

44

more visible in the form of striations in the sky of the picture. This is a good example of

the content of the image may react differently to the modifications made in the algorithm.

On one hand, the image of the deer would appear to be almost identical, but on the other

hand the image of the two officers might be considered unacceptable. Such is not the case

for our GSEG algorithm, as features such as texture modeling can be tuned to avoid

segmenting the striations. These results confirm that different applications can tolerate

different amounts of degradation.

Figure 6.6 (LEFT): The GSEG result in the CIE L*a*b* color space.

 Figure 6.7 (RIGHT): The MCF result in the CIE L*a*b* color space.

45

Similar to the first two modules implemented, the vector gradient module produced

ideal results. In fact, all CORR2 and SSIM results were equal to the ideal value of 1.000.

The PSNR values ranged from 72 dB to 106 dB across the variety of image planes. These

results were also expected due to the simple nature of integer subtraction in the calculation.

For another configuration used in testing, the MCF was instantiated with a different

user-circuit in every channel. Each of the four GSEG modules from this work, and a fifth

null channel, were implemented as static channels to show the flexibility of the framework

with different types and sizes of algorithms. A basic block diagram of this implementation

is shown in Figure 6.8.

Figure 6.8: Block Diagram of the MCF with all GSEG Modules, Modified from [3].

46

This implementation was also used to evaluate the total amount of image

degradation seen from using the modules successively. With the output of each GSEG

module being fed back into the framework as the input of the next module via the host PC,

a sequential pipeline was emulated. Using portions of the GSEG algorithm in MATLAB,

the emulation results were loaded and used to calculate an edge map. The original GSEG

edge map of the two deer is shown in Figure 6.9, while the edge map generated from the

successive emulations is shown in Figure 6.10. It is important to note that the images are

being displayed using a scale function, and as a result of the noise introduced in the MCF

result the edges do not appear as bright compared with the MATLAB result. The edge

maps of the deer have a CORR2 of 0.3041, a PSNR of 17.9572 dB, and a SSIM Index of

0.5355. These image quality results suggest a significant amount of image degradation;

however, an inspection of the images shows that this is an acceptable amount of

degradation.

 Figure 6.9 (LEFT): The Edge Map generated by the GSEG algorithm in MATLAB.

 Figure 6.10 (RIGHT): The Edge Map generated from successive modules in the MCF.

In addition to the deer image, the Big Ben image was also used for this test. The

original GSEG edge map of Big Ben is shown in Figure 6.11, while the edge map generated

47

from the successive emulations is shown in Figure 6.12. Again, scaling is applied to

display the images. The two edge maps of Big Ben have a CORR2 of 0.5833, a PSNR of

18.5982 dB, and an SSIM Index of 0.4070. Similar to the case of the deer image, the image

quality results suggest significant image degradation. A visual inspection shows that this

is an acceptable edge map, with the majority of the degradation seen in the windows of the

clock tower and as striations in the sky.

 Figure 6.11 (LEFT): The Edge Map generated by the GSEG algorithm in MATLAB.

 Figure 6.12 (RIGHT): The Edge Map generated from successive modules in the MCF.

6.3 Logic Utilization, Power Consumption, and Execution Time

Before presenting the logic utilization and power consumption results, it is important

to note the final configuration of the framework used for testing purposes. Seen in Figure

6.13, the MCF is instantiated with all four GSEG modules and the 3D HP CSC engine.

This configuration provides results for analyzing how resource utilization scales as

different modules are instantiated within the framework. It also shows that the

48

implementation of the GSEG modules in the other channels do not hinder the operation of

the HP CSC engine in the final channel, which continued produced known good results

under testing.

Figure 6.13: Block Diagram of the MCF with five channels utilized, Modified from [3].

Four modules were implemented in the Virtex-6 FPGA as a result of partitioning the

beginning portions of the GSEG algorithm. The logic utilization numbers for each of the

individual modules is presented in Table 6.1. This table also includes the logic utilization

numbers for the multichannel framework and PCIe interface. As one can see by inspection,

the modules were not large. Although a verbatim implementation of the GSEG algorithm

does not exist for comparison, savings can be inferred based upon the modifications

presented in Chapter 3. By reducing the representation ranges to the absolute minimum

49

for each module, fewer resources are used for routing and therefore the problem of

congestion is alleviated. Other modifications removed entire steps completely or

substituted IP cores to efficiently use DSP48 slices instead of Look-Up-Tables and Flip-

Flops, surely reducing logic utilization.

 Slices FFs LUTs BRAM DSP48 BUFG BUFR MMCM

MCF
2,546 1,857 2,447 0 0 0 0 0

7% 1% 2% 0% 0% 0% 0% 0%

PCIe
12,094 26,721 20,568 75 0 11 2 2

32% 9% 14% 18% 0% 34% 6% 17%

GSEG Modules:

sRGB to Lin sRGB
91 137 243 0 9 2 0 0

0.24% 0.05% 0.16% 0% 1% 6% 0% 0%

Lin sRGB to XYZ
51 158 79 0 3 2 0 0

0.14% 0.05% 0.05% 0% 0% 6% 0% 0%

XYZ to L*a*b*
652 679 1973 0 2 1 0 0

1.7% 0.23% 1.3% 0% 0% 3% 0% 0%

Vector Gradient
116 201 234 0 0 2 0 0

0.31% 0.07% 0.16% 0% 0% 6% 0% 0%

Available in
xc6vlx240t:

37,680 301,440 150,720 416 768 32 36 12

Table 6.1: FPGA Resource Utilization1, MCF & PCIe taken with permission from [3].

The individual module logic utilization numbers presented in Table 6.1 can be used

to predict the utilization numbers for implementing all four GSEG modules within the

framework. To predict utilization, all resource types except the BUFG (global buffer) can

be summed. The global clock buffers are associated with the interface to the PC, thus to

predict the BUFG usage for the configuration with four channels only the PCIe is

1 The utilization reported for each GSEG module does not include the MCF or PCIe logic.

50

considered. The logic utilization numbers for the two configurations previously mentioned

are presented in Table 6.2.

The first row of data corresponds to the prediction of resource usage suggested by

summing the individual module usage statistics. These numbers can be compared directly

to the second row, which is reported logic utilization for the corresponding implementation.

In only case did the logic usage actually decrease, which is likely due to the variations seen

between place and route operations. In the third and final row, the full five-channel

implementation utilization numbers are reported. As expected, the inclusion of the HP

CSC engine has caused an increase in most types of resources. The buffers (BUFG and

BUFR) and mixed mode clock managers (MMCM) were not expected to increase, as they

are associated with the PCIe interface only.

 Slices FFs LUTs BRAM DSP48 BUFG BUFR MMCM

MCF 4-Channels

Suggested Utilization

15,550 29,753 25,544 75 14 11 2 2

41% 10% 17% 18% 2% 34% 6% 17%

MCF 4-Channels

 (GSEG & Null)

13,135 30,430 28,190 75 14 11 2 2

35% 10% 19% 18% 2% 34% 6% 17%

MCF 5-Channels

(GSEG & CSC)

16,240 34,278 36,783 135 30 11 2 2

43% 11% 24% 32% 4% 34% 6% 17%

Available in
xc6vlx240t:

37,680 301,440 150,720 416 768 32 36 12

Table 6.2: Logic Utilization for MCF Configurations with multiple active channels.

Once the modules were implemented within the framework, the XPower Analyzer

can be used to generate post-implementation power consumption estimations of each

design. As A. Mykyta et al. noted, the tool uses Xilinx’s own heuristics and activity factors

to calculate these estimates [3], which are shown in Table 6.3. It is important to note that

51

these power consumption numbers do not represent each module alone, but one instance

of the module along with the MCF and PCIe supporting hardware. The final two rows of

data correspond to the configurations with multiple active channels. All power

consumption statistics are estimated based on each channel operating at a frequency of 50

MHz and the PCIe interface operating at a frequency of 250 MHz.

 A. Mykyta’s work showed that the MCF and PCIe logic contributed 2599 mW

toward dynamic power consumption [3]. Based on the numbers shown in Table 6.3, the

GSEG modules themselves consume an insignificant amount of power. This was

suggested by the low logic utilization parameters presented in Table 6.1. An interesting

result is that the power consumption estimate decreased for the implementation with four

GSEG modules when compared with each individual GSEG implementation. This is due

to the variations within the implementation process and the estimates based on

implementation results, which vary between runs.

Configuration mW

sRGB to Lin sRGB

Dynamic Power 2646

Quiescent Power 6388

Total 9034

Lin sRGB to XYZ

Dynamic Power 2648

Quiescent Power 6388

Total 9036

XYZ to L*a*b*

Dynamic Power 2649

Quiescent Power 6388

Total 9037

Vector Gradient

Dynamic Power 2651

Quiescent Power 6388

Total 9039

52

MCF 4-Channels
(GSEG & Null)

Dynamic Power 2622

Quiescent Power 6387

Total 9009

MCF 5-Channels
(GSEG & CSC)

Dynamic Power 2643

Quiescent Power 6388

Total 9031

Table 6.3: Power Consumption Estimates2.

Finally, the execution time for each module can be inferred due to the deterministic

nature of the image processing pipelines. Based on the clock frequency controlling the

advancement of data throughout the pipeline, the number of stages in each pipeline, the

number of bytes of data being processed, and the number of stages in input/output

abstraction layer developed in [3], the execution time for each module can be calculated.

These execution times are presented in Table 6.4, along with the original MATLAB

algorithm execution times. The first module has a latency of five 50 MHz clock cycles.

The Linear sRGB to CIE XYZ stage has a sub-pipeline operating at a clock frequency of

250 MHz, allowing the stage to have a latency of one 50 MHz clock cycle. In the case of

the CIE XYZ to CIE L*a*b* conversion, the pipeline has a latency of twelve 50 MHz clock

cycles, causing the execution time to be longer due the extra cycles required to fill and

empty the pipeline. The vector gradient module, on the other hand, has a latency of three

50 MHz clock cycles.

GSEG Module Execution Time (ms)

2 For the results shown in Table 6.3, each module has been instantiated as a single channel within

the MCF. The estimated power consumption of each module includes the MCF and PCIe logic.

53

MCF MATLAB

sRGB to Lin sRGB 3.08818

283.321 Lin sRGB to XYZ 3.08808

XYZ to L*a*b* 3.08830

Vector Gradient 6.1761 98.363

Table 6.4: Comparison of Execution Times3.

As Table 6.4 shows, the emulation of the algorithm stages in hardware produces a

considerable speedup. Even in the case where the color space conversion from sRGB to

CIE L*a*b* has been partitioned into three separate modules, each requiring data to be fed

via the PCIe link. By adding the first three execution times and comparing with the

MATLAB GSEG-CSC results, a speedup of 30.5 is observed. In the case of the vector

gradient module, two separate images must be fed to the module to produce the six

necessary results. The MATLAB GSEG vector gradient is executed via three sequential

function calls, each calculating the gradient in both the x and the y directions for each

image plane. Again, a considerable speedup of 15.9 has been achieved. The MATLAB

code used to generate the execution times is provided in Appendix C.

Although the power consumption estimates need to be evaluated more detailed tools,

the results presented within this section are enough to support A. Mykyta’s claims that

FPGAs are viable alternatives to ASICs [3]. The advantages of ASIC designs are well

3 It is important to note that the execution times reported under MCF are calculated from the

latencies of each individual module, and the supporting PCIe and framework hardware. One result is given

for the MATLAB GSEG-CSC because the entire conversion is performed at once.

54

known: completely customizable and relatively low costs at high quantities. On the other

hand, FPGAs are well suited for prototyping designs and applications with quick times-to-

market, due to their flexibility and the capability for reprogramming in the field.

Additionally, FPGAs do not have the same overhead engineering costs associated with

startup, as an ASIC would [3]. An advantage of ASIC designs has historically been their

lower power consumption, as they are directly designed to meet power specifications.

FPGAs can implement the same functionality as an ASIC, but it is done using memory

cells (e.g., SRAM & LUTs), which are costly in terms of power. However, by applying

the DFI Methodology to an algorithm or verbatim implementation, the power consumption

(and other design parameters) can be reduced. By shortening this power consumption gap,

the FPGA can become an even more viable alternative to an ASIC design. Depending

upon the requirements of a given project, targeting an FPGA may already be a solution.

55

Chapter 7: Conclusion

In this thesis, a methodology of designing algorithms for efficient implementation

is presented and evaluated. A design flow and a list of guidelines are proposed which,

when applied, result in more efficient physical implementations. The color space

conversion and vector gradient portions of an image segmentation algorithm are used as

test vehicles to evaluate the proposed design for implementation methodology. Applying

this methodology in a step-by-step example shows that a number of steps in the calculations

can be simplified, approximated, or in some cases removed completely without drastically

affecting overall image quality.

Two test images were used to measure the effects of the modified algorithm

implemented in an FPGA. A variety of image quality metrics and a human visual check

of suggest that these modifications do not unacceptably affect image quality for the

individual stages of the algorithm. Additionally, the two test images were processed

through all implemented modules successively, allowing the degradation introduced by

each module to compound into a total amount of degradation. Although the image quality

metrics for these results were relatively poor compared to those from the individual stages,

the results were considered to acceptable based on the strength of the edges in the edge

map.

Many possibilities exist for future research. From the algorithm design standpoint,

a variety of different algorithms could be tailored for implementation using the proposed

methodology. Such usage would provide further results to validate the methodology and

56

could potentially extend the current DFI guidelines. Additionally, an already implemented

algorithm could be used as test vehicle for applying the methodology in an effort to

quantify savings or gains in terms of standard design parameters (e.g., logic utilization,

power consumption, execution time, maximum operating frequency).

Leaning more toward the hardware aspect of this research, there are many potential

areas for future research. First, the algorithm stages implemented in this work could target

Xilinx’s ZYNQ platform, which combines reconfigurable FPGA fabric along with a dual

core ARM Cortex CPU on the same silicon die. This would allow for different portions of

the algorithms to be processed using the ARM CPUs while other portions could target the

FPGA fabric. A potential area of interest would be to evaluate the usage of the CPUs to

perform the processing that must maintain a high precision while the fabric could be used

to accelerate the less important operations.

Another area of investigation would be that of implementing the ability to feed

different channel outputs directly to the inputs of other channels, thus avoiding the transfer

of data from the framework to the host pc and back to the framework. By bypassing this

transfer, a very large multi-stage pipeline could be implemented with the ability to

reconfigure earlier stages that are no longer being used. In theory, if the processing times

for each stage were greater than or equal to the reconfiguration time of one channel then

processing would not need to stop until it was completed. Such a design would allow for

the implementation of a pipeline than is actually larger than the FPGA resources available,

while also avoiding the latencies associated with the host pc.

57

References

[1] S. M. Qasim, S. A. Abbasi, and B. Almashary, "A review of FPGA-based design

methodology and optimization techniques for efficient hardware realization of

computation intensive algorithms," in Proc. IEEE Int. Conf. Multimedia, Signal

Processing and Communication Technologies, Aligarh, 2009, pp. 313-316.

[2] R. Toukatly, "Dynamic partial reconfiguration for pipelined digital systems: a case

study using a color space conversion engine," M.S. thesis, Dept. Elect. Eng.,

Rochester Inst. of Technology, Rochester, NY, 2011.

[3] A. Mykyta, "Reconfigurable framework for high-bandwidth stream-oriented data

processing," M.S. thesis, Dept. Elect. Eng., Rochester Inst. of Technology,

Rochester, NY, 2012.

 [4] L.G. Ugarriza et al., “Automatic image segmentation by dynamic region growth

and multiresolution merging,” IEEE Trans. Image Process., vol. 18 , no. 10, pp.

275-2288, Oct., 2009.

[5] F. Vahid et al., "A comparison of functional and structural partitioning," in Proc.

9th Int. Symp. on System Synthesis, La Jolla, CA, 1996, pp. 121-126.

[6] D. G. Bailey and C. T. Johnston, "Algorithm transformation for FPGA

implementation," in Proc. 5th IEEE Int. Symp. Electronic Design, Test and

Application, Ho Chi Minh City, Vietnam, 2010, pp. 77–81.

[7] M. Haldar et al., "A system for synthesizing optimized FPGA hardware from

Matlab(R)," in Proc. Int. Conf. Computer-Aided Design, San Jose, CA, 2001, pp.

314-319.

[8] G. Karakonstantis et al., "Design methodology to trade off power, output quality

and error resiliency: application to color interpolation filtering," in Proc. Int. Conf.

Computer-Aided Design, San Jose, CA, 2007, pp. 199-204.

[9] K. S. Vallerio and N. K. Jha, "Task graph extraction for embedded system

synthesis," in Proc. 16th IEEE Int. Conf. VLSI Design, 2003, pp. 480-486.

[10] S. Gupta et al., "SPARK: a high-level synthesis framework for applying

parallelizing compiler transformations," in Proc. 16th IEEE Int. Conf. VLSI Design,

2003, pp. 461-466.

[11] J. Huang and J. Lach, "ColSpace: Towards algorithm/implementation co-

optimization," in Proc. IEEE Int. Conf. Computer Design, Lake Tahoe, CA, 2009,

pp. 404-411.

[12] M. Stokes et al., “A standard default color space for the internet – sRGB,” in Proc.

4th Color Imaging Conf.: Color Science, Systems, and Applications, 1996, pp. 238-

245.

58

[13] G. Sharma, Ed., "Digital color imaging handbook", New York: CRC Press, 2003,

pp. 158-162, pp. 327-328.

[14] “Intellectual Property”, ed: Xilinx Inc., June, 2013,

<http://www.xilinx.com/products/intellectual-property/>.

[15] D. Martin et al., “A database of human segmented natural images and its application

to evaluating segmentation algorithms and measuring ecological statistics,” Proc.

8th IEEE Int. Conf. Computer Vision, Vancouver, BC, 2001, pp. 416-423.

[16] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic

Processes, New York: McGraw-Hill, 2002, pp. 210.

[17] A. Horé and D. Ziou, “Image Quality Metrics: PSNR vs. SSIM,” Proc. 20th IEEE

Int. Conf. Pattern Recognition, Instanbul, 2010, pp. 2366-2369.

[18] Z. Wang et al., “Image Quality Assessment: From Error Visibility to Structural

Similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600-612, Apr., 2004.

[19] Z. Wang et al., (2012, January 20). ssim_index.m [MATLAB Script]. Available:

https://ece.uwaterloo.ca/~z70wang/research/ssim/

59

Appendix A:

Hardware and Software Used

Hardware

• FPGA Development Board

o Xilinx ML605

o FPGA Family: Virtex-6 LXT

o Device: xc6vlx240t-1ff1156-1

o Programming Interface: JTAG over USB

o Debugging Interface: UART over USB

• Development and Implementation PC:

o OS: Microsoft Windows 7 (x86, SP1)

o CPU: Intel Core 2 Duo, 2.66 GHz

o RAM: 3 GB

• Testing PC:

o OS: Linux Fedora 10 (2.6.27.5 Kernel version)

o CPU: Intel Core 2 Duo, 2.40 GHz

o RAM: 2 GB

o PCI-Express slot populated with ML605 FPGA card.

Software

• Windows 7 Development PC:

o Xilinx ISE Design Suite: 14.5 System Edition

o ISE Project Navigator

o PlanAhead (incl. PR license)

o iMPACT

• Linux Fedora Testing PC:

o GNU C Compiler

o GNU Make

60

Appendix B: Color Images

Figure 7.1 (LEFT): The GSEG result in the CIE L*a*b* color space.

 Figure 7.2 (RIGHT): The MCF result in the CIE L*a*b* color space.

Figure 7.3 (LEFT): The GSEG result in the CIE L*a*b* color space.

61

 Figure 7.4 (RIGHT): The MCF result in the CIE L*a*b* color space.

62

Appendix C: MATLAB Code for

Recording Execution Times

%% MATLAB Code for Recording Execution Time
% Features portions of GSEG algorithm
% Executed ten times and then averaged

pth = 'C:\Users\jdw3970\HP-2012-
2013_svnroot\J_Whitesell\MATLAB(MASTER)\Pipeline_Si mulation' ;
I = imread([pth '\' 'bigben.jpg']);

tic
C = makecform('srgb2lab');
LAB_std = applycform(I, C);
toc

L = double(LAB_std(:,:,1));
A = double(LAB_std(:,:,2));
B = double(LAB_std(:,:,3));

tic
[dLdx dLdy] = gradient(L);
[dAdx dAdy] = gradient(A);
[dBdx dBdy] = gradient(B);
toc

