
Rochester Institute of Technology
RIT Scholar Works

Theses Thesis/Dissertation Collections

4-20-2015

Anonymity Analysis of Cryptocurrencies
Liam Morris

Follow this and additional works at: http://scholarworks.rit.edu/theses

This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion
in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact ritscholarworks@rit.edu.

Recommended Citation
Morris, Liam, "Anonymity Analysis of Cryptocurrencies" (2015). Thesis. Rochester Institute of Technology. Accessed from

http://scholarworks.rit.edu?utm_source=scholarworks.rit.edu%2Ftheses%2F8616&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.rit.edu/theses?utm_source=scholarworks.rit.edu%2Ftheses%2F8616&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.rit.edu/etd_collections?utm_source=scholarworks.rit.edu%2Ftheses%2F8616&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.rit.edu/theses?utm_source=scholarworks.rit.edu%2Ftheses%2F8616&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.rit.edu/theses/8616?utm_source=scholarworks.rit.edu%2Ftheses%2F8616&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ritscholarworks@rit.edu

Thesis Submitted for Master of Science in Computer Science
Department of Computer Science
Rochester Institute of Techology

Anonymity Analysis of Cryptocurrencies

Liam Morris
lcm1115@rit.edu

Chair: Professor Stanisław Radziszowski spr@cs.rit.edu

Reader: Professor Warren Carithers wrc@cs.rit.edu

Observer: Professor Bo Yuan bo.yuan@rit.edu

Rochester, NY 14623 USA

April 20, 2015

A Thesis Submitted
in

Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Computer Science

Department of Computer Science
B. Thomas Golisano of Computing and Information Sciences

Rochester Institute of Technology
Rochester, NY 14623 USA

Abstract

Cash in the real world allows for parties to exchange currency without the
need to go through some sort of central authority. One person, Alice, can
simply hand cash over to another person, Bob. In this transaction the only two
people that have knowledge of this exchange are Alice and Bob. Until recently
there was no electronic equivalent to this exchange. In 1982 David Chaum
proposed a system of anonymous electronic cash based on blind signatures,
and in 1990 founded DigiCash as an electronic cash company. There were a few
banks that implemented electronic cash systems, but these banks and DigiCash
ultimately went bankrupt in 1997 and 1998 despite the enthusiasm surrounding
anonymous electronic cash. Between 1998 and 2008 there were no successful
implementations of electronic cash that offer a decentralized, anonymous, and
untraceable system.

In 2008 a paper was published by Satoshi Nakamoto on the cryptocurrency
known as Bitcoin. A cryptocurrency is a form of electronic cash backed by
mathematical and cryptographic constructs, unlike traditional currency which
was historically backed by gold or silver. Cryptocurrencies have seen rising
popularity in recent years due to their decentralized, distributed, peer-to-peer
protocols. Part of this rising popularity is also attributable to the supposed
anonymity of these protocols; however, due to the public transaction history
required for these protocols and the fact that transactions are pseudonymous
and not purely anonymous, this supposed anonymity does not exist. While the
systems may achieve the goal of decentralized currency it does not achieve the
goal of untraceability. In this thesis we analyze the technical implementations of
Bitcoin and other cryptocurrencies to determine the level of anonymity provided
by these protocols. We also analyze proposed improvements for their feasibility.

Contents

1 Problem Statement 3

2 Cryptographic Tools 4
2.1 Hash Functions . 4

2.1.1 Secure Hash Algorithm . 4
2.2 Elliptic Curve Digital Signature Algorithm Keys 9
2.3 Scrypt . 9
2.4 Accumulators . 11

2.4.1 Strong RSA Accumulator . 11
2.4.2 Elliptic Curve Accumulator 12

2.5 Pedersen Commitment Scheme . 12

3 Chaumian e-cash 13

4 Cryptocurrency Protocols 14
4.1 Bitcoin Protocol . 14

4.1.1 Transaction Scheme . 15
4.1.2 Transaction Blocks . 16
4.1.3 Verification Scheme . 16
4.1.4 Network Structure . 17

4.2 Litecoin Protocol . 18
4.2.1 Transaction Scheme . 18
4.2.2 Transaction Blocks . 18
4.2.3 Verification Scheme . 18
4.2.4 Network Structure . 19

4.3 Economics . 19

5 Anonymity Characteristics 20
5.1 Current State of Cryptocurrency Anonymity 20

5.1.1 Initial Findings . 23
5.2 Litecoin Transaction Graph . 24

5.2.1 blockparser . 24
5.2.2 Algorithm . 25
5.2.3 Results . 26

1

6 Improving Anonymity 27
6.1 Mixer . 27
6.2 Zerocoin . 29

6.2.1 Performance Concerns . 30
6.3 Mixcoin . 32
6.4 Stealth Addresses . 33

7 Conclusion and Future Work 34
7.1 Conclusion . 34
7.2 Future Work . 35

8 Appendix 39
8.1 Source Code . 39
8.2 Litecoin Component Sizes . 49

List of Figures

1 Bitcoin transaction process . 15
2 Example mix network . 28
3 Bitcoin block chain (a) and Zerocoin block chain (b) 30

2

1 Problem Statement

Cash in the real world allows for parties to exchange currency without the need
to go through some sort of central authority. One person, Alice, can simply hand
cash over to another person, Bob. In this transaction the only two people that
have knowledge of this exchange are Alice and Bob. Until recently there was no
electronic equivalent to this exchange. In 1982 David Chaum proposed a system
of anonymous electronic cash based on blind signatures [7], and in 1990 founded
DigiCash as an electronic cash company. There were a few banks that implemented
electronic cash systems, but these banks and DigiCash ultimately went bankrupt
in 1997 and 1998 despite the enthusiasm surrounding anonymous electronic cash.
Between 1998 and 2008 there were no successful implementations of electronic cash
that offer a decentralized, anonymous, and untraceable system.

In 2008 a paper was published by Satoshi Nakamoto on the cryptocurrency
known as Bitcoin [18]. A cryptocurrency is a form of electronic cash backed by
mathematical and cryptographic constructs, unlike traditional currency which was
historically backed by gold or silver. The Bitcoin protocol uses the SHA-256 algo-
rithm as part of its cryptographic foundation, while many others such as Litecoin
are founded on the scrypt key derivation scheme proposed by Colin Percival in
2009 [24]. Cryptocurrencies have seen rising popularity in recent years due to their
decentralized, distributed, peer-to-peer protocols. Part of this rising popularity is
also attributable to the supposed anonymity of these protocols; however, due to the
public transaction history required for these protocols and the fact that transactions
are pseudonymous and not purely anonymous, this supposed anonymity does not
exist. While the systems may achieve the goal of decentralized currency, they do
not achieve the goal of untraceability. There have been proposals in recent years
such as the Zerocoin [15] and Mixcoin [5] protocols to remove all traceability from
the Bitcoin protocol. In this thesis we analyze the technical implementations of the
Bitcoin and Litecoin protocols to determine the level of anonymity and traceability
provided by these protocols. We also analyze proposed improvements, such as Ze-
rocoin and Mixcoin, to determine their feasibility and possible optimizations that
can be made.

3

2 Cryptographic Tools

2.1 Hash Functions

A hash function is an algorithm that processes variable length inputs to produce a
fixed length digest. Hash functions are important for cryptocurrency protocols as
they provide the basis on which their proof-of-work schemes are constructed.

Cryptographic hash functions are designed in such a way that they are non-
invertible. In other words, if we have computed a digest of some message we should
not be able to easily deduce the message from the digest. For a hash function to be
secure, the following criteria must uphold [27]:

Preimage Resistant Given a digest H(M), it must be computationally difficult
to determine M .

Second Preimage Resistant Given a message M1, it must be computationally
difficult to determine a second message M2 such that H(M1) = H(M2).

Collision Resistant It must be computationally difficult to construct two mes-
sages M1 and M2 such that H(M1) = H(M2).

Hash functions are frequently used to uniquely identify large messages so that
they may be efficiently signed. In the case of cryptocurrency protocols this typically
takes on the form of hashing an entire transaction so that just the digest may be
signed by a user. In a transaction between Alice and Bob, Alice could construct
a transaction and sign every parameter with her private key individually, which
must then be verified with her public key individually. This amount of computa-
tion is wasteful on both ends, but Alice can use hashing to reduce the amount of
computation required. She can construct the transaction as before, but instead of
signing every component she can hash the transaction parameters together and then
sign the resulting digest. On the other end only verification of the signed digest is
required.

2.1.1 Secure Hash Algorithm

The Secure Hash Algorithm (SHA) is a family of algorithms published by the Na-
tional Institute of Standards and Technology (NIST). In order for an algorithm to
be included in the SHA family it must be selected as a winner by NIST in one of
its hash function competitions.

4

Bitcoin and Litecoin both use the SHA-256 variant of the SHA-2 algorithm as
part of their proof-of-work scheme1. The SHA-256 function hashes a message M in
the following manner [21]:

1. Pad M so that it is on a 512-bit boundary.

2. Divide M into 512-bit blocks M1,M2, . . . ,Mn.

3. Compute H(Mi) = H(Mi) �H(Mi−1) for i = 1 to n, where H(M) is defined
as the hashing operation on one block, H(M0) is a fixed initial hash value,
and � is defined as integer addition modulo 232.

4. Output H(Mn) as resulting hash.

Currently NIST states that the SHA-2 algorithm is still cryptographically se-
cure2. If a vulnerability is found then there is the potential for attacks on cryp-
tocurrencies, so it is worth examining the more recent SHA-3 Keccak family. The
SHA-3 algorithm is not necessarily more secure than SHA-2; however, it is very dif-
ferent structurally so it is unlikely that both SHA-2 and SHA-3 would be vulnerable
to a single attack.

The SHA-3 algorithm uses a sponge construction, which processes variable length
input to produce a corresponding infinite length output. If a fixed length output is
desired the output of a sponge function is truncated to the specified length. Given
a permutation f , a sponge function operates in the following manner [4]:

Input: P = list of input characters, n = desired hash length
Output: h0, h1, . . . = output characters
S ← ∅
for p ∈ P do

S ← f(S ⊕ p)
end
for i = 1, 2, . . . , n do

Output(S)
S ← f(S)

end
The specific details for SHA-3 are as follows [19]:

1Litecoin uses scrypt for its proof-of-work scheme, but scrypt performs two SHA-256 hashes
as part of the algorithm.

2http://csrc.nist.gov/groups/ST/hash/policy.html – Accessed 4-1-2014

5

• w - size in bits of state words

• a - overall state which consists of 5x5 “sheets” of w-bit words

• Θ - parity of 5-bit columns to be XORed into other columns

• ρ - bitwise rotation operation, where each word is rotated by a triangular
number

• π - permutation of state, a[j][2i+ 3j]← a[i][j]

• χ - bitwise combination operation of rows

• ι - XOR operation, XOR round constant into single word of state

Each round of SHA-3 uses the following function (Round, where B,C,D are
intermediate variables):

Input: A = current state, RC = round counter
Output: A = new state
// Θ step
for x in 0 . . . 4 do

C[x] = A[x, 0]⊕A[x, 1]⊕A[x, 2]⊕A[x, 3]⊕A[x, 4]
end
for x in 0 . . . 4 do

D[x] = C[x− 1]⊕ rot(C[x+ 1], 1)
end
for (x, y) in (0 . . . 4, 0 . . . 4) do

A[x, y]⊕D[x]
end
// ρ, π steps
for (x, y) in (0 . . . 4, 0 . . . 4) do

B[y, 2 ∗ x+ 3 ∗ y] = rot(A[x, y], r[x, y])
end
// χ step
for (x, y) in (0 . . . 4, 0 . . . 4) do

A[x, y] = B[x, y]⊕ (!B[x+ 1, y]&B[x+ 2, y])
end
// ι step
A[0, 0] = A[0, 0]⊕RC
return A

6

The algorithm for SHA-3 operates in the following manner:

Input: M = arbitrary length input
Output: Z = hashed message
S[x, y] = 0
P = M || 0x01 || 0x00 || . . . || 0x01 // Initialize P
P = P ⊕ (0x00 || . . . || 0x00 || 0x80)
for block Pi in P do

S[x, y] = S[x, y]⊕ Pi[x+ 5 ∗ y] // Absorb input
S = Keccak-p[r + c](S)

end
Z = ε while output is requested do

Z = Z||S[x, y]
S = Keccak-p[r + c](S)

end
return Z

The Keccak-p function simply takes the given input and performs the Round
operation on it, using round constants 0 . . . nr−1. The round constants and rotation
offsets specified by SHA-3 are3:

3http://keccak.noekeon.org/specs_summary.html

7

Round Number Round Constant
0 0x0000000000000001
1 0x0000000000008082
2 0x800000000000808A
3 0x8000000080008000
4 0x000000000000808B
5 0x0000000080000001
6 0x8000000080008081
7 0x8000000000008009
8 0x000000000000008A
9 0x0000000000000088
10 0x0000000080008009
11 0x000000008000000A
12 0x000000008000808B
13 0x800000000000008B
14 0x8000000000008089
15 0x8000000000008003
16 0x8000000000008002
17 0x8000000000000080
18 0x000000000000800A
19 0x800000008000000A
20 0x8000000080008081
21 0x8000000000008080
22 0x0000000080000001
23 0x8000000080008008

Rotation Offsets

x=3 x=4 x=0 x=1 x=2
y=2 25 39 3 10 43
y=1 55 20 36 44 6
y=0 28 27 0 1 62
y=4 56 14 18 2 61
y=3 21 8 41 45 15

8

2.2 Elliptic Curve Digital Signature Algorithm Keys

Bitcoin and Litecoin use the Elliptic Curve Digital Signature Algorithm (ECDSA) [12]
as the basis for their public-private key system. Although the use of ECDSA sug-
gests that there is a central figure monitoring the public key infrastructure, the
specification for the ECDSA exists outside of the cryptocurrency. The curve pa-
rameters for Bitcoin and Litecoin are specified by secp256k1 4 [6]:

Fp finite field where p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1
Curve E y2 = x3 + ax+ b over Fp where

a = 0
b = 7

Base G G = 02 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB
2DCE28D9 59F2815B 16F81798 in compressed form

G = 04 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB
2DCE28D9 59F2815B 16F81798 483ADA77 26A3C465 5DA4FBFC
0E1108A8 FD17B448 A6855419 9C47D08F FB10D4B8 in uncom-
pressed form

Order(G) n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6
AF48A03B BFD25E8C D0364141

Cofactor h h = 1

2.3 Scrypt

Scrypt is a password-based key derivation function developed by Colin Percival in
2009 [24]. Percival developed scrypt as part of the Tarsnap backup service on UNIX-
like systems in order to reduce the strength that special purpose hardware provides
to attackers when performing parallelized brute force attacks on passwords. Scrypt
plays an important role in cryptocurrencies as it is the foundation on which Litecoin
and its forks are built [29].

The methodology behind scrypt is that we can reduce the effectiveness of par-
allelization by requiring the algorithm to have enormous memory overhead. The
reason for this memory overhead is that the algorithm generates a large vector of
pseudorandom strings which are then accessed in pseudorandom order. The im-

4secp256k1 is used in the base Bitcoin implementation located at http://github.com/bitcoin
and in the base Litecoin implementation at http://github.com/litecoin-project

9

plication of this is that these strings must be kept in memory to be accessed. In
theory one could compute each string as needed without storing the entire vector in
memory, but the algorithm is designed such that this computation is not trivial.

The structure of scrypt consists of the following elements:

ROMix A method of pseudorandomly generating items and pseudorandomly ac-
cessing them.

BlockMix Transforms each block of input into a corresponding block of output
using 1,024 rounds of the Salsa20/8 algorithm developed by Daniel Bern-
stein [3].

String Vector The vector in which each block is stored throughout algorithm.

The overall process for deriving a key using scrypt is as follows:

1. Compute initial hash using SHA-256.

2. Perform 1,024 rounds of BlockMix step using Salsa20/8 and record outputs
in a vector.

3. Perform 1,024 rounds of BlockMix again using Salsa20/8 with inputs cho-
sen pseudorandomly (with output from previous iteration used to determine
next block selection) from the vector and written pseudorandomly back to the
vector.

4. Hash resulting vector using SHA-256 again for collision resistance5.

5. Output resulting hash.

Steps 2 and 3 in this process are what cause scrypt to be memory hard. To
efficiently compute a scrypt hash, all 2,048 Salsa20/8 outputs must be saved si-
multaneously. It is possible to not store all of these values in memory, but it would
require recomputing all values for each round. Theoretically with a fast enough
CPU scrypt can be a CPU-bound computation, but it is drastically cheaper and
easier to store all intermediate values in memory.

One of the implications of the memory-hard computation is that ASICs (applica-
tion specific integrated circuits) cannot be cheaply or easily designed for computing

5Salsa20 does not provide collision resistance, so a separate step is needed to provide collision
resistance.

10

scrypt hashes. Since the memory overhead is so large any ASIC must be attached
to some sort of DRAM which increases the physical footprint of the device itself,
making it less feasible to create such devices.

2.4 Accumulators

A cryptographic accumulator is a form of a one-way function in which members in
a set cannot be determined, but it can be shown that an item belongs to the set.
A simple example of this is the prime factors of a large number. The prime factors
cannot be easily determined, but it is trivial to determine if a given number is a
factor of the larger number. The three components required for an accumulator are:

• A cyclic group, G, whose elements will be used in the accumulator

• An accumulate function which adds elements to the accumulator

• A witness function which verifies an element’s presence in the accumulator

2.4.1 Strong RSA Accumulator

In 1994, a one-way accumulator based on the RSA cryptosystem was introduced by
Josh Benaloh and Michael De Mare. [2] This accumulator can be used for accumu-
lating integers. The properties of this accumulator are:

• N = p · q

• generator value u ∈ ZN

• elements to be accumulated (primes modulo N) e1, e2, . . . , en

The function for accumulating elements and producing accumulator value A is
defined as follows:

A ≡ ue1e2···enmodN

The accumulation function produces n corresponding witness values computed
as:

wi ≡ ue1e2···ei−1ei+1···enmodN

To verify that some element ei exists given some witness wi, the following equiv-
alence must be true:

A ≡ wei
i modN

11

2.4.2 Elliptic Curve Accumulator

Accumulators based on elliptic curves can be created for accumulating integers with
a system similar to the Strong RSA Accumulator. The properties for such an accu-
mulator are:

• elliptic curve with cyclic group G with order N and modulus p

• generator point P ∈ G

• elements to be accumulated (primes modulo N) e1, e2, . . . , en

The function for accumulating elements and producing accumulator point A is
defined as follows:

A = (e1e2 · · · en)G

The corresponding witness values produced are:

Wi = (e1e2 · · · ei−1ei+1 · · · en)G

To verify that some element ei exists given some witness wi, the following equiv-
alence must be true:

A = eiWi

2.5 Pedersen Commitment Scheme

A cryptographic commitment scheme allows a person to publicly “commit” to a
value without revealing the value itself. Additionally, once a commitment has been
made neither the value committed to nor the commitment statement can be changed.
Traditional commitment schemes involve two separate steps:

1. the commit step in which a person commits to a value

2. the reveal step in which the value is revealed and verified

In 1999, Torben Pryds Pedersen introduced a commitment scheme for integers.
[23] In this scheme, two primes p and q are chosen such that q − 1 divides p, giving
unique group G in Zp with order q. Select g, h ∈ G such that logg h is not known.
To commit to some value s ∈ Zq, a user selects a random value t ∈ Zq and computes:

E(s, t) = gsht

12

This value is then shared as the commitment. The commitment can be revealed
at a later time but revealing the values of s and t and confirming that E(s, t) can
be computed with these values.

3 Chaumian e-cash

David Chaum introduced a system of electronic cash, or e-cash, in 1983 to provide
a digital analog to real-world cash transactions. The system uses blind signatures
to “mint” dollar bills from a bank, which can then at a later time be redeemed at
the bank such that the origin of the bills is unknown. [7] If Alice wants to give Bob
$1, the following process is used:

1. Alice generates a random serial number.

2. Alice performs a blinding operation on the serial number such that the serial
cannot be deduced.

3. Alice requests that the bank sign the blinded serial number with a key that
indicates it has a value of $1.

4. Alice unblinds the serial number, which is now signed to have a value of $1,
and sends it to Bob.

5. Bob sends the serial number to the bank.

6. The bank verifies the signature on the serial number and credits Bob with $1.

The actual blinding operation is based on RSA. The bank publishes a public key
n = pq and computes private key 3−1 mod (p− 1)(q− 1). Alice generates a random
number r and uses hash function h to send the value r3h(m) mod n to the bank,
where m is the random serial number for the bill. The bank computes the third
root of the value and returns rh(m)1/3 mod n back to Alice. Alice divides the value
by r and then has the value h(m)1/3, which with m acts as the “dollar bill” to be
sent to Bob.

One problem that must be solved with e-cash is double-spending. Double-
spending is a process by which Alice tries to spend her e-cash bill at two different
locations. When verified, the bank certainly sees that the bill is legitimate but has
no way to confirm that the bill has not already been spent. Chaum proposed a so-
lution to this by encoding the original user’s name into the bill such that spending

13

the bill once reveals no information, but spending the bill twice reveals the identity
of the person attempting the double spend. [8]

The mint process for this style of e-cash uses two different hash functions h1 and
h2, which take two inputs and produce one output. The initial value to be signed
by the bank is computed by Alice as Bi = ri

3h1(xi, yi), where xi = h2(ai, ci) and
yi = h2a(ai ⊕ (Alice||i), di). The values ai, ci, di, and ri are all randomly selected
from Zn for each i from 1 to 2k, where k is a security parameter. In order to spend
the money, Alice must reveal xi and yi, and the calculation of either xi or yi. With
these pieces of information alone her identity is not revealed. However, if both pieces
are revealed then her identity can be computed. When receiving the money from
Alice, Bob requests whichever component he desires for each piece i. In this manner,
with a large k it is unlikely that two people receiving the same money from Alice
will choose exactly the same components for every single piece.

While this style of double-spending prevention can detect double-spending, it
does not have the ability to prevent double-spending natively. Bitcoin-based cryp-
tocurrencies have the ability to prevent double-spending because of the design of
the block chain and consensus-based transaction verification.

4 Cryptocurrency Protocols

Cryptocurrency protocols generally consist of three main components: a transac-
tion scheme, a verification scheme, and a transaction ledger. The specific details
for each of these may vary between protocols, but they typically exhibit the same
characteristics regardless of implementation. In particular, different protocols may
be constructed from different cryptographic primitives and tools, as well as be set
in entirely different mathematical domains.

4.1 Bitcoin Protocol

Bitcoin is the most widely used cryptocurrency and is the first cryptocurrency to
begin circulation. Many other cryptocurrencies are direct forks of Bitcoin, so the
Bitcoin protocol will be our primary focus.

14

4.1.1 Transaction Scheme

The transaction scheme of Bitcoin uses pseudonyms to specify a transaction between
users on the network. A transaction is recorded as a transfer of some value from
one user to another, where the input side of a transaction consists of one or more
public keys and the output side of a transaction consists of one public key.

The method of recording a new transaction of some bitcoin from Alice to Bob is as
follows:

1. Alice signs the bitcoin’s previous transaction signature with her private key

2. The resulting value is used as an input in a hash function along with Bob’s
public key

3. The output of this hash is the transaction signature, which can be signed with
Bob’s private key to initiate another transaction

Once a transaction has been created it is sent out to the Bitcoin network in order
to be verified, approved, and permanently recorded in the block chain.

Figure 1: Bitcoin transaction process [18]

15

4.1.2 Transaction Blocks

Once a transaction has been initiated it must be verified by users in the Bitcoin
network in order for the transaction to be fully committed. As transactions are sent
out to the Bitcoin network, miners accumulate the transactions into a block. As
of January 2015, average size of each block varies greatly with a range of roughly
300 to 800 transactions per block.6 However, this size is increasing over time as the
average size ranged from roughly 200 to 400 only one year prior in January 2014.
The size of these blocks ranges from about 150KB to 450KB,7 creating a total size
of 33GB for the entire block chain.8

4.1.3 Verification Scheme

Verification of a block requires some proof-of-work in order to complete the block
and append it to the block chain. The proof-of-work scheme used by the Bitcoin
protocol is based on the Hashcash proof-of-work scheme proposed by Adam Back
in 2002. [1]. The original Hashcash specification was intended to prevent denial
of service attacks in email service but has found popular usage within the Bitcoin
protocol. To complete proof-of-work for a transaction, a SHA-256 hash with inputs
of the previous hash and a nonce must be found such that the resulting hash is below
a specified difficulty level. In other words, we must feed the SHA-256 algorithm the
previous hash of the coin concatenated with a nonce or string such that we have a
specified number of leading 0’s in the resulting hash. One common way of computing
proof-of-work is using the following algorithm:

Input: D = difficulty parameter, P = previous transaction hash
Output: N = nonce, H = resulting hash
N ← 0
H ←SHA-256(Concat(P,N))
while H ≥ D do

N ← N + 1
H ←SHA-256(Concat(P,N))

end
return N, H

6http://blockchain.info/charts/n-transactions-per-block
7http://blockchain.info/charts/avg-block-size
8http://bitinfocharts.com/

16

Once a proof-of-work has been determined the block with the proof-of-work
information is distributed to the Bitcoin network. The difficulty of the proof-of-
work operation is such that blocks are found for a transaction, globally on average,
in 10 minutes. This time is based on the global block difficulty which is determined
by a “moving average targeting an average number of blocks per hour.” [18] What
this means is that periodically the speed at which blocks are computed is evaluated
and the global difficulty is adjusted accordingly9.

The node which distributes the completed block to the network is rewarded with
bitcoins if the block is accepted. This reward starts out at 50 bitcoins per block and
is halved after every 210,000 blocks, which means that bitcoins ultimately have an
maximum quantity of roughly 21,000,000 [18]. Once Bitcoins are no longer awarded
for verifying blocks, the incentive must come from elsewhere. Fees can be attached to
Bitcoin transactions, which simply means that whoever verifies the block containing
that transaction will receive the Bitcoins attached as a fee.

4.1.4 Network Structure

The original Bitcoin whitepaper [18] describes the Bitcoin network in the following
way:

1. Transactions are broadcast to all network nodes.

2. Transactions are collected and joined to form a block.

3. A proof-of-work for a block is found, which is then broadcast to all nodes.

4. If the proof-of-work is valid, all transactions in a block are valid, and bitcoins
involved have not already been spent, then the block is accepted.

5. The accepted block is appended to the block chain, and its hash is now used
as the input hash for the next block.

In other words, all nodes in the network are made aware of new transactions,
verified transactions, and accepted blocks. In this way the transaction record (block
chain) is shared among all nodes in the network.

9Difficulty evaluation happens every 2016 blocks which is specified by the bitcoind client at
http://github.com/bitcoin

17

4.2 Litecoin Protocol

Litecoin is the second most widely used cryptocurrency10, and is itself a fork of
Bitcoin. Litecoin’s first block was mined in October 201111. Litecoin has a few key
differences from Bitcoin. The primary difference between Litecoin and Bitcoin is
how the coins are mined, or rather how the transactions are verified. Rather than
using SHA-256 as a proof-of-work scheme Litecoin uses Colin Percival’s scrypt [24].
Additionally, rather than a global average of 10 minutes per block as in Bitcoin,
Litecoin targets a global average of 2.5 minutes [29]. To prevent the reward pool
of litecoins from drying up too quickly as a result of this faster verification time,
the number of blocks after which the reward is halved is quadruple that of Bitcoin.
Rather than halving after every 210,000 blocks, the reward for verifying a block
halves after every 840,000 blocks.

4.2.1 Transaction Scheme

The Litecoin transaction scheme is identical to that of Bitcoin. Litecoin also records
the signatures of all users involved, the amount being transferred in a block which
is then itself part of a larger block chain.

4.2.2 Transaction Blocks

Litecoin blocks are created the same way as Bitcoin. However, Litecoin’s average
block size is significantly smaller due to its faster verification time and smaller
trading volume. The monthly average number of transactions per Litecoin block
ranges from about 3 to 30.12 Most blocks are smaller than 10KB, with the majority
of blocks being on the order of several hundred bytes. The total size for the Litecoin
block chain is 3.95GB.13

4.2.3 Verification Scheme

Litecoin was forked from Bitcoin to address the strength that special purpose hard-
ware brings to Bitcoin. Users in the Bitcoin network with application specific in-
tegrated circuits (ASIC) designed specifically for computing SHA-256 hashes have

10http://coinmarketcap.com – Accessed 3-18-14, Litecoin has the second highest 24 hour trading
volume

11http://ltc.blockr.io/block/info/1
12http://www.coindesk.com/data/litecoin-number-transactions-per-block/
13https://bitinfocharts.com

18

an enormous advantage over users without such hardware. To address this Litecoin
uses the scrypt [24] key derivation scheme instead of SHA-256, which changes the
hashing scheme from a CPU-bound operation to a memory-bound operation. By
changing the verification problem from a CPU-hard to memory-hard problem, par-
allelization no longer improves the speed of solving the problem. This yields the
following Litecoin proof-of-work algorithm:

Input: D = difficulty parameter, P = previous transaction hash
Output: S = salt, H = resulting hash
S ← 0
H ←scrypt(P, S)
while H ≥ D do

S ← S + 1
H ←scrypt(P, S)

end
return S, H

4.2.4 Network Structure

The network structure of Litecoin, much like the transaction scheme, is virtually
identical to that of Bitcoin. The network nodes are users connected to the network
who receive notifications of new transactions and verified transactions.

4.3 Economics

Given that a bitcoin’s value derives strictly from how much people are willing to
pay for bitcoin, the value is quite volatile. At Bitcoin’s inception in 2009, BTC had
no value whatsoever. Even four years later in January 2013 each BTC was worth
roughly $13. However, during 2013 interest in Bitcoin skyrocketed which increased
the value by 8000% to a staggering $1100 per BTC. [10] This Bitcoin craze eventually
settled down and the price of BTC has been slowly falling but tends to stay in the
range of $300 to $500 per BTC.

Since the Bitcoin economy is so volatile it is very vulnerable to things such as
inflation. In late 2014 about 50,000 of BTC were seized by the U.S. government and
subsequently sold in an auction. [25] The bitcoins ended up being sold for a total of
$18.6 million, which was only slightly below the market value. Only one month later,
the price of BTC sits at around $250. While it is difficult to draw direct relations
between the two events, it is certainly reasonable that the sudden sale of 50,000

19

BTC below market value would affect the market. While this is a relatively small
seizure of property, larger seizures and auctions could seriously affect the market.
Additionally, should a government entity have an opposition to Bitcoin, it would
not be difficult to directly disrupt the market by buying up BTC and deliberately
selling at a significantly lower price. Alternatively, direct government statements
can dramatically impact BTC value. In December 2013, China declared that it
does not recognize BTC as a legitimate currency and that it has no value. This
caused the value of BTC to rapidly decline to nearly half of its value within a few
weeks.14

One of the largest economic concerns for BTC is tax evasion. Real-world cash
transactions are taxed by the use of sales tax. However, BTC can be spent freely
without any taxation. Even if taxation is desired, it is difficult to figure out which
parties should be paying taxes (is this a purchase for a good, or perhaps just a
birthday present to someone?), what the tax rate should be (in which country or
municipality is the purchase being made). With pure anonymity, none of these
questions can be answered with certainty. Some economists feel that in the future
cryptocurrencies will become a tax haven for wealthy individuals to hide their money
and avoid paying taxes. [13]

An important observation to note is that these changes in BTC value also cause
changes in the value of other cryptocurrencies. The value of BTC and LTC tend to
show the same change over time.15 16 The implication of this is that drastic market
changes in one cryptocurrency are likely to cause similar changes in another market,
which means that any given cryptocurrency has multiple attack vectors.

5 Anonymity Characteristics

5.1 Current State of Cryptocurrency Anonymity

Users in the Bitcoin community can be falsely led to the conclusion that their trans-
actions are purely anonymous. For example, WikiLeaks accepts bitcoin donations
and states17,

“Bitcoin is a secure and anonymous digital currency. Bitcoins cannot be
14http://www.cryptocoincharts.info/pair/btc/usd/btc-e/alltime
15http://www.cryptocoincharts.info/pair/btc/usd/okcoin/1-year
16http://www.cryptocoincharts.info/pair/ltc/usd/okcoin/1-year
17http://shop.wikileaks.org/donate – Accessed: 3-25-14

20

easily tracked back to you, and are safer and faster alternative to other
donation methods.”

This quote was published in 2011 yet still remains as stated on the WikiLeaks
website as of January 2015 despite some criticism of its accuracy.

Each transaction contains identifying information with respect to the addresses
of the users. For every transaction in the block chain, we can see between which
users the transaction occurred as well as the number of bitcoins transferred. Each
of these transactions exists in the public transaction record to defend against double
spending of bitcoins. Due to the public nature of this record and the information
associated with each transaction it is possible to deduce some, if not all, information
about users on the network.

One way to deduce information about users is based on the input addresses
into a transaction. Since the private key owning a bitcoin is required to initiate a
transaction of that bitcoin, we can safely assume that in a transaction with multiple
input addresses that the addresses belong to one entity or person. The other possible
scenario is that private keys were shared, but this is an unlikely scenario. In fact,
in the original Bitcoin whitepaper, Nakamoto states [18],

“Some linking is still unavoidable with multi-input transactions, which
necessarily reveal that their inputs were owned by the same owner.”

Much research has been done in this area already. In 2011, Reid and Harrigan
analyzed one specific case of a theft of 25,000 BTC and attempted to trace the stolen
BTC through the Bitcoin network [26]. One of the important results from this study
was that it was not extraordinarily difficult to follow the transfer of bitcoins between
entities. The authors were able to successfully trace the stolen bitcoins across many
transfers and determine some specific addresses to which the coins were transferred,
such as LulzSec.

One way in which Nakamoto addresses this is suggesting that public keys be kept
anonymous; however, this is not ideal or even practical. Many users publish their
public keys in forum signatures so that they may receive bitcoins. In this case, the
public key is then very obviously associated with that specific username and passive
analysis of multi-input transactions can possibly reveal other keys associated with
that user. Even if users do not publish their keys in this way, some association
may be revealed if a user takes advantage of services or stores that accept bitcoins.
Consider the case of a user wanting to exchange her bitcoins for some form of

21

currency. To do so, she must go through some Bitcoin exchange service, in which
she necessarily reveals some personally identifying information to be able to receive
her money. She has now placed her anonymity in the hands of the exchange, since
if the exchange is compromised her personal information is also compromised.

In 2013 Ron and Shamir [28] performed analysis on the Bitcoin network using
transaction size as their metric. First they performed similar analysis to Reid and
Harrigan to build a graph of entities, and then analyzed large transactions to and
from those entities. One of the first results from this analysis is that they were able
to easily identify a few key entities: Mt. Gox18, Instawallet19, and DeepBit20.

Another key result determined from this analysis is the transaction patterns
that are commonly used to attempt to obscure a user’s identity. The main activities
identified by Ron and Shamir are long chains, fork-merge patterns, and savings
accounts. The long chains of transactions begin as one or more large transactions
which are then split into many smaller transactions in a very long chain. Fork-merge
patterns are similar, except that the smaller transactions are eventually merged back
into one address. A large transaction gets split into multiple smaller transactions,
but all bitcoins ultimately end up back at the originating address. The last activity
observed was the use of Bitcoin “savings accounts.” Bitcoins are distributed across
many addresses after which they are essentially untouched. A common pattern for
all of these activities is splitting a transaction into equal parts, which are then also
split into equal parts, etc. The resulting structure observed from this activity is
akin to a tree [28].

Researchers at University of California, San Diego and George Mason Univer-
sity [14] performed analysis on change addresses in a Bitcoin transaction. They used
the assumption that a one-time change address is controlled by the same user as
the input addresses. Based on this assumption, the authors were able to discover
what they called “peeling chains,” similar to activities observed by Ron and Shamir.
This type of analysis was applied to a rather peculiar Bitcoin wallet21, in which an
extremely large Bitcoin wallet was split into several smaller wallets. These smaller
wallets then eventually interacted with some Bitcoin services, including exchanges.
If this wallet were associated with an entity such as the Silk Road or the Bitcoin
Savings & Trust Ponzi scheme [16], the exchanges might be inclined to reveal iden-

18The largest bitcoin exhange at the time, filed for bankruptcy February 28, 2014
19Another large bitcoin exhange, shut down April 3rd, 2013.
20The largest mining pool at the time the study was performed.
21Address: 1DkyBEKt5S2GDtv7aQw6rQepAvnsRyHoYM

22

tifying information about the user in question, ultimately eliminating any notion of
anonymity.

Using the result from these case studies we can clearly see that input addresses
and change addresses can be used to identify Bitcoin “entities.” We can also analyze
these entities more closely and see how the entities try to obscure their identity.
Since these sorts of patterns are not extraordinarily difficult to deduce from the
Bitcoin block chain, one can imagine a scenario where some law enforcement agency
might want to investigate a user who is a suspect in some sort of illicit activity.
We can determine a group of addresses that belong to the user, and if any of those
addresses interacted with a Bitcoin exchange or service, the law enforcement agency
could seize the personal information of the user from such a service. Even further,
we can see all addresses with which the user interacted, which could implicate other
users involved in illicit activities. This allows the law enforcement agency to analyze
these users more closely, some of which may have interacted with a Bitcoin exchange,
and so on.

5.1.1 Initial Findings

Based on our analysis of the cryptocurrency protocols and with the prior research
that has been done in this area, we can conclude that the base implementations of
these cryptocurrencies do not offer the level of anonymity that is typically advertised
or desired by users. Since many users would eventually want to convert their bit-
coins, litecoins, or other coins into real-world currency, they will need to go through
an exchange that requires personally identifiable information. Alternatively, users
could attempt to find someone willing to perform a cash exchange but this is far
less feasible.

Assuming that a person acquires some amount of bitcoins anonymously, spending
the bitcoins anonymously can still be difficult. Should a user want to spend their
bitcoins at an actual business (since some businesses are now accepting bitcoins as
currency), they need to be sure that their information does not get leaked. If the
user is making a purchase online, then some form of information must be exchanged
and then a possible attack vector is revealed. If the user makes the purchase in
an actual store, but then makes a purchase at a different store online, then there
is still the same risk of data leaking from the first store since all transactions are
public. This can be solved by using a different address for each store or transaction,
but again this just falls back on Nakamoto’s initial warnings that the only way to

23

remain truly anonymous is to do exactly that. This drastically reduces the usability
of the systems, as this is equivalent to using a different physical wallet for every
cash transaction that a person makes, which is simply not feasible.

The Bitcoin protocol was initially introduced to have a decentralized, anony-
mous, analog to real-world cash transactions. Users on a cryptocurrency network
would ideally be able to conveniently exchange their coins without having to give up
their anonymity and privacy, while also not resorting to having a central authority.
With the current base implementations of these cryptocurrencies there is currently
not support for maintaining pure anonymity without expending extra effort to never
reuse an address.

5.2 Litecoin Transaction Graph

In order to see if anonymity characteristics are present in other cryptocurrencies,
we have performed analysis on the Litecoin transaction ledger similar to what
Meiklejohn et al. performed on the Bitcoin transaction ledger [14]. We parsed all
Litecoin transactions to identify which addresses necessarily belong to the same per-
son. Our heuristic for this is if there are multiple addresses listed as input addresses
in the same transaction, they must belong to the same person. With this knowl-
edge we can then build a graph of addresses with edges between any addresses that
belong to the same person. The end result is that each component in the graph
represents an entity within the Litecoin network.

5.2.1 blockparser

An important part of this analysis is the use of the open source blockparser22 tool.
This tool provides a convenient way to view details (inputs, outputs, total amount,
etc.) of a given transaction. More specifically, we utilized a modified version that
allows for dumping all transaction metadata to .csv files for easier parsing23. We
used the output .csv files combined with some bash scripts to produce one single
file that contains all transaction hashes with multiple input addresses. We then
used this single file to produce a file that contains all input addresses used in these
transactions grouped together by transaction.

22https://github.com/znort987/blockparser
23https://github.com/mcdee/blockparser

24

5.2.2 Algorithm

The actual algorithm for identifying unique entities in the transaction graph is quite
simple. We represented each input address as a node in a graph, with two nodes
being adjacent to each other if they are adjacent in a list of input addresses to a
single transaction. For example, suppose we have the following file:

A B C

D E

B F G

H I

E I

From the contents of this file it can be seen that addresses A, B, and C were
inputs to one transaction and addresses D and E were inputs to another transaction.
At a later point B, F, and G were inputs to a single transaction, which means that
A, B, C, F, and G all belong to a single entity. When the transaction involving H and
I occurs, it cannot be tied to any previous entities. However, once the transaction
with E and I occurs, we can deduce that D, E, H, and I all belong to the same person.
The result is the following graph, where the nodes represent individual addresses
and components represent entities.

A

B

C D E

F G H I

Once this graph is constructed, performing a DFS on each component of the
graph generates the following output:

Entity 1: A, B, C, F, G

Entity 2: D, E, I, H

25

We implemented the algorithm using a number of Python and bash scripts. All
code for the analysis can be found at:

http://github.com/lcm1115/Thesis/code/

5.2.3 Results

We ran our algorithm on all Litecoin transactions starting from block 0 on 10-
07-2011 up through block 561763 on 05-05-2014. These blocks include 4,143,573
total transactions. The set of transactions T which have multiple inputs in a single
transaction make up 901,424 of the transactions. Within T, there are 1,718,624
distinct addresses. After running the algorithm on the data set, we determined the
following:

Number of distinct entities: 300,224

Average entity size (in # addresses): 8.76

Median group size: 2

Mode group size: 2

Largest group size: 1,030,616

The total counts for each entity size can be found in the appendix.
With the largest group utilizing over half of the addresses used, we can draw

similar conclusions to what Dorit and Shamir determined in the Bitcoin transaction
graph. That is to say, the entity to which these addresses belong is likely a Lite-
coin exchange dealing with enormous volumes of transactions as well as personally
identifying information about users [28]. If this is the case, then the same privacy
risks exist within Litecoin as in Bitcoin, as any address that has ever interacted with
this large entity could have their privacy in this entity’s hands. Should the large
entity/exchange ever become compromised, then so does any user’s data that was
ever associated with it.

One thing worth noting is the comparison between the entity graph generated
by the Litecoin transaction graph and randomly generated graphs following the
Erdős-Rényi model. [11] Given a G(n, p) graph with n vertices and any edge having
probability p, the graph has the following attributes:

• If np < 1, then the size of any connected component is likely to be at most
O(log(n))

26

• If np = 1, then there will likely be a large connected component whose size is
O(n2/3)

• If np > 1, then there will likely be a unique giant component with a majority
of the vertices, and there is unlikely to be any other component larger than
O(log(n)).

• If p < (1−e)ln(n)
n , then the graph is likely to be disconnected.

• If p > (1+e)ln(n)
n , then the graph is likely to be connected.

Initially, the results of the experiment seemed to possibly reflect some of these
properties. There certainly is one unique giant component in the graph, and most
components tend to be small. However, upon closer examination this is about where
the similarities end. With 4,143,572 transactions and an average of 2.57 inputs per
transaction, this means that there are approximately 10,648,980 edges in our entity
graph. While this does not account for multi-edges, multi-edges were rare enough
that it should not significantly affect the number. With n = 1,718,624 distinct
addresses there are n(n−1)

2 = 1,718,624(1,718,623)
2 = 1, 477, 005, 234, 726 possible edges

in the graph. This means that any given edge has probability p = 10,648,980
1,477,005,234,726

of existing in the graph. We can compute np = 1, 718, 624 · 10,648,980
1,477,005,234,726 = 12.39.

Indeed, this is the case in which there should be a unique giant component with
the majority of the vertices, and there is unlikely to be any component larger than
O(log(n)) = O(log(1, 718, 624)) = O(6.24). However, this is absolutely not true of
our graph, as there are several hundred components much larger than this size.

6 Improving Anonymity

There have been many attempts to resolve the anonymity issues present in the
Bitcoin protocol. Some of these attempts have arisen organically within the Bitcoin
community and are already in use, while others are proposed by academic papers
and have yet to be implemented.

6.1 Mixer

A very common form of obscuring one’s identity is to use a mixer or tumbler24.
These services are based on mix networks [9], which are used to mask a user’s

24This name comes from the devices used to clean physical coins.

27

identity within a network, such as the commonly used Tor network. Unlike mix
networks which are used to mix messages and anonymize the users, Bitcoin mix
services mix transactions to anonymize the users, frequently charging some sort of
processing fee for the service.

Figure 2: Example mix network25

A great deal of work has been done to analyze the anonymity provided by these
services. In 2013, Malte Möser analyzed three popular mixing services: Blockchain.info,
Bitcoin Fog, and BitLaundry [17]. The key results of this experiment were that
Blockchain.info and Bitcoin Fog both used complex methods of distributing trans-
actions which eliminate the ability to discover any connection between input and
output transactions, effectively anonymizing the traffic. BitLaundry, on the other
hand, used direction connections between input and output which allows for con-
nections to be drawn across the mixing operations. This imperfect anonymization
is present in other mixers. In another study it was observed that Bitcoin Laun-
dry took input transactions and directly fed them to output transactions effectively
eliminating the purpose of the service [14]. The possible cause for this is that the
pool of users in the service is to small to sufficiently anonymize transactions.

One of the primary issues in using these mixing or laundry services is that trust
must be placed in the service which is not an ideal scenario given that one of the
goals of Bitcoin is to eliminate the requirement to place trust in individuals. It has

25http://en.wikipedia.org/wiki/Mix_network – Accessed: 3-25-14

28

even been observed that these services cannot necessarily be trusted, as Meiklejohn
reported that “One of these, BitMix, simply stole our money.” [14] The presence
of this behavior and the desire for anonymity suggests that there is a desire for a
system which provides anonymity without the need to place trust in some sort of
central figure.

6.2 Zerocoin

In 2013, researchers at Johns Hopkins University proposed an extension to improve
Bitcoin’s anonymity known as Zerocoin [15]. The group claims that Zerocoin “uses
standard cryptographic assumptions and does not introduce new trusted parties or
otherwise change the security model of Bitcoin.” The basic idea is to add newly
minted coins to an accumulator and then with the assistance of zero-knowledge
proofs spend the coins from the accumulator without revealing a user’s identity.

The Zerocoin protocol essentially creates a currency within Bitcoin. To mint
zerocoins, a user generates a random serial number s and a random nonce r. These
two values are then used as inputs to a Pedersen commitment to receive resulting
zerocoin C. If C is not prime, then a new r is chosen until a prime value C is
computed. Once the coin has been “minted,” it is sent to users to be added to the
Zerocoin accumulator which is based on the Strong RSA Accumulator. In order
to spend these coins, a user sends out a transaction with the coin serial C, the
values s and r that produce C, and the address to which the coins should be sent.
Users verifying transactions can then confirm the presence of C in the accumulator,
while also verifying that the values s and r are valid. Once this is confirmed the
output address is then considered to be the owner of the bitcoins associated with
the zerocoin, and the accumulator must be recomputed with all values except C.

29

Figure 3: Bitcoin block chain (a) and Zerocoin block chain (b) [15]

This system creates anonymity since there is no way to link together the minting
and spending operations of zerocoins. Any user can spend any of the zerocoins
as long as he can prove the existence of the zerocoin and the values associated
with its minting. In a sense, this is analogous to a mixing service, but there is no
requirement to place trust in any figure, as the system is provably secure under
certain cryptographic assumptions. The only centralization in this system is the
establishment of the infrastructure used.

6.2.1 Performance Concerns

While Zerocoin appears to be a promising solution to the problem of anonymity
on the Bitcoin network, performance is a big concern. The use of 3,072-bit RSA
accumulators is very computationally expensive, and every time a coin is spent from
the coin pool, the accumulator must be recomputed.

One of the big benefits to Zerocoin is that its simple nature allows it to be applied
to any cryptocurrency that is a derivation of Bitcoin. For cryptocurrencies with long
block-verification times such as Bitcoin, the overhead from using Zerocoin is fine.
The Zerocoin whitepaper describes Zerocoin’s performance, and even in a best case
(for Zerocoin) and worst case (for Bitcoin) scenario where blocks contain twice as
many transactions than normal and every transaction is a Zerocoin transaction,
then the block verification process still takes five minutes. [15] Since Bitcoin has a
block verification time of ten minutes, this does not cause any problems as it does

30

not affect the overall block verification time.
If Zerocoin is utilized in Litecoin then problems may arise. If the same volume

of transactions is seen in Litecoin, then a five minute block verification time is
unacceptable. Since Litecoin’s block verification time is targeted at 2.5 minutes,
adding Zerocoin effectively doubles the block verification time. Since this is the
case, we wanted to determine if there are methods of improving performance such
that utilizing Zerocoin in other cryptocurrencies becomes computationally feasible.
The method we tried was substituting the 3,072-bit RSA accumulator for a 384-bit
ECC accumulator. Since 256-bit curves offer the same security as 3,072-bit integers,
there is no loss of security or privacy. [22]

Our method of testing was to use an RSA accumulator with a random 3,072-
bit prime p and accumulate a number of 3,072-bit random elements into it, with
a corresponding ECC accumulator using Curve P-256 [20] into which a random
number of 256-bit elements are accumulated. The time for each accumulator is
benchmarked, and results can be found in the following table.

Elements RSA Time (s) ECC Time (s) Performance Multiplier
10,000 129.131 1.151 112.19
20,000 257.768 2.3 112.073
30,000 392.755 3.521 111.546
40,000 527.18 4.571 115.331
50,000 654.387 5.681 115.189

As is shown, using an ECC accumulator over an RSA accumulator offers massive
performance gains. Assuming these gains translate 1:1 to Zerocoin, the five minute
Zerocoin verification time can be reduced to a few seconds. With such a quick ver-
ification time, Zerocoin can now be used with Litecoin, and even cryptocurrencies
with drastically shorter block verification times such as Dogecoin, which has a one
minute verification time. The end result overall is that there is now an efficient
and computationally feasible method of adding a layer of anonymity to most cryp-
tocurrencies, provided that the verfication time is on the order of minutes and not
seconds.

31

6.3 Mixcoin

In 2014, another extension to improve anonymity in current Bitcoin protocol was
proposed under the name of Mixcoin [5]. This protocol describes a method of
establishing mixing services with some concept of warranty, rather than modifying
the Bitcoin protocol itself.

In general, sufficiently large mixing services do an acceptable job at providing
anonymity to users; however, these services have an inherent risk in that users must
entrust the service with their bitcoins in order to utilize the service. If a mixing
service steals a user’s bitcoins, there is no way to prove that the theft occurred.
Mixcoin’s goal is to address this issue by proposing a construction for a mixing
service that has built-in accountability.

The basic process behind Mixcoin is that before any mixing occurs, a user Alice
contacts the mix service and declares the following parameters [5]:
v the value (chunk size) to be mixed
t1 the deadline by which Alice must send funds to the mix
t2 the deadline by which the mix must return funds to Alice
κout the address where Alice wishes to transfer her funds
ρ the mixing fee rate Alice will pay
n a nonce, used to pay randomized mixing fees
w the number of blocks the mix requires to confirm Alice’s payment

Once the mix accepts the terms of the mix, a new escrow address κesc is generated.
All parameters plus κesc are returned to Alice, signed by the mixing service. This
allows Alice to publicly claim with certainty that the mixing service has stolen her
funds in the event of theft, or in the case that the funds have not been delivered to
κout by t2.

As part of the Mixcoin protocol the authors suggest that a randomized mixing
fee be paid to the service by the users. The proposed method of randomized mixing
fees is to establish some probability ρ where the entire value may be taken as a fee,
and probability (1− ρ) that there is no fee at all. The means of randomly choosing
the fee each item is to be made publicly verifiable so that the mixer can be audited
if necessary to ensure that it is not behaving maliciously. The authors believe that
by having this randomized mixing fee there is extra incentive to operate honestly
and thus provide a better, low-risk service to the users.

While Mixcoin resolves one of the issues with mixing services it does not solve

32

every issue. The mixing service still effectively behaves as a bank between users,
which violates the goal of decentralized electronic cash. Additionally, Mixcoin states
that all records of a mix occurring should be deleted once the mix is completed. If
a mixer fails to do so and becomes compromised then the information of all users
that have utilized the service is also compromised. Even though Mixcoin makes it
easier for Alice to trust a mixer with her service, she still needs to trust the service
with her information. This means that even if Mixcoin is utilized that there still
may be some degree of traceability in the system.

6.4 Stealth Addresses

In 2014 a feature called stealth addresses was added to a Bitcoin utility library
called sx.26 Stealth addresses are described as “a powerful tool for allowing one to
accept Bitcoins using a public Bitcoin address while preventing passive observers
from knowing your transaction history.” [30]

The cryptography supporting stealth addresses is based on the Elliptic Curve
Diffie-Helman Key Exchange Algorithm. In order to use a stealth address, Alice
publishes a public key Q which has a corresponding private key d. If Bob wants to
pay Alice, he generates a new keypair with public key P and private key e. P is
then published in the transaction. Both parties can then compute a shared secret
S where S = dP = eQ. Once this shared secret is established, a pay-to-address Q’
can be computed as Q′ = Q + H(S) where H is a hash function. Alice can then
spend the transaction with private key d’ computed as d′ = d+H(S).

The security present in stealth addresses depends on the security of ECDH. In
this process the only information publicly revealed is Q and P, so as long as the pri-
vate keys d and e remain private then Alice’s identity remains private. Since Alice’s
identity is never revealed then this seems to be an ideal candidate for preserving
anonymity on the Bitcoin or similar networks. However, this process is equivalent to
generating a new address for every transaction, which Nakamoto even states is the
only means of preserving pure anonymity. [18] The only difference here is that the
payer generates the stealth address instead of the payee. This process still does not
allow for a user to remain purely anonymous without needing to use a new address
for every transaction.

26https://github.com/spesmilo/sx

33

7 Conclusion and Future Work

7.1 Conclusion

Bitcoin was initially introduced to provide a direct digital equivalent to cash trans-
actions. This means that any transactions made on the Bitcoin network should
be anonymous, convenient, and not require a central authority to sign off on the
transaction. Based on the research that we have performed, as well as the research
aggregated from other sources, we have determined that it is not possible to re-
main truly anonymous on the Bitcoin or Litecoin networks without giving up either
convenience or decentralization.

The most promising method for maintaining anonymity is by being careful and
never reusing an address for any purpose. This drastically increases the amount of
work required to perform a transaction and makes the protocol significantly more
inconvenient. As stated previously, this method of maintaining anonymity is equiv-
alent to storing the cash received from every real-world transaction in its own wallet
or bank account, and only ever spending from one wallet or bank account at a time.
This clearly is not feasible in the real world, so using this method of maintaining
privacy pushes cryptocurrencies further from being equivalent to cash.

Other promising methods of maintaining anonymity involve using some sort of
service. There exist mixer services which allow users to launder their coins through
a central store such that the inputs and outputs cannot be tied to each other.
These work well in theory, but this requires users to trust the service with their
currency. In many cases, these services were caught simply stealing users’ currency.
There are some proposals to improve these systems, such as Mixcoin, but rather
than preventing the initial problem they simply provide some proof that a problem
occurred. However, the biggest problem with these mixing services is that they
violate the concept of decentralization present in cryptocurrency protocols.

In our opinion the most likely method to succeed in improving anonymity is Ze-
rocoin. Zerocoin utilizes distributed accumulators in order to allow users to anony-
mously deposit and withdraw coins. This acts similarly to a mixer, but since there
is no central authority that must be trusted the system is more secure for the users.
The main issue with Zerocoin seems to be performance. We have analyzed these
concerns and determined that the performance is quite slow in the worst case, and
would only get worse as the system gets more widely adopted and the cryptocur-
rency sees larger trading volume. We addressed these concerns by proposing our

34

own solution. Rather than using accumulators based on 3,072-bit RSA keys, we can
use 256-bit ECC accumulators and get performance increases on the order of 100x
speed improvement.

As it stands right now, the base implementations of cryptocurrencies do not
offer sufficient identity protection and proposals to solve this problem fall flat. The
potential solutions we have seen are either unusable, risky, insecure, or computa-
tionally infeasible. As a result of all of this, we do not feel that true anonymity is
something that can be achieved within Bitcoin-based cryptocurrency protocols.

7.2 Future Work

In the future we would like to investigate the usage of SHA-3 as a hashing algo-
rithm in cryptocurrencies. There are already cryptocurrencies using SHA-3, such as
MaxCoin27 and Slothcoin, but these are not nearly as widely used as Bitcoin or Lite-
coin. Since SHA-3 does not necessarily add any privacy or security improvements
over SHA-256, this investigation would be based purely on performance. However,
it is worth researching since sponge constructions are such recent developments and
it is possible that some discoveries may be made which make sponge constructions
more desirable for anonymity.

Continued analysis on transaction graphs relative to random graph models is
something worth exploring further. We currently only compared our analysis of the
entity graph to random models, but it is possible that the pure transaction graph
of one or more cryptocurrencies more closely relates to randomly generated graphs.
If any correlation is found, investigating how transaction volume affects similarity
is another possibility.

Finally, we plan to analyze any new developments that are made in this area.
With interest in cryptocurrencies and maintaining of anonymity and privacy there
will surely be new ideas and proposals made to make it easier to remain anony-
mous on the cryptocurrency networks. There are new products being introduced
frequently, such as DarkWallet28, which promise anonymity, ease of use, and secu-
rity. We would like to perform proper analysis and potentially audit any provided
code to see if there is a risk of information leakage.

27http://www.maxcoin.co.uk/
28http://www.darkwallet.is/

35

References

[1] Back, A. Hashcash - a denial of service counter-measure, http://www.

hashcash.org/papers/hashcash.pdf, 2002.

[2] Benaloh, J., and De Mare, M. One-way accumulators: A decentralized
alternative to digital signatures. In Advances in Cryptology-EUROCRYPT’93
(1994), Springer, pp. 274–285.

[3] Bernstein, D. J. The salsa20 family of stream ciphers. In New stream cipher
designs. Springer, 2008, pp. 84–97.

[4] Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. Sponge
functions. In ECRYPT hash workshop (2007), vol. 2007, Citeseer.

[5] Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J. A.,
and Felten, E. W. Mixcoin: Anonymity for bitcoin with accountable mixes.
Cryptology ePrint Archive, Report 2014/077, 2014. http://eprint.iacr.

org/.

[6] Certicom Research. Sec 2: Recommended elliptic curve domain parameters,
September 2000. http://www.secg.org/collateral/sec2_final.pdf.

[7] Chaum, D. Blind signatures for untraceable payments. In Advances in cryp-
tology (1983), Springer, pp. 199–203.

[8] Chaum, D., Fiat, A., and Naor, M. Untraceable electronic cash. In Pro-
ceedings on Advances in cryptology (1990), Springer-Verlag New York, Inc.,
pp. 319–327.

[9] Chaum, D. L. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM 24, 2 (1981), pp. 84–90.

[10] Ciaian, P., Rajcaniova, M., and Kancs, d. The economics of bitcoin price
formation. arXiv preprint arXiv:1405.4498 (2014).

[11] Erdős, P., and Rényi, A. On random graphs i. Publ. Math. Debrecen 6
(1959), 290–297.

36

[12] Johnson, D., Menezes, A., and Vanstone, S. The elliptic curve digital
signature algorithm (ECDSA). International Journal of Information Security
1, 1 (2001), pp. 36–63.

[13] Marian, O. Y. Are cryptocurrencies super tax havens?

[14] Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy,
D., Voelker, G. M., and Savage, S. A fistful of bitcoins: characterizing
payments among men with no names. In Proceedings of the 2013 Internet
Measurement Conference (2013), ACM, pp. 127–140.

[15] Miers, I., Garman, C., Green, M., and Rubin, A. D. Zerocoin: Anony-
mous distributed e-cash from bitcoin. In IEEE Symposium on Security and
Privacy (San Francisco, California, May 2013), pp. 397–411.

[16] Moore, T., and Christin, N. Beware the middleman: Empirical analysis of
bitcoin-exchange risk. In Financial Cryptography and Data Security. Springer,
2013, pp. 25–33.

[17] Möser, M., Böhme, R., and Breuker, D. An inquiry into money laun-
dering tools in the bitcoin ecosystem. Proceedings of the APWG eCrime Re-
searchers Summit (ECRIME 2013). San Francisco, USA (2013).

[18] Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system, http://

bitcoin.org/bitcoin.pdf, 2008.

[19] National Institute of Standards and Technology. FIPS PUB 202:
SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions.
May 2014.

[20] NIST. Recommended curves for federal government use.

[21] NIST. Descriptions of SHA-256, SHA-384, and SHA-512, 2001. http://csrc.

nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf.

[22] NIST. The case for elliptic curve cryptography, January 2009. https://www.

nsa.gov/business/programs/elliptic_curve.shtml.

[23] Pedersen, T. P. Non-interactive and information-theoretic secure verifiable
secret sharing. In Advances in Cryptology—CRYPTO’91 (1992), Springer,
pp. 129–140.

37

[24] Percival, C. Stronger key derivation via sequential memory-hard functions.
In BSDCan (Ottawa, Ontario, Canada, May 2009), pp. 1–16.

[25] Raymond, N., and Chavez-Dreyfuss, G. U.s. auction of silk road bitcoins
draws 27 bids.

[26] Reid, F., and Harrigan, M. An Analysis of Anonymity in the Bitcoin
System. In Privacy, security, risk and trust (PASSAT), 2011 IEEE Third
International Conference on Social Computing (SOCIALCOM) (October 2011),
IEEE, pp. 1318–1326.

[27] Rogaway, P., and Shrimpton, T. Cryptographic hash-function basics:
Definitions, implications, and separations for preimage resistance, second-
preimage resistance, and collision resistance. In Fast Software Encryption
(2004), Springer, pp. 371–388.

[28] Ron, D., and Shamir, A. Quantitative analysis of the full bitcoin transaction
graph. In Financial Cryptography and Data Security. Springer, 2013, pp. 6–24.

[29] Sprankel, S. Technical basis of digital currencies, 2013.

[30] sx. Stealth payments, May 2014. http://sx.dyne.org/stealth.html.

38

8 Appendix

8.1 Source Code

code/inputs.py
Fi l e : i npu t s . py
Author : Liam Morris
Descr ip t i on : Given output from a b l o c kpa r s e r t x i n f o command , determine which
input addres se s were a s s o c i a t e d wi th t ha t t r an sac t i on .
import re
import sys

def f i nd Input s (strm) :
output = []
for l i n e in strm :

output . append (l i n e . s t r i p () . r ep l a c e (’ ’ , ’ ’))
output = ’ ’ . j o i n (output)

Find a l l s e c t i o n s o f the output t ha t correspond to an input address
i nputs = re . f i n d a l l (’ input \ [\ d+\]={.∗?} ’ , output)

Determine the number o f t o t a l i npu t s
num_inputs = [int (s . s p l i t (’= ’) [1]) for s in re . f i n d a l l (

’ nbInputs=\d+’ , output)]
input_addresses = []
index = 0
num_transactions = 0

Bui ld l i s t o f input addres se s
for num in num_inputs :

curr_input_addresses = []
for i in range (num) :

Extrac t on ly the address hash and append i t to the l i s t
curr_input_addresses . append (re . sub (

’ .∗ s c r i p tpay s t oadd r e s s (. ∗) } ’ , ’ \g<1> ’ , inputs [index]))
index += 1

input_addresses . append (curr_input_addresses)
num_transactions += 1

39

return input_addresses

i f __name__ == ’__main__ ’ :
inputs = f ind Input s (sys . s td in)
for i in i nputs :

for h in i :
print (h)

i f i != inputs [−1] :
print ()

code/groupHashes.py
Fi l e : groupHashes . py
Author : Liam Morris
Descr ip t i on : Given an input stream with the f o l l ow i n g format :
hash1
hash2
hash3
#
hash4
hash5
#
hash3
hash6
. . .
#
determines which hashes are grouped t o g e t h e r based on appearing
to g e t h e r in chunks at any po in t in the f i l e . Each hash r ep r e s en t s
a node in a graph , wi th two nodes be ing ad jacen t i f they appear
adjacen t to each o ther in the f i l e . Performs a DFS on each
component in the graph a f t e r c r ea t i n g the graph to determine
which e n t i t i e s are pre sen t based on the input hashes .

import s t a t i s t i c s
import sys

Vertex c l a s s t ha t s t o r e s i t s l a b e l , ne ighbors , and v i s i t e d s t a t u s .
class Vertex :

def __init__(s e l f , l a b e l) :

40

s e l f . v i s i t e d = False
s e l f . l a b e l = l a b e l
s e l f . ne ighbors = set ()

def addNeighbor (s e l f , ne ighbor) :
s e l f . ne ighbors . add (ne ighbor)
ne ighbor . ne ighbors . add (s e l f)

def __str__(s e l f) :
return s e l f . l a b e l

Performs DFS on a g iven v e r t e x and re turns a l i s t o f v i s i t e d v e r t i c e s .
def DFS(ver tex) :

s = [ver tex]
v e r t i c e s = []
while len (s) > 0 :

v = s . pop ()
v . v i s i t e d = True
v e r t i c e s . append (v)
for n in v . ne ighbors :

i f not n . v i s i t e d :
s . append (n)

return v e r t i c e s

def groupHashes (f i l ename) :
v e r t i c e s = { }
groups = { }
f = open(f i l ename)
l i n e = None
while l i n e != " " :

l i n e = f . r e ad l i n e ()
hashes = []
Read in current group o f hashes
while l i n e != " \n " and l i n e != " " :

hashes . append (l i n e . s t r i p ())
l i n e = f . r e ad l i n e ()

Make v e r t i c e s ad jacen t i f hashes are ad jacen t
for i in range (len (hashes) − 1) :

41

I f v e r t e x doesn ’ t ye t e x i s t , c r ea t e i t
i f hashes [i] not in groups . keys () :

groups [hashes [i]] = Vertex (hashes [i])
i f hashes [i + 1] not in groups . keys () :

groups [hashes [i + 1]] = Vertex (hashes [i + 1])
Create edge
groups [hashes [i]] . addNeighbor (groups [hashes [i + 1]])

f . c l o s e ()

return groups

i f __name__ == ’__main__ ’ :
groups = groupHashes (sys . argv [1])
maxsize = 0
maxkey = l i s t (groups . keys ()) [0]
e n t i t i e s = []
s i z e s = []
dupes = set ()
for v in groups . va lue s () :

i f not v . v i s i t e d :
curr = [str (t) for t in DFS(v)]
i f len (curr) > 1 :

s i z e s . append (len (curr))
e n t i t i e s . append (’ \n ’ . j o i n (curr))
i f len (curr) > maxsize :

maxsize = len (curr)
maxkey = v . l a b e l

else :
dupes . add (curr [0])

Sort e n t i t i e s by s i z e
pa i r s = l i s t (zip (e n t i t i e s , s i z e s))
p a i r s . s o r t (key=lambda p : p [1] , r e v e r s e=True)
e n t i t i e s = [pa i r [0] for pa i r in pa i r s]
s i z e s = sorted (l i s t (set (s i z e s)))
print (s i z e s)
print ("Number o f addre s s e s : " , len (groups) − len (dupes))
print ("Number o f e n t i t i e s : " , len (e n t i t i e s))
print (" Average group s i z e : " , s t a t i s t i c s .mean(s i z e s))

42

print ("Median group s i z e : " , s t a t i s t i c s . median (s i z e s))
print ("Mode group s i z e : " , s t a t i s t i c s .mode(s i z e s))
print (" Largest group : " , maxsize)
print ("Key f o r group : " , maxkey)
print (’ \n\n ’ . j o i n (e n t i t i e s))

code/getHashes.sh
#!/ bin / bash
F i l e : getHashes . sh
Author : Liam Morris
Descr ip t i on : Given a d i r e c t o r y t ha t conta ins a bunch o f hash f i l e s (f i l e s
conta in ing l i t e c o i n t r an sac t i on hashes) , determine which inpu t s
were a s s o c i a t e d wi th t ha t t r an sac t i on and output the r e s u l t s to a
f i l e .

HASHDIR=$1
NUMFILES=‘ l s − l $HASHDIR | wc −l ‘
for FILE in $ (l s $HASHDIR) ; do

Cal l b l o c kpa r s e r to determine the hashes , f e ed i t to the a s s o c i a t e d Python
sc r i p t , and append output to inpu t s . out
. / pa r s e r t x i n f o ‘ cat $HASHDIR/$FILE | t r ’\n ’ ’ ’ ‘ | python inputs . py >> inputs . out

done

code/bench.h
// F i l e : bench . h
// Author : Liam Morris
// Descr ip t i on : Class and func t i on d e c l a r a t i o n s f o r s imple accumulators used f o r
// benchmarking performance .
#include <gmp . h>

class RSAAccumulator {
public :

// Takes a s t a r t i n g genera tor va lue and a modulus f o r the group .
RSAAccumulator (const mpz_t value , const mpz_t modulus) ;

// Accumulates a s i n g l e va lue and s t o r e s the w i tne s s in a g iven
// argument .
void accumulate (const mpz_t value , mpz_t wi tnes s) ;

43

private :
mpz_t _value , _modulus ;

} ;

class ECCAccumulator {
public :

// Takes the va lue ’ a ’ o f a curve , the s t a r t i n g point , and the modulus .
ECCAccumulator (const mpz_t a ,

const mpz_t po int [] ,
const mpz_t modulus) ;

// Accumulates a s i n g l e va lue and s t o r e s the w i tne s s in a g iven
// argument .
void accumulate (const mpz_t value , mpz_t wi tnes s []) ;

// Mu l t i p l i e s a po in t ’ p ’ by a s c a l a r ’ d ’ and s t o r e s the r e s u l t in ’ r ’ .
// Uses the double−and−add a l gor i thm .
void pointmul (const mpz_t p [] , const mpz_t d , mpz_t r []) ;

// Adds two po in t s ’ p ’ and ’ q ’ and s t o r e s the r e s u l t in ’ r ’ .
void pointadd (const mpz_t p [] , const mpz_t q [] , mpz_t r []) ;

// Doubles a po in t ’ p ’ and s t o r e s the r e s u l t in ’ r ’ .
void pointdouble (const mpz_t p [] , mpz_t r []) ;

private :
mpz_t _a , _modulus ;
mpz_t _point [2] ;

} ;

code/bench.cpp
// F i l e : bench . cpp
// Author : Liam Morris
// Descr ip t i on : Class and func t i on d e f i n i t i o n s f o r s imple accumulators used f o r
// benchmarking performance .
#include " bench . h "

#include <chrono>
#include <cs td l i b >

44

#include <ctime>
#include <gmp . h>
#include <iostream>

using namespace std : : chrono ;
using namespace std ;

RSAAccumulator : : RSAAccumulator (const mpz_t value , const mpz_t modulus) {
mpz_init_set (_value , va lue) ;
mpz_init_set (_modulus , modulus) ;

}

void RSAAccumulator : : accumulate (const mpz_t value , mpz_t wi tnes s) {
mpz_set (witness , _value) ;
mpz_powm(_value , _value , value , _modulus) ;

}

ECCAccumulator : : ECCAccumulator (
const mpz_t a , const mpz_t po int [] , const mpz_t modulus) {

mpz_init_set (_a , a) ;
mpz_init_set (_point [0] , po int [0]) ;
mpz_init_set (_point [1] , po int [1]) ;
mpz_init_set (_modulus , modulus) ;

}

void ECCAccumulator : : accumulate (const mpz_t value , mpz_t wi tnes s []) {
mpz_set (w i tnes s [0] , _point [0]) ;
mpz_set (w i tnes s [1] , _point [1]) ;
pointmul (_point , value , _point) ;

}

void ECCAccumulator : : pointmul (const mpz_t p [] , const mpz_t d , mpz_t r []) {
long m = mpz_sizeinbase (d , 2) ;
mpz_set_ui (r [0] , 0) ;
mpz_set_ui (r [1] , 0) ;
while (m >= 0) {

po intdouble (r , r) ;
i f (mpz_tstbit (d , m)) {

45

pointadd (r , p , r) ;
}
−−m;

}
}

void ECCAccumulator : : pointadd (const mpz_t p [] , const mpz_t q [] , mpz_t r []) {
i f (mpz_sgn(p [0]) == 0 && mpz_sgn(p [1]) == 0) {

mpz_set (r [0] , q [0]) ;
mpz_set (r [1] , q [1]) ;

} else i f (mpz_sgn(q [0]) == 0 && mpz_sgn(q [1]) == 0) {
mpz_set (r [0] , p [0]) ;
mpz_set (r [1] , p [1]) ;

} else {
// Compute lambda
mpz_t lambda , temp , x , y ;
mpz_init (x) ;
mpz_init (y) ;
mpz_init_set (temp , q [1]) ;
mpz_sub(temp , temp , p [1]) ;
mpz_init_set (lambda , temp) ;
mpz_set (temp , q [0]) ;
mpz_sub(temp , temp , p [0]) ;
mpz_invert (temp , temp , _modulus) ;
mpz_mul(lambda , lambda , temp) ;
mpz_mod(lambda , lambda , _modulus) ;

// Compute Xr
mpz_set (x , lambda) ;
mpz_pow_ui(x , x , 2) ;
mpz_sub(x , x , p [0]) ;
mpz_sub(x , x , q [0]) ;
mpz_mod(x , x , _modulus) ;

// Compute Yr
mpz_set (y , p [0]) ;
mpz_sub(y , y , x) ;
mpz_mul(y , y , lambda) ;

46

mpz_sub(y , y , p [1]) ;
mpz_mod(y , y , _modulus) ;

// Set r e s u l t
mpz_set (r [0] , x) ;
mpz_set (r [1] , y) ;

}
}

void ECCAccumulator : : po intdouble (const mpz_t p [] , mpz_t r []) {
// I n i t i a l i z e v a r i a b l e s
mpz_t temp , lambda , x , y ;
mpz_init (temp) ;
mpz_init (lambda) ;
mpz_init (x) ;
mpz_init (y) ;

// Compute lambda
mpz_pow_ui(lambda , p [0] , 2) ;
mpz_mul_ui(lambda , lambda , 3) ;
mpz_add(lambda , lambda , _a) ;
mpz_set (temp , p [1]) ;
mpz_mul_ui(temp , temp , 2) ;
mpz_invert (temp , temp , _modulus) ;
mpz_mul(lambda , lambda , temp) ;

// Compute Xr
mpz_set (x , lambda) ;
mpz_pow_ui(x , x , 2) ;
mpz_set (temp , p [0]) ;
mpz_mul_ui(temp , temp , 2) ;
mpz_sub(x , x , temp) ;
mpz_mod(x , x , _modulus) ;

// Compute Yr
mpz_set (y , p [0]) ;
mpz_sub(y , y , x) ;
mpz_mul(y , y , lambda) ;

47

mpz_sub(y , y , p [1]) ;
mpz_mod(y , y , _modulus) ;

// Set r e s u l t
mpz_set (r [0] , x) ;
mpz_set (r [1] , y) ;

}

int main (int argc , char∗∗ argv) {
i f (argc < 2) {

c e r r << " Please ente r number o f va lue s to accumulate . " << endl ;
return 1 ;

}
int num_values = a t o i (argv [1]) ;
mpz_t val , modulus ;
gmp_randstate_t rand ;
gmp_randinit_default (rand) ;
mpz_init (modulus) ;
mpz_init_set_ui (val , 3) ;
mpz_urandomb(modulus , rand , 3072) ;
mpz_nextprime (modulus , modulus) ;
RSAAccumulator acc (val , modulus) ;
s t r i n g s ;
mpz_t wi tnes s ;
mpz_init (w i tnes s) ;
mpz_t value ;
mpz_init (va lue) ;
time_point<system_clock> sta r t , end ;
double rsa_seconds , ecc_seconds ;

// Accumulate ’ num_values ’ va l u e s us ing RSA accumulator .
s t a r t = system_clock : : now () ;
for (int i = 0 ; i < num_values ; ++i) {

mpz_urandomb(value , rand , 3072) ;
acc . accumulate (value , w i tnes s) ;

}
end = system_clock : : now () ;
rsa_seconds = duration_cast<mi l l i s e c ond s >(end − s t a r t) . count () ;

48

rsa_seconds /= 1000 ;

// I n i t i a l i z e ECC accumulator v a r i a b l e s .
mpz_t a ;
mpz_t po int [2] , e c cw i tne s s [2] ;
mpz_init (e c cw i tne s s [0]) ;
mpz_init (e c cw i tne s s [1]) ;
mpz_init_set_si (a , −3);
mpz_init_set_str (po int [0] ,

" 6 b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296 " , 1 6) ;
mpz_init_set_str (po int [1] ,

" 4 f e342e2 fe1a7 f9b8ee7eb4a7c0 f9e162bce33576b315ececbb6406837bf51 f5 " , 1 6) ;
mpz_set_str (modulus , " 115792089210356248762697446949407573530 "

" 086143415290314195533631308867097853951 " , 1 0) ;
ECCAccumulator ecc (a , point , modulus) ;

// Accumulate ’ num_values ’ va l u e s us ing ECC accumulator .
s t a r t = system_clock : : now () ;
for (int i = 0 ; i < num_values ; ++i) {

mpz_urandomb(value , rand , 256) ;
ecc . accumulate (value , e c cw i tne s s) ;

}
end = system_clock : : now () ;
ecc_seconds = duration_cast<mi l l i s e c ond s >(end − s t a r t) . count () ;
ecc_seconds /= 1000 ;

// Output r e s u l t s .
cout << "Accumulated " << num_values << " va lues " << endl ;
cout << "RSA time : " << rsa_seconds << " s " << endl ;
cout << "ECC time : " << ecc_seconds << " s " << endl ;
cout << " D i f f e r e n c e Factor : " << (rsa_seconds / ecc_seconds) << endl ;

}

8.2 Litecoin Component Sizes

Entity Size Number of Entities Entity Size Number of Entities
2 155767 3 62113

49

4 30695 5 17663
6 10360 7 5176
8 3490 9 2521
10 1121 11 918
12 1269 13 979
14 783 15 633
16 491 17 478
18 349 19 346
20 434 21 433
22 285 23 227
24 315 25 170
26 163 27 157
28 139 29 111
30 113 31 107
32 93 33 89
34 88 35 80
36 79 37 59
38 65 39 55
40 72 41 63
42 52 43 43
44 39 45 49
46 44 47 29
48 28 49 35
50 40 51 33
52 24 53 30
54 33 55 17
56 20 57 21
58 17 59 27
60 35 61 17
62 22 63 19

50

64 22 65 16
66 12 67 21
68 15 69 16
70 15 71 19
72 6 73 13
74 14 75 8
76 12 77 12
78 14 79 10
80 23 81 17
82 9 83 11
84 12 85 12
86 8 87 3
88 8 89 9
90 4 91 5
92 7 93 7
94 7 95 7
96 8 97 5
98 3 99 8
100 6 101 8
102 8 103 8
104 6 105 8
106 8 107 3
108 8 109 7
110 6 111 2
112 7 113 1
114 4 115 5
116 4 117 1
118 1 120 2
121 5 122 3
123 4 125 2

51

126 7 127 9
128 4 129 4
130 2 131 3
132 3 133 4
134 2 136 7
137 5 138 1
139 4 140 3
141 2 142 4
143 4 144 5
145 3 147 4
149 1 150 5
151 4 152 2
153 3 154 3
155 5 156 3
157 3 158 1
159 3 160 2
161 2 162 3
163 3 164 3
166 2 168 1
169 1 170 2
171 3 172 4
174 3 175 5
176 3 180 3
182 2 183 3
184 1 185 2
186 3 187 2
190 1 191 4
195 1 196 1
197 1 198 2
200 11 201 9

52

203 4 204 1
206 2 207 1
208 1 209 1
210 4 211 1
212 2 213 1
214 2 215 2
216 2 217 1
219 2 220 1
221 1 222 3
224 2 226 2
227 1 229 1
230 2 231 1
232 2 234 1
235 2 236 1
238 3 239 3
240 2 243 1
244 1 248 1
249 1 252 1
254 1 256 1
260 1 261 1
262 1 266 1
267 2 270 1
271 2 272 1
273 4 274 1
275 2 276 1
277 2 278 1
282 1 284 2
285 1 286 1
287 1 288 1
289 1 290 1

53

291 1 294 1
295 2 297 1
299 1 302 1
305 1 308 1
309 1 311 1
313 1 315 1
318 1 319 3
323 1 326 1
327 1 329 1
332 1 343 1
345 1 347 1
349 2 351 1
352 1 355 1
356 1 362 1
364 2 366 1
368 1 373 1
376 1 377 2
381 1 384 1
385 1 389 1
392 1 393 1
394 1 399 2
401 1 408 2
416 1 418 1
419 1 420 1
423 1 425 1
428 1 429 2
434 1 435 1
450 2 456 1
457 1 459 1
470 1 471 2

54

473 2 474 1
481 1 485 1
486 1 487 1
491 1 493 1
495 1 496 1
497 1 500 1
505 1 509 1
510 1 522 1
534 1 540 1
554 1 555 1
558 1 561 1
564 1 566 2
585 1 589 1
593 2 600 1
611 1 614 1
672 1 683 1
687 1 690 1
693 1 696 1
698 1 708 1
714 1 719 1
729 1 734 1
750 1 762 1
778 1 799 1
803 1 862 1
882 1 901 1
918 1 925 1
942 1 955 1
969 1 982 1
994 1 998 1
1007 1 1011 1

55

1059 1 1076 1
1140 1 1178 1
1181 1 1208 1
1212 1 1219 1
1246 1 1251 1
1253 1 1265 1
1266 1 1275 1
1299 1 1328 1
1351 1 1431 1
1477 1 1508 1
1695 1 1729 1
1760 1 1862 1
1901 1 1906 1
1938 1 2129 1
2297 1 2482 1
2508 1 2694 1
2829 1 3110 1
3199 1 3281 1
3865 1 4350 1
4353 1 4413 1
4496 1 4920 1
5002 1 5043 1
5367 1 5748 1
5886 1 8033 1
8214 1 9042 1
9659 1 10272 1
12536 1 12871 1
14797 1 15537 1
16759 1 28815 1
36298 1 53022 1

56

1030616 1

57

	Rochester Institute of Technology
	RIT Scholar Works
	4-20-2015

	Anonymity Analysis of Cryptocurrencies
	Liam Morris
	Recommended Citation

	tmp.1429727216.pdf.iJ5wG

