- Molecular weight of PS-PEO was 42k-b-11.5k g/mole
- Polymer was coated on native SI, Trimethoxy silane treated, and PS brush wafers
- Coated from 1% solution in toluene at 3000rpm for 30 seconds
- Annealed in chloroform vapor for 3 hours
- Horizontal (cylindrical) lines were observed on all surfaces

Locations of reference research. PS-b-PEO shown in red and PS-b-PDMS shown in blue
Surface Treatment

Polymers were coated on 2 different wafer surfaces

- HMDS (Hexamethyldisilazane) treated surface
 - Treated with vapor
 - Similar to the Trimethoxy silane used in the reference research [5]
- Carboxylic terminated PS layer
 - PS was spin coated, baked, then remaining polymer was washed in toluene and ethanol
 - Carboxylic group hydrogen bonds to the surface making it resistant to solvent removal

\[
\text{HMDS Treated}
\]

\[
\text{Carboxylic terminated PS}
\]
Process

- Coated with thin layers
 - Polymers dissolved in 1% solution with Toluene
 - Spun at 3000 rpm for 2 minutes
- Anneal to allow polymer to flow into shape
 - Can be done thermally, in solvent atmosphere, or combination of the two
 - PS-b-PDMS was annealed for 24 hours in Nitrogen ambient at 170°C
 - PS-b-PEO was annealed in chloroform ambient for 3 hours at room temperature
- Measurements were taken on Atomic Force Microscope (AFM)
 - Thickness determined from topography map using tapping mode
 - Possible structure determined from phase imaging
PS-b-PDMS (Cylindrical)

- PS-b-PDMS originally coated on native Si showed de-wetting
- Filtering did not improve the coating
- Flooding the wafer did not improve coating quality
- Coating with a different solvent (THF) still resulted in de-wetting
- HMDS showed the same de-wetting problem
- Coating on a PS under-layer showed significant improvement
 - There was still enough film non-uniformity to prevent accurate measurement

PDMS de-wetting on HMDS treated wafer
PDMS film non-uniformity on PS under-layer
40% mole PEO (Lamellae)

- Once coated the PEO crystallized
 - This is undesirable as the PEO clumps preventing phase separation
- A bake at 200°C for 5 min did not remove crystals
 - Both melting point of PEO and glass transition temperature for PS are below 200°C
29\% mole PEO (Cylindrical)

- Coatings were a success on both HMDS and PS under-layer
 - For the first samples surface uniformity was good enough for AFM measurement
- Step was made using X-acto knife to find thickness of the film
- 30um x 30um section containing the step was measured on the AFM
- The film height was found to be around 40nm
 - This is expected for a single polymer layer
Thickness Results

29\% mole PEO cylindrical structure on PS under-layer

Polymer film of interest

Substrate

Defects

AFM step height

40nm
AFM Phase Measurement

- 2µm x 2µm section of the film was measured
- Phase measurement used to measure elasticity of a material
- There is a significant difference between the block polymers to form image
- HMDS treated wafers did not form structures
- Width of three random dots were taken
 - Measurement locations shown with colored lines
- Indication of via hole structures

AFM Phase Image
AFM Phase Measurement

- The increase in phase represents the areas where PEO is present
- The PEO needs to be etched in order to form the via holes
- All widths were around 30nm

![AFM Phase Measurement graph](image)
29\% mole PEO Etching

- Etching was attempted on the sample with via holes but the entire film was etched
 - A shorter time or lower power will be needed to prevent the entire film from etching away
- The limited number of samples prevented full etch rate characterization
29% mole PEO wafer re-work

- Repeat trials met with film de-wetting issues
 - De-wetting occurred during annealing
 - Surface cleanliness may disrupt PS adhesion
Results Summary

<table>
<thead>
<tr>
<th>Polymer</th>
<th>HMDS treated</th>
<th>PS under-layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS-b-PDMS</td>
<td>De-wetted</td>
<td>Non-uniform film</td>
</tr>
<tr>
<td>PS-b-PEO 29%mole</td>
<td>No structure formed</td>
<td>Via holes</td>
</tr>
<tr>
<td>PS-b-PEO 40%mole</td>
<td>Crystallized</td>
<td>Crystallized</td>
</tr>
</tbody>
</table>
Conclusions and Future Work

Conclusions

- De-wetting was the main source of error
- Too high of a PEO ratio will result in crystallization
- Surface cleanliness may impact the hydrogen bonding for the PS under-layer
- 30nm via holes can be achieved with the 29%mole PEO on PS under-layer
- DSA is very sensitive to the surface

Future Work

- Use a lower weight, smaller polymer
- Use a patterned surface to direct the pattern
- Have a more rigorous cleaning procedure for samples before processing
- Use different brush polymers
- Take AFM images before annealing to see the effects of annealing on separation of the blocks
References

Acknowledgements

Dr. Thomas Smith
 ◦ Primary advisor to the project for chemical work

Dr. Surenda Gupta
 ◦ AFM measurement

Dr. Dale Ewbank

Dr. Rob Pearson

SMFL staff: Patricia Meller, Sean O’Brien, John Nash, Bruce Tolleson, Rich Battaglia, Scott Blondell, Dave Yackoff, Tom Grimsley