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more visible in the form of striations in the sky of the picture.  This is a good example of 

the content of the image may react differently to the modifications made in the algorithm.  

On one hand, the image of the deer would appear to be almost identical, but on the other 

hand the image of the two officers might be considered unacceptable.  Such is not the case 

for our GSEG algorithm, as features such as texture modeling can be tuned to avoid 

segmenting the striations. These results confirm that different applications can tolerate 

different amounts of degradation. 

 

Figure 6.6 (LEFT): The GSEG result in the CIE L*a*b* color space. 

 Figure 6.7 (RIGHT): The MCF result in the CIE L*a*b* color space. 
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Similar to the first two modules implemented, the vector gradient module produced 

ideal results.  In fact, all CORR2 and SSIM results were equal to the ideal value of 1.000.  

The PSNR values ranged from 72 dB to 106 dB across the variety of image planes.  These 

results were also expected due to the simple nature of integer subtraction in the calculation.   

For another configuration used in testing, the MCF was instantiated with a different 

user-circuit in every channel.  Each of the four GSEG modules from this work, and a fifth 

null channel, were implemented as static channels to show the flexibility of the framework 

with different types and sizes of algorithms.  A basic block diagram of this implementation 

is shown in Figure 6.8.  

 

Figure 6.8: Block Diagram of the MCF with all GSEG Modules, Modified from [3]. 
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This implementation was also used to evaluate the total amount of image 

degradation seen from using the modules successively.  With the output of each GSEG 

module being fed back into the framework as the input of the next module via the host PC, 

a sequential pipeline was emulated.  Using portions of the GSEG algorithm in MATLAB, 

the emulation results were loaded and used to calculate an edge map.  The original GSEG 

edge map of the two deer is shown in  Figure 6.9, while the edge map generated from the 

successive emulations is shown in Figure 6.10.  It is important to note that the images are 

being displayed using a scale function, and as a result of the noise introduced in the MCF 

result the edges do not appear as bright compared with the MATLAB result.  The edge 

maps of the deer have a CORR2 of 0.3041, a PSNR of 17.9572 dB, and a SSIM Index of 

0.5355.   These image quality results suggest a significant amount of image degradation; 

however, an inspection of the images shows that this is an acceptable amount of 

degradation.   

 

 Figure 6.9 (LEFT): The Edge Map generated by the GSEG algorithm in MATLAB. 

 Figure 6.10 (RIGHT): The Edge Map generated from successive modules in the MCF. 

In addition to the deer image, the Big Ben image was also used for this test.  The 

original GSEG edge map of Big Ben is shown in Figure 6.11, while the edge map generated 
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from the successive emulations is shown in  Figure 6.12.  Again, scaling is applied to 

display the images.  The two edge maps of Big Ben have a CORR2 of 0.5833, a PSNR of 

18.5982 dB, and an SSIM Index of 0.4070.  Similar to the case of the deer image, the image 

quality results suggest significant image degradation.  A visual inspection shows that this 

is an acceptable edge map, with the majority of the degradation seen in the windows of the 

clock tower and as striations in the sky.    

 

 Figure 6.11 (LEFT): The Edge Map generated by the GSEG algorithm in MATLAB. 

 Figure 6.12 (RIGHT): The Edge Map generated from successive modules in the MCF. 

6.3 Logic Utilization, Power Consumption, and Execution Time 

Before presenting the logic utilization and power consumption results, it is important 

to note the final configuration of the framework used for testing purposes.  Seen in Figure 

6.13, the MCF is instantiated with all four GSEG modules and the 3D HP CSC engine.  

This configuration provides results for analyzing how resource utilization scales as 

different modules are instantiated within the framework.  It also shows that the 
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implementation of the GSEG modules in the other channels do not hinder the operation of 

the HP CSC engine in the final channel, which continued produced known good results 

under testing.     

 

Figure 6.13: Block Diagram of the MCF with five channels utilized, Modified from [3]. 

Four modules were implemented in the Virtex-6 FPGA as a result of partitioning the 

beginning portions of the GSEG algorithm.  The logic utilization numbers for each of the 

individual modules is presented in Table 6.1.  This table also includes the logic utilization 

numbers for the multichannel framework and PCIe interface.  As one can see by inspection, 

the modules were not large.  Although a verbatim implementation of the GSEG algorithm 

does not exist for comparison, savings can be inferred based upon the modifications 

presented in Chapter 3.   By reducing the representation ranges to the absolute minimum 
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for each module, fewer resources are used for routing and therefore the problem of 

congestion is alleviated.  Other modifications removed entire steps completely or 

substituted IP cores to efficiently use DSP48 slices instead of Look-Up-Tables and Flip-

Flops, surely reducing logic utilization. 

  Slices FFs LUTs BRAM DSP48 BUFG BUFR MMCM 

MCF 
2,546 1,857 2,447 0 0 0 0 0 

7% 1% 2% 0% 0% 0% 0% 0% 

PCIe 
12,094 26,721 20,568 75 0 11 2 2 

32% 9% 14% 18% 0% 34% 6% 17% 

GSEG Modules:                 

sRGB to Lin sRGB 
91 137 243 0 9 2 0 0 

0.24% 0.05% 0.16% 0% 1% 6% 0% 0% 

Lin sRGB to XYZ 
51 158 79 0 3 2 0 0 

0.14% 0.05% 0.05% 0% 0% 6% 0% 0% 

XYZ to L*a*b* 
652 679 1973 0 2 1 0 0 

1.7% 0.23% 1.3% 0% 0% 3% 0% 0% 

Vector Gradient 
116 201 234 0 0 2 0 0 

0.31% 0.07% 0.16% 0% 0% 6% 0% 0% 

Available in 
xc6vlx240t: 

37,680 301,440 150,720 416 768 32 36 12 

 

Table 6.1: FPGA Resource Utilization1, MCF & PCIe taken with permission from [3]. 

The individual module logic utilization numbers presented in Table 6.1 can be used 

to predict the utilization numbers for implementing all four GSEG modules within the 

framework.   To predict utilization, all resource types except the BUFG (global buffer) can 

be summed. The global clock buffers are associated with the interface to the PC, thus to 

predict the BUFG usage for the configuration with four channels only the PCIe is 

                                                 

1 The utilization reported for each GSEG module does not include the MCF or PCIe logic. 
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considered.  The logic utilization numbers for the two configurations previously mentioned 

are presented in Table 6.2.   

The first row of data corresponds to the prediction of resource usage suggested by 

summing the individual module usage statistics.  These numbers can be compared directly 

to the second row, which is reported logic utilization for the corresponding implementation.  

In only case did the logic usage actually decrease, which is likely due to the variations seen 

between place and route operations.  In the third and final row, the full five-channel 

implementation utilization numbers are reported.  As expected, the inclusion of the HP 

CSC engine has caused an increase in most types of resources.  The buffers (BUFG and 

BUFR) and mixed mode clock managers (MMCM) were not expected to increase, as they 

are associated with the PCIe interface only.   

  Slices FFs LUTs BRAM DSP48 BUFG BUFR MMCM 

MCF 4-Channels 

Suggested Utilization 

15,550 29,753 25,544 75 14 11 2 2 

41% 10% 17% 18% 2% 34% 6% 17% 

MCF 4-Channels 

 (GSEG & Null) 

13,135 30,430 28,190 75 14 11 2 2 

35% 10% 19% 18% 2% 34% 6% 17% 

MCF 5-Channels 

(GSEG & CSC) 

16,240 34,278 36,783 135 30 11 2 2 

43% 11% 24% 32% 4% 34% 6% 17% 

Available in 
xc6vlx240t: 

37,680 301,440 150,720 416 768 32 36 12 

Table 6.2: Logic Utilization for MCF Configurations with multiple active channels. 

Once the modules were implemented within the framework, the XPower Analyzer 

can be used to generate post-implementation power consumption estimations of each 

design.  As A. Mykyta et al. noted, the tool uses Xilinx’s own heuristics and activity factors 

to calculate these estimates [3], which are shown in Table 6.3.  It is important to note that 
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these power consumption numbers do not represent each module alone, but one instance 

of the module along with the MCF and PCIe supporting hardware.  The final two rows of 

data correspond to the configurations with multiple active channels.  All power 

consumption statistics are estimated based on each channel operating at a frequency of 50 

MHz and the PCIe interface operating at a frequency of 250 MHz. 

  A. Mykyta’s work showed that the MCF and PCIe logic contributed 2599 mW 

toward dynamic power consumption [3].  Based on the numbers shown in Table 6.3, the 

GSEG modules themselves consume an insignificant amount of power.  This was 

suggested by the low logic utilization parameters presented in Table 6.1.  An interesting 

result is that the power consumption estimate decreased for the implementation with four 

GSEG modules when compared with each individual GSEG implementation.  This is due 

to the variations within the implementation process and the estimates based on 

implementation results, which vary between runs. 

Configuration   mW 

sRGB to Lin sRGB 

Dynamic Power 2646 

Quiescent Power 6388 

Total 9034 

Lin sRGB to XYZ 

Dynamic Power 2648 

Quiescent Power 6388 

Total 9036 

XYZ to L*a*b* 

Dynamic Power 2649 

Quiescent Power 6388 

Total 9037 

Vector Gradient 

Dynamic Power 2651 

Quiescent Power 6388 

Total 9039 
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MCF 4-Channels 
(GSEG & Null) 

Dynamic Power 2622 

Quiescent Power 6387 

Total 9009 

MCF 5-Channels 
(GSEG & CSC) 

Dynamic Power 2643 

Quiescent Power 6388 

Total 9031 

 

Table 6.3: Power Consumption Estimates2. 

Finally, the execution time for each module can be inferred due to the deterministic 

nature of the image processing pipelines.  Based on the clock frequency controlling the 

advancement of data throughout the pipeline, the number of stages in each pipeline, the 

number of bytes of data being processed, and the number of stages in input/output 

abstraction layer developed in [3], the execution time for each module can be calculated.  

These execution times are presented in Table 6.4, along with the original MATLAB 

algorithm execution times.  The first module has a latency of five 50 MHz clock cycles.  

The Linear sRGB to CIE XYZ stage has a sub-pipeline operating at a clock frequency of 

250 MHz, allowing the stage to have a latency of one 50 MHz clock cycle.  In the case of 

the CIE XYZ to CIE L*a*b* conversion, the pipeline has a latency of twelve 50 MHz clock 

cycles, causing the execution time to be longer due the extra cycles required to fill and 

empty the pipeline.  The vector gradient module, on the other hand, has a latency of three 

50 MHz clock cycles.  

GSEG Module Execution Time (ms) 

                                                 

2 For the results shown in Table 6.3, each module has been instantiated as a single channel within 

the MCF.  The estimated power consumption of each module includes the MCF and PCIe logic. 



   

53

MCF MATLAB 

sRGB to Lin sRGB 3.08818 

283.321 Lin sRGB to XYZ 3.08808 

XYZ to L*a*b* 3.08830 

Vector Gradient 6.1761 98.363 

Table 6.4: Comparison of Execution Times3. 

As Table 6.4 shows, the emulation of the algorithm stages in hardware produces a 

considerable speedup.  Even in the case where the color space conversion from sRGB to 

CIE L*a*b* has been partitioned into three separate modules, each requiring data to be fed 

via the PCIe link.  By adding the first three execution times and comparing with the 

MATLAB GSEG-CSC results, a speedup of 30.5 is observed.  In the case of the vector 

gradient module, two separate images must be fed to the module to produce the six 

necessary results.  The MATLAB GSEG vector gradient is executed via three sequential 

function calls, each calculating the gradient in both the x and the y directions for each 

image plane.  Again, a considerable speedup of 15.9 has been achieved.  The MATLAB 

code used to generate the execution times is provided in Appendix C. 

Although the power consumption estimates need to be evaluated more detailed tools, 

the results presented within this section are enough to support A. Mykyta’s claims that 

FPGAs are viable alternatives to ASICs [3].  The advantages of ASIC designs are well 

                                                 

3 It is important to note that the execution times reported under MCF are calculated from the 

latencies of each individual module, and the supporting PCIe and framework hardware.  One result is given 

for the MATLAB GSEG-CSC because the entire conversion is performed at once. 
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known: completely customizable and relatively low costs at high quantities.  On the other 

hand, FPGAs are well suited for prototyping designs and applications with quick times-to-

market, due to their flexibility and the capability for reprogramming in the field.  

Additionally, FPGAs do not have the same overhead engineering costs associated with 

startup, as an ASIC would [3].  An advantage of ASIC designs has historically been their 

lower power consumption, as they are directly designed to meet power specifications.  

FPGAs can implement the same functionality as an ASIC, but it is done using memory 

cells (e.g., SRAM & LUTs), which are costly in terms of power.  However, by applying 

the DFI Methodology to an algorithm or verbatim implementation, the power consumption 

(and other design parameters) can be reduced.  By shortening this power consumption gap, 

the FPGA can become an even more viable alternative to an ASIC design.  Depending 

upon the requirements of a given project, targeting an FPGA may already be a solution. 



   

55

Chapter 7: Conclusion 

In this thesis, a methodology of designing algorithms for efficient implementation 

is presented and evaluated.  A design flow and a list of guidelines are proposed which, 

when applied, result in more efficient physical implementations.  The color space 

conversion and vector gradient portions of an image segmentation algorithm are used as 

test vehicles to evaluate the proposed design for implementation methodology.  Applying 

this methodology in a step-by-step example shows that a number of steps in the calculations 

can be simplified, approximated, or in some cases removed completely without drastically 

affecting overall image quality.   

Two test images were used to measure the effects of the modified algorithm 

implemented in an FPGA.  A variety of image quality metrics and a human visual check 

of suggest that these modifications do not unacceptably affect image quality for the 

individual stages of the algorithm.  Additionally, the two test images were processed 

through all implemented modules successively, allowing the degradation introduced by 

each module to compound into a total amount of degradation.  Although the image quality 

metrics for these results were relatively poor compared to those from the individual stages, 

the results were considered to acceptable based on the strength of the edges in the edge 

map.   

Many possibilities exist for future research.  From the algorithm design standpoint, 

a variety of different algorithms could be tailored for implementation using the proposed 

methodology.  Such usage would provide further results to validate the methodology and 
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could potentially extend the current DFI guidelines.  Additionally, an already implemented 

algorithm could be used as test vehicle for applying the methodology in an effort to 

quantify savings or gains in terms of standard design parameters (e.g., logic utilization, 

power consumption, execution time, maximum operating frequency).  

Leaning more toward the hardware aspect of this research, there are many potential 

areas for future research.  First, the algorithm stages implemented in this work could target 

Xilinx’s ZYNQ platform, which combines reconfigurable FPGA fabric along with a dual 

core ARM Cortex CPU on the same silicon die.  This would allow for different portions of 

the algorithms to be processed using the ARM CPUs while other portions could target the 

FPGA fabric.  A potential area of interest would be to evaluate the usage of the CPUs to 

perform the processing that must maintain a high precision while the fabric could be used 

to accelerate the less important operations.   

Another area of investigation would be that of implementing the ability to feed 

different channel outputs directly to the inputs of other channels, thus avoiding the transfer 

of data from the framework to the host pc and back to the framework. By bypassing this 

transfer, a very large multi-stage pipeline could be implemented with the ability to 

reconfigure earlier stages that are no longer being used.  In theory, if the processing times 

for each stage were greater than or equal to the reconfiguration time of one channel then 

processing would not need to stop until it was completed.  Such a design would allow for 

the implementation of a pipeline than is actually larger than the FPGA resources available, 

while also avoiding the latencies associated with the host pc.  
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Appendix A: 

Hardware and Software Used 

Hardware 

• FPGA Development Board 

o Xilinx ML605 

o FPGA Family: Virtex-6 LXT 

o Device: xc6vlx240t-1ff1156-1 

o Programming Interface: JTAG over USB 

o Debugging Interface: UART over USB 

• Development and Implementation PC: 

o OS: Microsoft Windows 7 (x86, SP1) 

o CPU: Intel Core 2 Duo, 2.66 GHz 

o RAM: 3 GB 

• Testing PC: 

o OS: Linux Fedora 10 (2.6.27.5 Kernel version) 

o CPU: Intel Core 2 Duo, 2.40 GHz 

o RAM: 2 GB 

o PCI-Express slot populated with ML605 FPGA card. 

Software 

• Windows 7 Development PC: 

o Xilinx ISE Design Suite: 14.5 System Edition 

o ISE Project Navigator 

o PlanAhead (incl. PR license) 

o iMPACT 

• Linux Fedora Testing PC: 

o GNU C Compiler 

o GNU Make 
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Appendix B: Color Images 
 

 

  

 

 

 

 

Figure 7.1 (LEFT): The GSEG result in the CIE L*a*b* color space. 

 Figure 7.2 (RIGHT): The MCF result in the CIE L*a*b* color space. 

 

 

 

 

 

 

 

 

 

Figure 7.3 (LEFT): The GSEG result in the CIE L*a*b* color space. 
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 Figure 7.4 (RIGHT): The MCF result in the CIE L*a*b* color space. 
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Appendix C: MATLAB Code for 

Recording Execution Times 
 

%% MATLAB Code for Recording Execution Time  
%   Features portions of GSEG algorithm  
%   Executed ten times and then averaged  
  
pth = 'C:\Users\jdw3970\HP-2012- 
2013_svnroot\J_Whitesell\MATLAB(MASTER)\Pipeline_Si mulation' ; 
I = imread([pth '\'  'bigben.jpg' ]);  
 
tic  
C = makecform( 'srgb2lab' );  
LAB_std = applycform(I, C);  
toc  
  
L = double(LAB_std(:,:,1));  
A = double(LAB_std(:,:,2));  
B = double(LAB_std(:,:,3));  
  
tic  
[dLdx dLdy] = gradient(L);  
[dAdx dAdy] = gradient(A);  
[dBdx dBdy] = gradient(B);  
toc  

 

 

 


