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Abstract
Scalable Automation of Online Network Attack Characterization

Ryan T. Rawlins

Supervising Professor: Dr. Shanchieh Jay Yang

Cyber attacks to enterprise networks and critical infrastructures are becoming more preva-
lent and diverse. Timely recognition of attack strategies and behaviors will assist analysts
or resilient network defense systems in deploying effective means in anticipation of fu-
ture threats. An attack can be characterized by the sequences of observed events that are
relevant to critical assets. Earlier work has developed a semi-supervised learning frame-
work to process large-scale events and extract attack behaviors. While the framework is
designed to support online processing, the implementation requires extension and restruc-
turing to support scalable automation of sustainable online network attack characterization.

This work builds upon the semi-supervised Bayesian classification framework, and aims at
providing a modular and scalable system that supports a variety of features to describe
attacks, ranging from packet level information to metadata produced by sensors, such
as Snort and Bro. The system will continuously process data streams, generating newly
learned models, as well as record critical information of aged behavior models. These be-
havior models will reflect the attack strategies that are relevant to the critical assets, enhanc-
ing the situational awareness and enabling predictive and resilient network defense. The
accuracy of the models is demonstrated through comparisons to network topologies and
scenarios provided from the source of the dataset utilized. These scenarios often encapsu-
late multiple complex network attack behaviors allowing for more realistic representations
of network traffic over time and better test cases for experimentation.
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Chapter 1

Introduction

1.1 Background

The ability to identify and characterize cyber attacks helps to provide more efficient
and appropriate defenses. This capability provides the backbone for prompt and effective
identification of attacks from malware designed by users with malicious intents. An attack
can be characterized by the sequences of observed events that are relevant to critical assets.
Examples of attack types include worms, viruses and botnets. A worm is a standalone com-
puter program that maliciously exploits security vulnerabilities in a target machine to gain
access to a network and spread to new targets. Computer viruses look to replicate them-
selves and infect other programs to either steal information, occupy bandwidth or corrupt
data. A botnet is a collection of computers known as bots that are under the control of a
remote user known as a botmaster. This collection of machines is then used in coordinated
cyber attacks, such as distributed denial of service (DDoS), without the knowledge or per-
mission of the owners of each compromised machine. Unique characteristics describe each
type of attack which can be used to identify when one is encroaching upon a network.

Tools like intrusion detection systems (IDS) or intrusion prevention systems (IPS), also
known as networks sensors, are widely used by system administrators to monitor traffic and
filter malicious from benign traffic. These tools look for specific patterns in network traffic
to identify potential threats such as inconsistent IP addresses and ports. Snort and Bro are
specific implementations of IDSs that are incorporated into many network topologies to
sift through packet level data. Snort is a rule-based IDS meaning it looks for predefined
patterns within packets it observes to see if an alert should be generated. Bro is a frame-
work that allows for passive network traffic analysis and security monitoring. Instead of
alerts, Bro produces different log files based on what it observes and the settings that the
user has specified. Incorporating the metadata from sensors creates a new dimension to
describe observed traffic. Each new description of the traffic allows for higher precision
when classifying each packet into a group consisting of similar traits. Earlier work has
developed a semi-supervised Bayesian classification based machine learning framework to
process large-scale events and extract attack behaviors from packet captures. Combining
metadata produced by sensors and data from packet captures, this work builds upon the
Bayesian framework and aims at providing a modular and scalable system that can extract
and identify malicious behaviors from a variety of attack features. Metadata is information
that describes one or more aspects about a specific dataset. The system is scalable in the
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sense that it can accommodate a work load that varies in size.
A semi-supervised machine learning based framework developed by [20] processes

large-scale events and extracts attack behaviors. Bayes’s Theorem is utilized to calculate
posterior probabilities to determine if an actor is likely to be part of a malicious behavior
resolved from packet level features. An actor is an entity like a bot or hacker who acts in
a malicious manner. Before incoming traffic can be analyzed for specific traits related to
each behavior, it has to be processed in a couple of phases. First, a target of interest within
the network topology is chosen so incoming traffic can be related to it. Next, the traffic
relevant to the resource being attacked must be separated from other potentially unrelated
traffic. Following this, the different behaviors that exist within this sub-set of the capture
must be identified for classification. This final step can be difficult to isolate due to the
extensive amount of variation in the possible behaviors that can be observed from a cyber
attack, such as backscatter. Backscatter occurs when a machine is the target of a DDoS
attack utilizing multiple spoofed IP addresses. The machine will not be able to distinguish
between legitimate traffic and spoofed traffic from a malicious source. Responses sent from
the target machine will go to each spoofed address, provided by the malicious source, gen-
erating a lot of background noise.

While the framework in [20] was designed to support online processing, the implemen-
tation required extension and restructuring. Packets were the only supported source of data
which limited the accuracy and functionality of the application. Support was added to al-
low metadata to be incorporated as a source of input utilizing the alert strings. Additional
features, in conjunction with alternative sources of input data, help to better define behav-
iors.

In this scenario, training the framework to properly define the behaviors of collaborat-
ing actors is difficult as data is received in an unsupervised fashion. Unsupervised learning
systems do not have a ground truth associated with the training data so it is difficult to know
for sure if data is being properly grouped. Typically, this is related to a clustering problem
where groups are automatically generated from a dataset. To model the traffic flow on a
typical network, the framework was configured with online learning. Online learning looks
at one data point at a time to update the feature distributions of its models. The frame-
work uses online unsupervised techniques to classify packets observed from the network.
This creates a hybrid problem in trying to both efficiently cluster the data while properly
classifying new samples. Each new sample will change the distributions that represent the
models in the system which, in turn, effects how well this sample and those before it fit into
these models.

1.2 Motivation

Hackers and users with malicious intent are constantly adapting to advances in cyber
security which makes it difficult to maintain a secure network. Cyber security analysts
have an array of tools that help them to identify threats on their networks. Each tool is
designed to look at different aspects of the network to identify separate types of intrusions
and malicious actions. Due to the large amount of data generated from a network and all
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of the tools necessary to secure and maintain a network, it is difficult for a security analyst
to maintain situational awareness of any one resource at any given time. The work done
by [20] remedies this by providing a software tool and framework that provides situational
awareness to a target of interest provided by the user.

This framework contained some limitations that prevented an analyst, or other tools,
from fully utilizing the information generated. Originally, the main source of data was re-
stricted to packet capture data stored in either a MySQL database or a log file. Existing
tools such as Network Intrusion Detection Systems (NIDS) provide metadata that describe
the traffic they observe. Incorporating multiple sources of data into one tool helps to bridge
the gap between all of these utilities.

System administrators and security analysts will be able to view a larger amount of
information in one consolidated application. This will also help to facilitate better commu-
nication between analysts and those developing the tools that they use. The analysts will
be able to look at the data that matters the most to them when determining when an attack
has occurred. Developers can correlate this data to techniques that help collect and display
this information in a more efficient manner.

The goal of incorporating these changes was to increase the extensibility of the original
framework defined and implemented in [20]. A critical, more refined set of features was
derived from both the originally defined feature set and the newly incorporated features.
This allows packets incident on a network to be classified to a particular empirical attack
model with a larger degree of confidence when compared with other subsets of the full fea-
ture group. An alternate source of observable data was also implemented allowing the tool
to scale with different volumes of input. Context was also provided from the new iCTF
data allowing for better verification of the observed behaviors. With publicly available
documentation and data, the empirical models generated can be compared against possi-
ble scenarios described by the documentation. This data also provides a wider set of test
scenarios enabling the development of a more robust implementation of the framework.
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Chapter 2

Related Work

To ensure a more robust and scalable environment for network attack characterization,
it is necessary to first understand the inner workings of the original framework. Since the
framework relies on a naı̈ve Bayesian classifier within an online, unsupervised machine
learning environment, different features are required so each new input can be classified
correctly. Most of the available packet level features had been previously implemented,
with a high success rate, so new observables were sought out. These new features were
needed to test the hypothesis that expanding the dimensionality of the input data would
provide more precise clustering of the attack behaviors. In an unsupervised machine learn-
ing configuration, there is no labeled dataset to check against during development. This
creates the need for alternative methods to evaluate the performance of the features utilized
in the clustering process.

2.1 Attack Segmentation and Model Generation

Strapp [20] worked to create an extensive framework, implemented in a software tool,
that reads in packet level data and provides a higher level view of actors, who may be
collaborating together to attack a network. This provides situational awareness around
a given target of interest in a network allowing an analyst to examine events related to
the given resource. The target of interest represents a server with resources that may be
valuable to a potential attacker. A security analyst, protecting targets of interest, needs to
be able to identify threats with an easy and efficient method. Different attack behaviors,
around a given target of interest, are isolated and displayed as segmented groups to the user.
Isolating relevant traffic becomes increasingly difficult with hackers employing malicious
techniques such as IP address spoofing and information reconnaissance scanning. Using
graphical prior probability in conjunction with packet level features extracted from network
telescope traffic, the tool developed by [20] can produce attack models with a much higher
accuracy when compared with the naı̈ve four-hop approach. This approach assumes that
all traffic four-hops or less from the target of interest is relevant.

This framework provided a novel unsupervised online machine learning based approach,
in contrast with previous works, that utilized an offline approach. With offline machine
learning, the application is trained until classifiers are built. Online machine learning looks
at samples it observes and dynamically updates classifiers as new samples are received.
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Both approaches can be implemented in a supervised or an unsupervised manner. Super-
vised learning uses labeled data to create classifiers which can be iterated in some instances
to increase their accuracy. Unsupervised implementations look to create clusters with un-
labeled data to best estimate varying groups in the dataset. The limitation with this method
is, if the data being classified changes over time, the application must be retrained. With
online learning, the tool can adjust dynamically to classify incoming data. However, the
classifiers produced may not always represent the data accurately and resources are usually
more limited, as the application typically can only view the sample once before deleting
it. The novel approach developed by [20] started the first steps towards a newer, more dy-
namic, tool that security analysts can use to obtain a stronger sense of the malicious traffic
inbound to valuable resources on their network.

2.2 Attack Characterization

It is important to characterize what kinds of attacks are inbound on a network and, in
some situations, try to project what steps will occur next. In 2010 Du, Liu, Holsopple and
Yang [7] worked on situation assessment to project the future steps in a multistage cyber
attack. Du et al. present two techniques that combine the attack projection estimates for
a more accurate prediction. They used the Transferable Belief Model for Capability and
Opportunity (TBM-CO) assessments and Variable Length Markov Models (VLMM) to es-
timate future attack stages based on different alert attributes. The results presented showed
that each method individually was able to perform well, but each worked better under dif-
ferent circumstances. TBM-CO detection performed well under strict firewall rules and
dedicated service. VLMM worked well with sequential attack patterns by using Fuzzy in-
ferences and was shown to be superior to TBM-CO when working individually. When the
attack deviated from its normal attack pattern because of noise, decoy methods, etc. the
TBM-CO was useful for recovering from the deviation to continue tracking. These experi-
ments show how identifying and projecting what an attack is going to do allows for a more
effective defense to prevent a network from being compromised.

Another set of experiments was conducted by Fava, Byers and Yang [10] with the use
of VLMM to capture sequential attack tracks and predict likely future actions of the attack.
The advantage to using a variable length Markov model over a static length Markov model
is that it can adapt to newly observed behaviors in the attack sequence without requiring
specific information about the network it is observing. This means that changes to the net-
work configuration will not affect the accuracy of the model since it can adapt to the new
situation. The adaptability of this system is important as cyber attacks change constantly to
fool defense systems. Networks change a lot during a typical work day while people enter
and exit a campus with mobile devices and while other devices such as laptops, desktops,
printers and more are being added or removed. Having the ability to adapt to changes helps
large scale networks become more secure.

One area that becomes difficult for defense systems is the ability to detect and react
appropriately to group attacks where a larger collaboration of attackers is being used to
compromise a network. In 2011, Du and Yang [8] investigated collaborative cyber attacks
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with social network analysis. Attack Social Graphs (ASGs), which are used to represent
cyber attacks on the Internet, identify patterns that may be present from a joint attack from
multiple sources. Unique patterns associated with collaborative attacks were identified
from the use of ASGs. These patterns allowed for the clustering of these attackers into a
single coordinated attack. As more people have become proficient with computers there
has been an increase in malicious acts in cyber settings. In some cases, these people may
work together in cyber terrorist groups, like Anonymous, to create a botnet or complete
common attack goals. Finding a way to identify when groups like this are attacking helps
to increase defenses and lower the chances of these groups succeeding in a security breach.

Leicht, Clarkson, Shedden and Newman [15] examined large-scale time evolving net-
works. They looked specifically at citation networks, but their ideas apply to cyber net-
works as well. Leicht et al. suggest three techniques for analyzing networks such that they
adapt with time and are robust to changes. The first technique utilizes a model fitted to the
observed network and uses an expectation-maximization algorithm. This kind of algorithm
organizes the network data based on how likely it is to follow an expected model. The
second technique they explored is a clustering method to maximize the modularity of the
models generated. The third technique utilizes the time variation patterns using eigenvector
centrality scores. Overall it was observed that a combination of using all three methods at
once yielded the best results and provided more options for checks and balances. These
findings follow with [7] in that using multiple systems has the best results allowing for bet-
ter identification of patterns in cases where noise may be introduced. Multiple algorithms
that are agnostic to both time and the network structure often provide increased network
security.

Many Internet attacks including distributed denial-of-service (DDoS) and spam are now
caused by botnets. Botnets are the result of multiple compromised machines that are coor-
dinated either through peer-to-peer (P2P) connections or a botmaster that gives commands.
Gu, Perdisci, Zhang and Lee [11] looked into methods for detecting botnet attacks. Cur-
rently, most botnet detection methods look for specific command and control (C&C) proto-
cols. These methods will begin to fail as botnets change their C&C techniques to obfuscate
their attack from detection systems. Gu et al. were able to develop a system that could
detect botnets regardless of the communication protocol being employed. They make the
assumption that bots within the same botnet will use similar communication protocols and
will perform similar malicious activities. Their assumptions worked and led to an accurate
detection system that could identify multiple types of botnets such as IRC, HTTP and P2P
based botnets. This group of researchers also suggested the utilization of multiple correla-
tion techniques to develop a faster system that can work in high speed and large network
environments.

2.2.1 Anomaly-Based Detection with Statistical Analysis

In 2008, Gu, Zhang and Lee [12] discussed their methods to detect botnets with their
program BotSniffer. Their tool relies on network-based anomaly detection to identify a
botnet based on its C&C channel communication. The advantage to this approach is that it
does not require prior knowledge of the signatures or the C&C server addresses. BotSniffer
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looks for traffic from multiple sources with consistent messages and responses. It is un-
likely that human users would send and receive many similar messages all at once like bots
in a botnet do while communicating and synchronizing. In the case of the Hypertext Trans-
fer Protocol (HTTP) protocol being used, request types will always have “GET”, “POST”
or “HEAD” in the first few bytes of the packet. An Internet Relay Chat (IRC) based botnet
will have requests or messages such as “PASS”, “NICK” or “USER” in the packet making
it easier to identify. White lists are used to compare the current traffic with destinations
that are known not to be infected like Google or Amazon. This means that the detection
approach that BotSniffer uses looks to identify spatial-temporal correlation and similarities
in the responses of bots. To accomplish this, BotSniffer has a monitoring engine which
examines network traffic and records any suspicious behavior. There is also a correlation
engine which analyzes events observed by the monitoring engine.

Groups are formed based on the clients’ destination IP and port pair. Those who connect
to the same server are grouped together. The Response-Crowd-Density-Check algorithm
and the Response-Crowd-Homogeneity-Check algorithm are used to analyze the groups
that are generated from the program. The first algorithm looks at the fraction of clients
in a particular group whose message/activity behavior meets a certain threshold set by the
users of the system. If these clients exceed the threshold then they are considered a dense
response crowd. A botnet will have a high probability of being a dense crowd since they are
more synchronized than humans. This also means normal traffic will have a much lower
probability of being a dense response crowd.

To achieve a reasonable number of crowds to make a final decision about the traffic
being a botnet, Gu, Zhang and Lee used the Sequential Probability Ration Testing (SPRT)
algorithm which is also known as Threshold Random Walk (TRW). This algorithm calcu-
lates a score based on a sequence of observed crowds. As the threshold is reached from a
random walk, then it is more likely a botnet. While this approach works well, it does re-
quire watching multiple rounds of response crowds, and in some cases, not all bots respond
within the time window being observed. The second algorithm looks at how similar the
members within a crowd are in terms of their responses. Members of a homogenous crowd
might have similar IP address distribution, port range or a message with similar structure
and content. This means that larger homogenous crowds have a higher probability of being
part of a botnet. A larger number of clients means it is less likely that a homogenous crowd
will form due to an increase in diversity. The combination of correlation and similarity
analysis algorithms has been shown to be a fairly robust system with few false positives at
identifying botnet attacks.

2.2.2 Time Zones

Dagon, Zou and Lee [5] worked to create a diurnal, or daily, model showing how bot-
nets propagate based on time and location. They found that through binary analysis and
observation, botnets tended to infect those in the same region. This discovery matches
with other evidence of diurnal properties being discovered, which alludes to victims shut-
ting down their computers at night. Geographic regions are important as well since they
can host market segments for vulnerable software including special editions of operating
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systems. This means that depending on the time zone of the localized botnet, better pre-
dictions can be made as to when an attack might occur. It also becomes easier to priority
rank malware based on time-of-release so that resources can be devoted to help stop faster
spreading botnets. While the time zones and geographic regions of botnets are helpful,
converting network addresses into these values is difficult with few resources to help. For
this reason, previous models have not incorporated time and region. With larger popula-
tions of computers now available, it is necessary to consider such properties like time and
region as diurnal models show that, based on these factors, the spreading rate of malware
is affected. Dagon et al. also note that deriving the diurnal shaping function for each time
zone requires a lot of data. It is unlikely botmasters will optimize malware release times
to allow for the quickest spreading of their malware. This information allows for quicker
response times from defenders identifying suspicious behavior.

2.2.3 Flow Detection of P2P Botnets

In 2012, Jiang and Shao [13] examined the evolution of botnet structures from com-
mand and control topologies to a peer-to-peer setup. They identified the challenges of de-
tecting a P2P botnet including the traffic flow, encrypted communication, stealthy launches
of malicious activities and communication through random ports. As a way to overcome
these challenges, Jiang and Shao proposed a three step solution. The first step consisted
of finding the intrinsic characteristics of C&C communication, or flow dependency, in P2P
bots. Step two is a time-based flow dependency extraction algorithm. The final step is a
custom technique to detect a P2P botnet, based on its flow dependency. This means that
external tools such as honeypots are not needed for detection since only the flow depen-
dencies of the communication traffic is needed. A honeypot is a decoy system configured
to counteract or gather information about attackers on a network. Most P2P botnets “pull”
new commands from the botmaster by exchanging messages with peers on its local peer
list. These messages work as keep-alive signals or they can be new commands or updates
from the botmaster. Since bots typically don’t have the full list of peer nodes, they com-
municate only with the ones they’re aware of.

The flow of C&C traffic shows which peers rely on each other for information. Com-
mon hosts in these traffic flow dependencies are inspected and usually identified as bots.
Flows are used to represent the communication instead of raw packet information because
they require less storage and computation space. The information for a flow has six parts
including a five-tuple containing the IP addresses and ports of the source and destination,
as well as the protocol being used, the arrival time of the first packet, the arrival time of the
last packet, the total time of the flow which is the difference between the two arrival times,
the number of packets total in the flow and the number of bytes in the flow, from the sum of
the bytes from all of the packets. Once the flows are generated, they are run through a filter
to identify suspicious or malicious traffic from standard traffic. The filter is not necessary
for detection purposes, but it helps to reduce the amount of information and noise captured
for more efficient detection.

To filter the traffic, Jiang and Shao look for three things: flows with small bytes, flows
with a small length and flows that occur frequently. C&C traffic from a botnet typically
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consists of small packets that occur in short bursts of time and they show up frequently
from the bots constantly communicating between peers. To reduce the amount of captured
data and increase performance, only flows that start, after a short period of time, from the
originally observed flow are analyzed. This is because flows are dependent on other re-
cently occurring flows. Since flows depend on each other, the number of times that each
flow from a bot occurs in the observed traffic should be equal. A scoring system is used to
determine if pairs of flows are dependent upon each other. A large sample size is used to
help reduce the amount of false positives from coincidental pairs. Two-level dependencies
or pairs exist in normal traffic, such as between a client machine and a Domain Name Sys-
tem (DNS) server or a web server. This implies that multi-level flow dependency extraction
should be used since P2P botnets usually have more than just two peers. Once dependen-
cies are identified then clusters can be constructed. Botnets tend to have dense clusters as
bots collaborate. This approach yields a high detection rate with few false positives.

2.3 Intrusion Detection System Alert Correlation

R. Sadoddin and A. Ghorbani [19] worked to conduct a survey that evaluates frame-
works which correlate low level IDS alerts and matches them to higher level attack pat-
terns. They state that the majority of techniques utilize either machine-learning based or
data-mining based methods to aggregate alerts from different sources with varying levels
of confidence. Frameworks typically employ several similar components to accomplish the
task of correlating alerts. These components include normalization, aggregation, correla-
tion, false alert reduction, attack strategy analysis and prioritization.

Normalization is the process in which alerts and messages can be exchanged between
different IDS components to allow for inter-operability. Each IDS uses its own naming
convention which makes it difficult to identify the specific information received from each
sensor. Many standards have been proposed, but none have been adopted as an official
standard for displaying and sending alert information. Aggregation is the act of bringing
all these different alerts together once they have been normalized. Clustering techniques
have been used to group alerts of similar types. These techniques are not perfect because
each dataset is better distinguished with a different set of features. Identifying the best set of
features is a difficult process without previously analyzing the data being used. Attributes
are important to consider since different attacks have unique attributes that they rely upon.
Other frameworks take this idea into account and work to cluster alerts with similarities in
their data fields. Machine-learning and data-mining techniques are used to determine the
similarity of features between alerts. Once similar alerts are grouped together, they can
then be correlated with attack patterns.

Correlation is done between groups to find causal relationships that enable researchers
to reconstruct attack scenarios. Sadoddin et al. describe four types of correlation tech-
niques: scenario-based, rule-based, statistical and temporal. Scenario-based correlation
is done by looking to see if alerts can directly connect with each other to construct an
attack scenario. This can be accomplished with machine-learning methods and other pat-
tern recognition algorithms. Rule-based correlation looks at the rules used to construct the



10

alerts. The example given in [19] details that if alert ‘A’ prepares for alert ‘B’ within its
conditionals, then those two alerts are said to be correlated. The limitation with these two
methods is that each requires an extensive knowledgebase to be effective. Typically these
have to be hardcoded into the application or taught with machine-learning techniques. Sta-
tistical approaches correlate two alerts if one alert type is able to cause any of the other
arbitrary alert types. Conditional probability is then used to check how an alert type is
related to the parent alert types which cause ‘A’. This causal relationship provides insight
into which sequence of events may have generated alert ‘A’, which then caused alert ‘B’ to
trigger and so on. Temporal correlation correlates two alerts based on how they influence
each other over time. If alert ‘A’ can provide significant information regarding alert ‘B’
over time, then it is likely that alert ‘A’ caused alert ‘B’. This method makes assumptions
that all alerts should be temporally related, which may cause missed correlations between
alerts that experience random time delays when being generated.

Once alerts are correlated, false alert reduction takes place to improve the reliability
of the data. In other words, this component works to distinguish between false positive
alerts and true alerts that were generated. One approach is to use frequent episode rules.
These rules are generated with machine-learning methods using data that contains no at-
tack traffic. While operating in a network, if a sequence of alerts is found that matches
a frequent episode rule, then it can be said with adequate confidence that these alerts are
false positives. Confidence fusion is another method used to reduce false alerts by esti-
mating the overall confidence of alerts based on evidence from low-level sensors. This is
accomplished by evaluating an aggregate of confidence levels from low-level sensors with
a predefined threshold value that determines if a final alert should be triggered. A rea-
soning framework was also developed to fuse confidence levels to determine which alerts
were false positives. In this work, an alert-attribute graph is constructed where pre and post
condition relationships between alerts are modeled. Conditional probability was used with
each alert-attribute pair to estimate the confidence that an alert was not generated under
false pretenses. A downside to these works is that a distinction between alerts related to an
attacker’s actions and those issued as security events is not always clear. The concept of
Fuzzy Cognitive Maps (FCM) was introduced to combat this weakness. The idea behind
FCMs was that there are cause events and effect events which represent attack behaviors
and security incidents in the system or network respectively. This allows FCMs to model
attack scenarios using fuzzy values because different events are more likely to occur on
some hosts rather than others. The overall impact that an incident is likely to have on a
given host is used to determine the level of confidence in an alert. For the FCM framework,
this level of confidence is defined by the concept of Incident Alert Levels (IAL) which
varies depending on the fuzzy values of events and their impacts.

Once the alerts have been correlated and pruned of false positives, the data is analyzed
to identify the attack strategies. Finding a complete attack strategy is often difficult be-
cause sensors may miss pieces of an attack due to false negatives. Higher level correlation
techniques are used to bridge the gap between different isolated attack strategies to deter-
mine if they are unique attacks or if they are pieces of a larger attack. Similar to strategies
employed to correlate the lower level alerts, the attack strategies are analyzed for patterns
that will identify trends and relationships in the data. The knowledge base of the system
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being used is typically relied on during this process to identify patterns and relationships.
The final step is to prioritize the processed alerts based on their severity. Alert severity
is based on a number of facets including the network topology, security policy and net-
work services. Previous works, as stated in [19], have worked to rank alerts based on these
attributes. Alerts are grouped together based on the ranks assigned to them to illustrate
incidents upon the network which allow security analysts to better judge counter measures
and precautions for the incidents identified.

Valeur et al. [21] have developed a framework and corresponding application that de-
scribes a general alert correlation model based on a set of comprehensive components. The
work in [21] follows the same basic steps that were outlined in [19] with a few minor ad-
justments. Their framework adds steps to the process where after data is normalized and
aggregated, the alerts are then verified, reconstructed into an attack session, combined to
evaluate multi-step correlation attacks, analyzed for overall impact and finally prioritized as
in other frameworks. In these minor adjustments, the developers took extra steps to allow
for the evaluation of broader, higher-level based attack patterns such as multiple attacks
from one source or attacks that took place with multiple steps. During the reconstruction
process, attack threads are built to refer to multiple attacks launched by one attacker that
may be testing for different exploits available on a target machine. This process occurs
while alerts are being merged and grouped, based on source and target attributes. Multi-
step correlation evaluates the data in search of high-level attack patterns, where multiple
steps were taken by an attacker to find an exploit, break into a target and then continue to
perform malicious activities on this target device. The framework in [21] looks at two spe-
cific scenarios for multi-step attacks, which are recon-break in-escalate and island-hopping.
The first scenario looks for attackers that identify vulnerabilities in a system, break into the
system and then escalate their privileges to take over the system. In the second scenario, an
attacker breaks into a target to take over other target machines on the network. These sce-
narios demonstrated the effectiveness of each comprehensive component in the framework
based on the data being used. Together, these components create an effective correlation
system.

2.4 Capture the Flag Data

Capture the flag games are held by many organizations every year. These competitions
offer unique opportunities to both collect data for research and an environment to prac-
tice and learn techniques to protect networks and services. N. Childers et al. [3] discuss
the benefits of the international capture the flag (iCTF) events hosted by the University of
California, Santa Barbara (UCSB). These games use a newer premise that provides a more
realistic scenario than generic CTF games. These scenarios ranged from creating botnets to
security “treasure hunts”, where teams focused more on scenarios that real hackers would
exploit, in contrast with just attacking other teams and defending a host machine for points.
This premise leveled the playing field, as novices and experienced players alike had to start
from “square 1” to understand the rules and complete the objectives. Aside from the sce-
nario presented to the participants, there are strict time and resource constraints that put
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those involved in a more realistic setting to operate within. This not only provides a great
education opportunity for those involved, but it also yields a solid source of data for re-
searchers to work with.

In the case of their 2009 scenario, the UCSB presented a case called “Know Thy En-
emy” which tasked those present with attacking simulated users with a drive-by-download
attack and installing malware that made them part of a botnet. If teams were able to cap-
ture a user, they were required to have them report to a server, known as the Mothership,
through an IRC channel to simulate actual traffic found when people in the real world are
made to be part of a botnet. Since users had to follow strict guidelines to score points,
it can be reasonably estimated which attack behaviors are present in the traffic captures.
This does not serve as the ground truth of exactly what attacks were used, but it is much
more reliable than data captured on the boundary of a given network. When using network
boundary captures, it is extremely difficult to know which attack types, if any, are present
in the data.

G. Vigna [22] interviewed Carnegie Melon undergrad student, Brian Pak, about his
experiences with the 2010 iCTF game and how beneficial it was to participate in it. Pak
discussed the amount of preparation required by him and his team to truly understand the
playing field to take full advantage of the situation. By analyzing a publicly available Snort
filter, provided by the game designers, and examining services that would be available,
Pak’s team was able to find numerous vulnerabilities that they could exploit. These ex-
ploits allowed them to score points efficiently without being caught by the sensors used
by the in-game resources, as well as to install backdoors in the machines used by other
participants. With access to other teams, they could corrupt their scripts and services to
prevent them from scoring points. Pak’s experiences with the games highlights just how
complex iCTF scenarios are and how much one can learn from them. They also bring to
light the amount of time and energy that is needed to develop each year’s game. The survey
described in [19] highlights the challenges regarding the difficulties by those responsible
for designing and implementing the iCTF games each year. However, the benefits that each
game brings with it far outpace the difficulties that arise from the design process.
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Chapter 3

Methodology

Strapp [20] previously worked to develop a framework which utilized the sparse infor-
mation available in packet headers to synthesize representations of attack behaviors. The
framework from [20] was able to successfully generate empirical attack models and seg-
ment irrelevant actors, but it contained limitations. These limitations were related to both
the algorithm as well as the usability of the tool that implements the framework. Updating
and fixing these areas allows for a framework and software utility that provides a more ro-
bust experience and more accurate characterization of observed behaviors. Changes made
to the tool and corresponding framework include new features for the classification system.
Revisions were also made to the model introduction phase and expectation maximization
phase as well as bug fixes to prevent the program from terminating unexpectedly. Figure
3.1 below describes the overall flow of the system to process data.

Figure 3.1: Overview of Algorithm and Revisions
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3.1 Functionality Updates

3.1.1 MySQL Databases

Originally, this tool was developed to work with data from the Cooperative Associa-
tion for Internet Data Analysis (CAIDA) group which is stored in a My Structured Query
Language (MySQL) database. Connections made to MySQL need to be explicitly closed
when not in use. If this is not done, the MySQL daemon, mysqld, keeps the connection
open to listen for incoming traffic from the source. Due to the limited resources available
on a given machine, the number of connections allowed is limited. If too many connec-
tions are opened at the same time, then no new connections can be made to the database.
Connections to MySQL, through the SQLAlchemy interface for Python, were not properly
cleaned up and closed in situations when the tool encountered an error and crashed. Ad-
ditional checks were added such that in the event of a crash, connections to MySQL were
properly cleaned up. Figure 3.2 below shows an example of how the tool cleans up after
itself when an exception occurs.

Figure 3.2: MySQL Connections Closed After Exception

Once the tool could properly clean up connections following errors caused during de-
velopment, a switch was added to allow for easier transitions between MySQL databases
holding different datasets. Originally, only packet captures from a database containing
CAIDA data was available for use. Support was added such that the name of a MySQL
database on the local machine could be passed in as a parameter from the main method
to pull data from that database. This allows for comparisons between newer and older
datasets to be made for performance measurements as well as easier expansions to include
new databases in the future.

The use of different datasets allows for testing to be done on a wider array of traffic
behaviors collected from different sources and network topologies. While darknet traffic
from CAIDA is very useful, it is impossible to know what type of traffic behaviors to expect
and at what times they will be available. With other datasets, such as iCTF, it is possible to
estimate what types of behaviors are available and when to look for them. This is because
capture the flag events are monitored and data is collected in a more controlled environment
[3].

Since capture the flag events offer more opportunities to test the tool against a wider
variety of traffic behaviors, a database containing packet level data from a capture the flag
event was created. Specifically, data from the International Capture the Flag event (iCTF)
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held in the University of California, Santa Barbara (UCSB) was used once the database
switch was implemented. This led to the discovery of an error within one of the graph
related features. When calculating the position of a node within the graph, a copy of the
current graph structure is maintained in a separate part of the framework. The new data
revealed that there were cases in which a node could be removed from one version of the
graph, but not the other, which caused a path error to occur. Figure 3.3 below shows an
example of a node that should have been removed, but was being used as part of a path to
the target of interest.

Figure 3.3: Example of Node to be Removed

When a model is calculated to be irrelevant compared with the rest of the traffic, it is
removed from calculation and shown as a segmented line in the GUI. In this case, the line
is segmented, yet the node shown in the middle, 167772673, still existed in a copy of the
network graph. This caused the program to attempt to find a shortest path from this node,
which does not exist, to the target of interest. To remedy this situation, additional checks
were implemented that detected situations similar to this. When this type of situation oc-
curs, the paths that this node might have to any other disconnected nodes are ignored. The
intuition behind this is that if a node is not connected to the target of interest, then it is not a
relevant node and should no longer contribute path distances to be used during calculations.
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3.1.2 Feature and Graph Plots

Feature plots and network graph plots are an important means for the tool to convey
information to the user. Third party libraries are used to quickly and efficiently interpret the
data from the tool and draw it in more convenient form. Calls to these third party utilities
require that data be sent in a specific arrangement so plots and graphs can be properly
formatted when drawn. In certain situations, data for a given plot may not be available yet.
In this scenario, the tool would attempt to include a malformed list or missing data into a
plot, which would cause the tool to cease functioning.

Checks were implemented along with standard try-catch blocks in Python to handle
these erroneous situations gracefully. In scenarios where information may be missing, that
particular plot is skipped such that other plots with valid information can be produced. If
the graph cannot be properly updated, its update is canceled until the next time it needs
to be redrawn. During experimentation, this did not occur often and the tool was able to
recover quickly in the rare chance that a graph update failed.

In a similar incident, there was an error in the graphical user interface (GUI) where the
user would change views to see the current feature distributions of the models in the graph
and the information would not generate. Figure 3.4 below shows what the user would see
in this situation. Figure 3.5 below shows the feature distribution window once the error was
identified and fixed. The tool relies on different identifier strings to track which modeling
strategy the features being displayed belong to. For some of these strategies, the identifier
was malformed causing the information not to be displayed. Once the tool could properly
identify where the features belonged, the display was able to function normally.

Figure 3.4: Feature Display Tab Not Showing Information
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Figure 3.5: Feature Display Tab Fixed

3.1.3 Environment Changes

The Python scripting language is known for fast development time and for being easy
to learn and use. These qualities make it an ideal choice for prototyping new software
projects. As these prototypes are innovated and improved, the flaws with Python’s inner
workings tend to shine through more. When developing on Linux based machines, some
components of the operating system rely on specific versions of the Python language being
available to correctly function. This potentially limits the development of a project depend-
ing on what versions the particular operating system supports and which version of Python
the project was written in. It is well known that newer versions of Python in the 3.X range
are not compatible with versions in the 2.X or lower range.

The Darknet Analysis framework and corresponding software tool were developed us-
ing Python 2.7.5 on the Ubuntu operating system. Ubuntu is based on the Debian operating
system which supports Python 2.7. While working with the framework and tool, the work-
ing environment with Ubuntu needed to be changed to Red Hat Enterprise Linux (RHEL)
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due to a licensing restriction. While RHEL uses a similar kernel to operate, it only supports
up to Python 2.6.6 or Python 3.X. Unfortunately, the third party software that the tool relies
on uses specific versions of the different libraries to function. Reverting to the library that
was written for version 2.6.6 of Python led to unforeseen compatibility issues in terms of
missing functionality or deprecated library calls.

To restore the functionality required from these missing libraries, a virtual environment
was created. Virtualenv is a tool developed to isolate Python environments such that pack-
ages and tools can be installed without effecting other virtual environments or the version
needed by the operating system. Fortunately, virtualenv works with versions of Python that
are 2.6+ and 3.X which encompasses the version used for the tool. Using an isolated en-
vironment with Python 2.7, the necessary libraries, at the correct versions, were installed.
This restored most of the available features in the framework except for the plotting tools
that rely on threaded Tcl functions. Plots can still be generated on an Ubuntu machine, but
cause the tool to crash in a RHEL environment due to limited stack space. The core of the
tool and framework can still function in a RHEL environment, but a different environment
is necessary to see a visualization of the feature space of a given model.

To work around this, a Python script was developed based on work done by [20] to
generate parallel coordinate plots. These plots include multiple y-axis bars, one for each
feature to be represented. The lines that connect between each feature bar aim to illustrate
the diversity of a given feature. Figure 3.6 below shows an example for how these plots are
used to represent the feature space of a given model.

Figure 3.6: Example Parallel Coordinate Plot
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From this example, the protocol of all samples in this model are the same since there
is only one outgoing line from the ’Protocol’ axis. There is a lot of diversity seen in
the destination ports of the samples which is seen by the spread of values throughout the
’Destination Port’ axis. In this case, it can be observed that the destination port entropy
for this model is clearly stochastic while the source port entropy is deterministic. This is
determined given that only one point on the ’Source Port’ axis connects to all other points
in the ’Destination Port’ axis. Since the current working environment does not support the
creation of these plots within the GUI of the tool, they are generated following the execution
of the tool on a dataset based on files created during runtime. This ensures that the data
is available for analysis regardless of the working environment the tool and framework are
used in.

3.2 Algorithmic Changes

3.2.1 New Observables

The responsibility of a network is to pass packets containing data between different
machines that are connected. While packets are the main form of observable data that
can be analyzed to determine malicious behaviors, other forms of data and metadata exist
from sensors and tools that help to monitor these networks. Intrusion Detection Systems
(IDSs), such as Snort, monitor network traffic and search for packets that match known
configurations of malicious activities. When an IDS finds a packet that matches a malicious
action, an alert is produced that flags the packet and shows what malicious action it believes
is being performed. These alerts are saved to log files that can be reviewed and analyzed by
a system administrator or a network analyst. Figure 3.7 below shows an example of how
the alert information from Snort is stored. Different formats are available, but the Snort fast
alert style is commonly used to store this information.

Figure 3.7: Example of Snort Alert File
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Figure 3.8: Example of Bro Log

This information can be used to further describe traffic behavior observed on a network.
An alert, depending on the IDS that produced it, contains additional information like the
string identifying the alert type, the classification of the alert and a session number or iden-
tification. Unfortunately, the only consistent information between different IDS files is the
packet that triggered the alert and the string describing the action matched. It is important
to note that the different IDS sources are used strictly to accommodate varying versions
of metadata, not to compare the performance from utilizing different intrusion detection
systems. Figure 3.8 above shows a log file generated from the Bro IDS. The Bro system
produces several various log files while processing data. Each file contains different infor-
mation about the data such as the HTTP log describing all HTTP based traffic seen and the
weird log containing descriptions about abnormal patterns in the traffic. The format of the
file and the information available is much different than what is given in Figure 3.7. To
maintain consistency between different IDS metadata sources, the alert strings are encap-
sulated with the packet level data that generated them to create a new form of observable
information. In the dataset utilized, packets that generated alerts were filtered out of the
packet capture files. When an alert file is specified, the tool will now reconstruct the traffic
stream chronologically from both input sources. With the data reassembled, the overall
account of behaviors that transpired on the network can be better observed.

In the original tool, packet captures were the only means available to analyze the traffic
patterns related to the target of interest. MySQL was the main mechanism of retrieving and
storing information pertaining to a particular set of data in the original tool. While MySQL
provides an easy means to organize and store data, there is overhead associated with inter-
facing with the database and querying the tables stored within to retrieve data. Changing
or updating information held in a database can be a slow process as all entries within the
table being changed have to be altered to the desired format. Instead of utilizing MySQL to
store alert data, the raw output files were instead processed into a comma separated value
format (CSV) which has native support within Python. Figure 3.9 and Figure 3.10 below
demonstrate the more unified representation of the data once it has been processed from its
raw form. Information that is not present, either because it was not captured or not avail-
able within the given file, is represented as a blank space. In particular, the Bro Weird Log,
by default, does not store the protocol of the packet it filtered while the Snort file does not
store the year the alert was generated. The year of an alert can be recovered by comparing
to the date that the packet captures in the same input stream.
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Figure 3.9: Bro Log Processed into a CSV File

Figure 3.10: Snort Alerts Processed into a CSV File

Using built-in tools allow for quicker file operations and better portability between dif-
ferent working environments. Interfacing with a MySQL database requires the use of the
SQLAlchemy application programming interface (API) within the framework. When us-
ing third party libraries, different release versions may not necessarily be available for each
potential working environment. Interfacing with these additional libraries requires more
complex configuration software and increased error handling. This increase in complex-
ity is needed to prevent the program from terminating unexpectedly due to incidents such
as a disconnect from the database software employed. Following the implementation of
these modifications to the input data path, the framework is now scalable to handle large
volumes of continuous data. Figure 3.11 below summarizes the updates made to the data
input stream that is fed into the framework for processing. The highlighted area within the
figure represents the changes made to the process flow of the system.

Figure 3.11: Overview of Processing Flow
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3.2.2 New Features

Feature selection for a machine learning framework is important for achieving the best
possible performance. In a supervised machine learning setting, the data has labels that can
help determine which features are relevant. In an unsupervised system, such as the darknet
analysis framework, feature selection is particularly difficult as there are no labels to help
determine strong features to describe the data. Dy et al. in [9] discuss the importance of
finding strong features to use for unsupervised machine learning tools. Intuitively, all of the
information available seems appropriate to use to try to describe the data. Unfortunately,
this notion is not always correct as features may be redundant or irrelevant to the dataset.
If a feature is irrelevant, then it may be difficult to distinguish the different clusters in a
dataset as the data may overlap in the feature space. A redundant feature is one that does
not add any value to the system. An example of this is when multiple clusters can be easily
distinguished by one feature while other features fail to describe new dimensions in the
feature space. It is important to identify unique dimensions in the feature space that add
value to the classification system.

With the inclusion of a secondary source of information to the framework, the orig-
inal definition of an attack model had to be updated. As defined by Strapp in [20], an
attack model consists of a collection of probability distributions based on relevant features
extracted from the traffic being processed. Features common to both datasets and those
available in the new data source were examined to determine which were apt to describe all
potential traffic on a network without overlapping information described by the previous
features. The new feature distributions selected from both the packet header information
as well as alert file information are Absolute Time, Time Intensity and Alert Entropy. The
two temporal features, Absolute Time and Time Intensity, are common to both sources of
data since a time stamp is provided with each packet and alert value. Alert Entropy is spe-
cific to data extracted from alert files. As discussed earlier, the alert string is used as the
basis for this feature as it is a consistent piece of information amongst different IDS files.
Temporal features were not previously utilized by the system due to the focus being on
spatial aspects. This makes them strong candidates as newly included features. The alert
information is a source of new data not previously implemented by the system reducing the
potential redundancy of an entropy based feature. Table 3.1 below summarizes the previ-
ously implemented features of the original framework. These features were derived from
packet header information from data provided by CAIDA. Table 3.2 below provides a brief
overview of the newly implemented features based on the new iCTF2008 dataset.
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Table 3.1: Previously Implemented Features [20]
Feature Description Equation

Protocol
A simple, discrete feature that represents
the communication method between two

nodes.
P (P) =

∑N
i=1 IP(xi)

N

ICMP Type

A discrete feature which represents
simple packets that may be maliciously
performing information reconnaissance

to identify a target and learn about
potential weaknesses.

P (I) =
∑N

i=1 II(xi)

N

Port
Entropy

Examines the source and destination
ports in a packet to see if they are

deterministic or stochastic. Steady use of
a port usually means a service under
attack while use of varying ports may

indicate reconnaissance actions.

P (P) = P (S)+

P (P|D) ∗ P (D)

Graph
Position

How close a particular node is to other
nodes with a high probability of being in
a malicious path within the same attack

behavior model.

GP (i) =
∑
j∈G

P (M |P 0
i,j)P (M |P−1

i,j )∑
k∈Pi,j

1
P (M |Pk

i,j)

The first entry in Table 3.1 above describes the equation used to calculate the probability
of seeing protocol P in a given attack model. This is calculated with the indicator function
IP to count the percentage of protocol P in a given model M . The percentage is based
on the total number of samples observed N and each individual element is described by
xi. Entry two uses the same concept to calculate the probability that a given ICMP Type I
exists within a model. The port entropy of a model is given in entry three which describes
the simplified equation used to compute the probability of a port value P . Given both the
percentage of the port number and the “randomness” of all port values seen in the model
the probability of seeing any given value P can be computed. The entropy is broken up
into the probability of the values being stochastic or P (S) and the probability that it is
deterministic P (D). These values are found by statistical bootstrapping with replacement
and counting the number of deterministic values. The probability of a port value given that
the ports within the model vary or P (M |S) is not calculated because the given port does
not matter if they are being chosen randomly. To find the probability of the model given
that it is deterministic or P (M |D) is found in the same manner of the previous features,
finding the percentage of the value within the model M .

The final row in the table describes the formula used to calculate the position of a given
node i in the overall attack social graph. Finding the graph position is based on the concept
of closeness centrality or how close a node is to any other given node. The numerator
describes the weight of the starting hop P (M |P 0

i,j) and ending hop P (M |P−1
i,j ) within the
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total path from node i to node j given as Pi,j . This value will be higher if the path between
the two nodes stays within a given model M . The denominator represents the distance
calculation of a given hop P (M |P k

i,j) within the total path. This represents the inverse
harmonic mean of distances from node i to all other nodes within the graph G. Nodes that
are part of the same attack model with higher probability will contribute more towards the
position calculation than those that are further away in the graph or span multiple models.

Table 3.2: Newly Implemented Features
Feature Description Equation

Absolute
Time

The difference of the absolute date and
time between the current packet and the
one being compared against. This can

represent relevant actors who are
working together within a certain

window of time.

dist. = |tcurrent − tprevious|

P (tcurrent) =
window − dist.

window

Time
Intensity

Looks at the amount of activity observed
between two machines in terms of

packets per second. This rate is
recalculated any time communication

between the same two sources is
observed.

P (R) =
∑N

i=1 IR(xi)

N

IDS Alert
Entropy

An IDS produces alerts that can be
stored in log files. These alerts are

typically generated when an observed
packet matches certain characteristics

defined by the rule set used by the IDS.
The entropy of these alert types is used
to identify different patterns in observed

traffic behavior.

P (A) = P (S)+

P (A|D) ∗ P (D)

3.2.2.1 Absolute Time

Absolute Time is a continuous feature that determines the probability of an observation
based on the date and the time that it was captured. The intuition for using the date and
time comes from Dagon et al. in [5] who studied the propagation of botnets based on time
zone information. They observed that within a given botnet, the zombie host machines re-
sponsible for carrying out malicious activities changed throughout the day. In geographic
locations where infected users were powering down their machines for the day, the amount
of activity would decline. Traffic in time zones where the day was beginning anew in-
creased as users powered on their machines. It can be concluded from this study that the
probability of a packet belonging to a given empirical behavior diminishes as the distance
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in time increases between the time the packet was captured at and the time the behavior
was first observed. The theory of dynamic time warp (DTW) was used as a basis for this
feature..

The concept of DTW was used to mathematically model this feature. Dynamic time
warping is a metric used to measure the similarity between two sequences despite vari-
ances in speed or time. Bean in [1] discussed DTW and other methods like the longest
common subsequence (LCS) algorithm as possible solutions to analyze the similarity of
different attack tracks over time. DTW can also be utilized in other domains such as signa-
ture verification. Mohammadi in [16] used this concept to match important points between
two signatures to identify legitimate and forged samples. In this case, the DTW method
was sufficient as the Euclidean distance formula is employed to calculate the cost, or dis-
tance, between any two points in the tracks being compared.

A matrix describing the distance between every possible set of points in the two tracks
is created using the Euclidean distance formula (3.1) below. In the equation, ai represents
an element in track a to be compared with bi which represents a corresponding element
within track b.

d(a, b) =

√√√√ N∑
i=1

(ai − bi)2 (3.1)

Once the matrix of costs is calculated, a continuous path, or warping path, is constructed
from the starting point (1, 1) to the opposite corner of the matrix (n,m). The optimal
warped path is one that minimizes the distance between all shared points between the tracks
being analyzed. Equation (3.2) below, as stated by [1], describes the methodology behind
the algorithm to find the minimal warping path. Essentially, the dynamic time warping
between a sequence A and a sequence B is given by the minimum path w where wi is
the ith element in the warping path being considered and K is the normalization factor to
account for sequences of different lengths [1].

DTW (A,B) = min w


√∑K

i=1wi

K
(3.2)

With this feature, the similarity between time stamps of packets is not helpful in deter-
mining how likely a given packet is to be part of an attack behavior. Instead, the behavior
model that has the minimal distance in time to the packet being evaluated is the most likely
behavior that characterizes the packet. Revisiting the Euclidean distance formula given by
(3.1), the values of a and b would become the time of the current packet tcurrent and the
time of the most recent packet to be classified with the behavioral model being compared
tτ . Since the only dimension being investigated is time, the output of Equation (3.1) be-
comes the absolute value of the difference in time between two packets. Equation (3.3)
below represents the revised mathematical representation of the absolute distance in time
between two packets.

d(tcurrent, tτ ) = |tcurrent − tτ | (3.3)
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The distance in time is not enough by itself to describe a packet’s likelihood of being
part of an attack behavioral model. To measure the probability that a packet belongs to
a specific behavior, a relevancy window needs to be predefined. This window in time
is different for each dataset used and values that fall outside of this window have zero
probability for belonging to a given model. Given a frame of reference, the value calculated
by (3.3) can be divided by the value for the time window to determine the probability of
this packet belonging to a behavioral model.

Using the straight value of distance over the defined window space gives the opposite
probability of the desired value. As the distance in time increases, the probability would
increase that the packet belonged to that model. To fix this, the inverse of this value is
used to decay the probability as the distance increases. Equation (3.4) below describes the
probability equation where d is the value calculated from (3.3) and w is the value set for
the relevancy window.

P (tcurrent) = 1− d(tcurrent, tτ )

w
(3.4)

Alternatively, (3.4) can be represented as one unified fraction as seen in Equation (3.5)
below.

P (tcurrent) =
w − d(tcurrent, tτ )

w
(3.5)

With this equation, it is possible to determine the likelihood of a packet belonging to a given
attack behavioral model. The probability decays linearly as the distance increases between
the time of the current packet and the time of the packet most recently incorporated into
the attack model being evaluated.

For the iCTF2008 dataset, packets are time stamped with the UNIX epoch time they
were captured at which is measured in seconds. Since traffic was observed frequently due
to each of the teams working quickly to compromise different resources on the network, the
times of the observed packets do not show much variance. The relevancy window w chosen
for this dataset was 120 seconds. Participants would likely try many different techniques
to learn the network topology and exploit resources to capture flags during the eight hours
alloted to play the game and score points. Two minutes seemed to be a reasonable time
frame to isolate the time needed to capture fast scans and other techniques that teams might
utilize during the game.

3.2.2.2 Time Intensity

Time Intensity is a discrete feature because it can be modeled with a histogram based
on the time stamp of a packet and the edge that it traveled along. This feature represents
the rate at which packets are transmitted through an edge in the attack social graph. The
intuition behind this feature is derived from two areas. From a behavioral standpoint, some
cyber attacks take place over a large period of time and may have a lower rate of packets
per second. Other attacks may be quick and try to complete tasks within a smaller time
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frame resulting in much higher packet rates.
An example of a slow moving attack would be the SlowLoris attack. This is a type of

denial of service (DoS) attack in which a program attempts to keep as many connections
open to the victim machine as possible. This is accomplished by sending partial requests
periodically to the target machine where the request is expanded on, but never completed.
The end result is that the target machine exhausts its pool of connections preventing others
from accessing its resources. These types of attacks are also difficult to detect as the pack-
ets engaging the target often mirror legitimate traffic [6].

A smurf attack is another example of a way to cause a DoS. During a smurf attack, a
malicious user sends an Internet Control Message Protocol (ICMP) echo request to a broad-
cast domain such that all computers on the domain send ICMP echo replies. Normally, this
procedure is used by routers to test the reachability of a machine on the network. In this
case, the source address is spoofed to be the address of the target machine. By spoofing
the target machine’s address, the influx of ICMP echo reply messages will consume band-
width allocated to the victim and cause a DoS to legitimate users [14]. These two examples
demonstrate how two attacks can have the same end result, but produce drastically differ-
ent behaviors. The SlowLoris attack accomplishes a DoS through a slow consumption of
resources while a smurf attack tries to consume bandwidth by sending a large volume of
messages as quickly possible. These behaviors are distinct and should be distinguishable
based on the rate of traffic they produce, which is the intuition behind the Time Intensity
feature.

To calculate the rate of traffic per second along an edge, the time stamp, source IP ad-
dress and destination IP address are extracted from the current sample. The source and
destination IP addresses identify the edge in the network that this sample belongs to while
the time stamp is used later to calculate the rate of the edge. An edge is defined as the con-
nection between two communicating nodes where a node is the IP address of a machine. A
Python dictionary object is used to store the information for each edge. Since this feature is
relative to when the edge is first observed, each entry in the dictionary file includes the ini-
tial time the edge was created, the time of the most recently observed packet and a running
count of the total number of packets seen since the initial time. Equation (3.6) describes
how the packet rate on an edge is calculated.

EdgeRate =
PacketCount

CurrentT ime− InitialT ime+ 1
(3.6)

What this equation describes is that the larger the packet count is over the current time
window, the larger the packet rate over the edge will be. The additional 1 in the denominator
acts as an offset to prevent a divide by zero error. In many cases, it is possible to receive
multiple packets within the same second so the initial edge rate will be equal to the packet
count until the next time interval that packets are received in.

The traffic rate, or edge rate, by itself is not usable as a metric to calculate the likelihood
of a packet being part of an attack behavior. To calculate the probability, a histogram
is created representing the different rates from all of the relevant edges of a given attack
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behavior model. Since this is a discrete empirical feature, each entry in the histogram is a
discretized range of packet rates. Once the maximum rate has been determined from the
edges, the histogram is generated with buckets set to an adjustable size until the maximum
value is encapsulated within one of the discrete buckets.

The size of the buckets is adjustable, but an initial value of 5 was used as a default rate
to prevent groupings of higher traffic volumes with lower ones. The initial value proved
to be an appropriate choice as some empirical models contained multiple edges. These
edges consisted of lower rates near 1 packet per second and higher edge rates closer to 20
packets per second. Using the default value, bucket 0 contains packet rates 0 to 5 with
bucket 1 holding rates 6 to 10 and so on. The first bucket encapsulates the packet rates that
are less than 1 because they are less common than the other values, particularly with the
iCTF2008 dataset in which a large volume of traffic was observed throughout the duration
of the game.

P (R) =
∑N

i=1 IR(xi)

N
(3.7)

Once the histogram is complete, Equation (3.7) above is used to determine the probability
of the rate R for a given model. To accomplish this, Equation (3.7) counts the number
of occurrences of the edge rate R using the indicator function IR(xi) on all N edge rates
observed by the current model. The indicator function is simply used to find all occurrences
ofR within the set of all edge rates of the attack model. Another way to conceptualize this
process is the total number of edge rates in the histogram bucket thatR belongs to divided
by the total number of edge rates N in the attack model being evaluated.

3.2.2.3 Alert Entropy

Alert Entropy is another discrete feature that looks at the “randomness” or variance in
the alert values captured by the IDS within the network topology. The intuition behind this
feature is derived from Strapp in [20], Saddodin in [19] and Valeur in [21]. Work centered
around alert correlation efforts demonstrates the value of metadata from IDSs [1, 19, 21].
These values can help to provide a stronger overview of events that may have transpired on
a network. The design of the framework already allows packets, and now alert values, to be
correlated in a graphical sense by connecting behavioral models together based on having
relevant paths to the target of interest specified by the user.

Using the entropy of a feature was originally devised by [20] to calculate the probabil-
ity of a given port based on the variety of possible deterministic and stochastic behaviors.
This allows for a distinction to be made between more meaningful deterministic or “non-
random” behaviors and stochastic or “random” attack behaviors. Deterministic behaviors
can be generated from both benign and malicious traffic. In the benign case, legitimate net-
work traffic making queries to a website or other remote resource would generate behaviors
that utilize the same ports and IP addresses consistently. A malicious example of a deter-
ministic behavior would be a specific service being targeted as in a MySQL injection attack
against a target running the database software without proper protection implemented. In
the opposite case, stochastic behaviors tend to better describe a larger variety of malicious
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actions. If an attack were to scan available ports on a victim machine, the variation of the
destination ports would appear to be stochastic as no particular service is being targeted.

Combining the idea of feature entropy with the newly added alert data allows for a new
metric to identify attack behaviors. Similar to the previously implemented Port Entropy
feature, alerts can describe both stochastic and deterministic actions against a target ma-
chine. Figure 3.12 below shows a sample from a Snort Alert file showing a deterministic
attack type being executed against a target machine. It can be seen that the same target is
attacked by the same source with the same attack type, as described by the alert string.

Figure 3.12: Example of Deterministic Alert Behavior

This set of alerts is consistent with buffer overflow exploits in Transmission Control
Protocol (TCP) traffic [18]. A buffer overflow attack is where an attacker will purposefully
write information beyond the defined bounds of a memory segment, or buffer, such that a
variable, pointer or return address will be changed [2]. If a remote user is successful in
changing any one of these fields, the flow of the program can be altered. An example of
this exploit would be a login program where an attacker would overrun the buffer storing
the password hash of a benign user. The attacker would then supply their password when
prompted along with additional characters followed by the hash of their password. These
extra characters will overrun the buffer used by the program and inject the hash of the
attacker’s password in the space normally reserved for storing the hash of the benign user’s
password. This would cause the program to hash the attacker’s password and compare it to
the hash injected by the buffer overflow, granting the attacker access to the target machine
[2].

Figure 3.13: Example of Stochastic Alert Behavior

Figure 3.13 above shows the opposite case seen in Figure 3.12 where the same target
machine is receiving different types of traffic from the same malicious host. Even though
the same source and destination are used in this example, the ports used by the malicious
host are changing, as is the value of the alert string. Since Snort Alerts provide a classi-
fication string to help organize the alerts, it is obvious that the malicious user is looking
to exploit a vulnerable web application. To accomplish this, they are employing several
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different techniques to try to gain access to the target machine through this application as
described by the alert strings.

These examples demonstrate the validity of using the entropy of a feature as originally
proposed by [20]. The same intuition that was applied to ports from packet headers can
be applied to the alert strings found within the files generated by Snort. Since strings are
typically more difficult to process and typically require more computation time than num-
bers, the built-in hash function native to Python was used to convert each alert string into
an integer. Hashing the alert string also requires less memory to store the value making
it less taxing on system resources. Once hashed, this allows for the use of the original
port entropy equation as developed by [20] with the alert integer values as given below by
Equation (3.8).

P (A) = P (A|S)P (S) + P (A|D)P (D) (3.8)

This equation states that the probability of a given alert value is equivalent to the prob-
ability of the alert value being trigged with a stochastic behavior plus the probability of
the alert value appearing given a deterministic behavior. Statistical bootstrapping is used
to determine the value of P (D), the probability of a deterministic behavior, and the value
of P (S), the probability of a stochastic behavior [20]. Statistical bootstrapping consists of
random sampling from the total set of samples, with replacement, to determine the total
occurrences of stochastic and deterministic samples. As seen in Figure 3.13, the specific
value of the alert string is less relevant when a myriad of malicious techniques are utilized to
exploit a vulnerability in a target. This means that the probability of an alert string appear-
ing due to a stochastic behavior, P (A|S), is unimportant as any value is equally probable
because each observation is treated as independent and identically distributed (i.i.d.) by the
classifier. As this observation matches that of the Port Entropy feature, it is appropriate to
use the reduced form of Equation (3.8).

P (A) = P (S) + P (A|D)P (D) (3.9)

Equation (3.9) above illustrates the reduced equation used to represent the Alert Entropy
feature.

3.2.3 Revision of the Model Introduction Strategy

The role of the model introduction strategy is very important towards the overall func-
tionality of the darknet analysis framework. This portion of the framework is responsible
for judging when a new empirical attack model is necessary. Originally, the creation of new
empirical models was based on an arbitrary threshold set in relation to the graph efficiency
of the generic model. Graph efficiency is a measurement of the closeness of the nodes in
a graph. The closer the nodes are to each other, the more efficient the graph. To relate the
graph efficiency value to the different attack models within the overall attack social graph,



31

Strapp [20] developed Equation (3.10) below.

E(GM) =
∑

i 6=j∈GM

P (M |P0
i,j)P (M |P−1

i,j )∑
k∈Pi,j

1
P (M |Pk

i,j)

(3.10)

This equation examines the distance between all possible pairs of nodes within the
attack social graph. The distance is defined as the inverse probability of the attack model
M , currently being processed [20]. This calculation of the distance between pairs of nodes
is represented by the denominator in (3.10) above. The contribution of the distance between
the nodes i and j is given by the numerator in (3.10). The first term, P (M |P0

i,j), is the
probability of the attack model at the starting edge of the path between the nodes and
P (M |P−1

i,j ) is the probability of the model at the terminal edge of the path. Fundamentally,
the efficiency of the attack social graph given an attack behavior model is the sum of the
contributions of a given node pair (i, j) divided by the total weight of the full path between
(i, j).

Conceptually, the use of the graph efficiency of the generic model makes sense to use as
once the unclassified samples are clustered tightly enough, a new model will be generated
to represent the feature space of these samples. However, if the new samples never cluster
tightly enough due to the feature space being too spread out, the defined threshold would
never be reached and no empirical model would ever be generated. The feature space used
cannot be easily adjusted to counter this problem as each dataset would require special
tuning to properly distinguish the different behaviors that may be present. This presents a
problem as no behavior is ever defined for the user to investigate. The use of a naı̈ve model
in this case would present better performance over the ASMG methodology presented by
Strapp in [20] as all potential behaviors are represented in one model and assumed to be
collaborating.

To remedy this short coming in the darknet analysis framework, a revision was made to
the logic driving the model introduction. Instead of using a statically defined threshold to
determine when the unclassified samples are grouped tightly enough, a dynamic threshold
based both on the graphical prior and the number of observed samples was implemented.
At the start of processing, when only the generic model is available, a simple threshold
based on the number of unclassified packets is used to determine when the first empirical
model should be generated. This simple threshold waits for 10 unclassified observations to
be seen before introducing an empirical model. A value of 10 was chosen due to previous
experimental observations showing that, on average, 10 unclassified samples proved to be
sufficient in representing an initial feature space for a model.

Utilizing a simple threshold provides a means to kick-start the standard introduction
logic by providing an initial feature distribution to compare against. Once this first model
is generated, a separate set of logic takes over to judge when further empirical models
are required. This main model introduction logic employs a more complex thresholding
system to resolve when additional empirical attack models are necessary. The graphical
prior probability, given in Equation (3.11) below as defined by Strapp [20], is used in
conjunction with a larger threshold to ensure that enough evidence has been accumulated
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to reasonably conclude that an additional model should be spawned.

P (M) =
E(GM)∑

Mi∈Mall
E(GM)

(3.11)

From this formula, the graphical prior is defined as the graph efficiency of the current
attack model normalized by the sum of the graph efficiencies over the set of all current
attack models. Once the prior probability is calculated for the generic model holding the
current set of unclassified samples, it is compared against a dynamic threshold based on
the number of currently active models. If this threshold is not obtained as unclassified
samples are accrued, a secondary measure is used to ensure that if enough evidence has
been obtained, then another attack model is created. Equation (3.12) below summarizes
the algorithm now used for model introduction.

NewModel =



True if N < 1 and S ≥ SMALL THRESHOLD

True if N ≥ 1 and
(
S ≥ LARGE THRESHOLD

or
(
Prior(Generic) ≥ α ∗ 1

N+1

and S ≥ SMALL THRESHOLD
))

False otherwise

(3.12)

This formula checks the number of active empirical models N to determine which
threshold to check. When no empirical models are active, then the small threshold, shown
as SMALL THRESHOLD above, discussed earlier is used to determine when a suffi-
cient number of samples S has been collected. When at least one empirical model has been
made and is still active, the more complex threshold is used, as seen in the second case of
Equation (3.12). In this case, the two means of satisfying the overall Boolean condition are
illustrated.

The first portion ensures that if enough new evidence has been gathered, represented as
LARGE THRESHOLD, a new model will be generated to represent the feature space of
these samples. This larger threshold was set to a value of 100 to allow ample time for new
samples to be collected and properly compared against all other active empirical models.
In the second portion of this condition, the prior probability of the generic model is com-
pared against the inverse of the number of models plus 1 ( 1

N+1
). This ensures that enough

previous evidence has been observed to warrant one additional model. A discount factor
α is multiplied by this fraction. Discount factors are typically used in the financial field to
calculate the return on an investment. In this case, α is used to determine whether newer
or older evidence has a stronger influence on the model introduction. Lower values of α
emphasizes newly observed evidence over older evidence which is ideal for this system as
it continuously observes new data and needs to model the most up to date behaviors. This
dynamic threshold is used in conjunction with the original, smaller threshold to ensure that
the feature space has stabilized before being moved to a new empirical attack model. If
none of the above conditions is met, then no model is generated and processing continues
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normally.
Figure 3.14 and Figure 3.15 below illustrate the effects of these changes to the system.

Before the revisions were implemented, behaviors were not properly identified such that all
packets remain in the generic model as unclassified samples. This is shown in Figure 3.14
below. Following the revisions, using the same feature set in the classifier, the different
behaviors inherent in the attack social graph become visible as illustrated by Figure 3.15
below.

Figure 3.14: Example of ASG Before Model Introduction Revisions

Figure 3.15: Example of ASG After Model Introduction Revisions
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3.2.4 Revision to the Expectation Maximization (EM) Phase

In the case that a new model is generated, the expectation maximization (EM) algorithm
is executed. This allows each sample in the system to identify with the model that maxi-
mizes its posterior probability. Consequently, as samples enter and leave a given empirical
attack model, the feature distributions are updated to reflect the change. As samples are fit
to their maximum a posteriori (MAP) model, the models will more accurately reflect the
feature space of their samples.

The EM algorithm is used in many problem domains including signal processing and
machine learning. This algorithm is designed to find the maximum likelihood or the MAP
value estimates of the parameters used to define statistical models. Moon in [17] reviews
the EM algorithm and how it applies to the domain of signal processing. There are two
major steps that take place with this algorithm. The first step is called the expectation step
which consists of estimating the unknown variables in the system, based on the current
value of the parameters, by generating an expected log-likelihood function. Following the
expectation step is the maximization step. During the maximization step, the parameters
are updated to maximize the log-likelihood found in the expectation phase. These two steps
are iterated until the parameters converge to a constant value [17].

Following the introduction of a new model, the framework iteratively classifies all sam-
ples with the set of all active attack models which now includes the newly introduced
model. This is similar to the EM algorithm in that samples are classified to the models
which updates their feature distributions. Once the feature distributions are updated, the
classification process starts again and iterates through the two stages. This iteration is done
a finite amount of times to reduce computation time. Originally, the generic model, which
used to temporarily store unclassified packets, was included in the set of active models.
This allowed certain samples that were not as closely affiliated with the available empirical
attack models to re-associate with the generic model.

This is not ideal because all samples should always associate with the behavior model
that maximizes their posterior probability, and they should not be left unclassified. When
the EM phase of the new model processing logic executes, the generic model is no longer
included with the set of active attack models such that samples are classified only with
the available empirical models. This ensures that all samples remain classified and that all
active models best represent the feature space described by the samples currently in the
system.

3.2.5 Implementation of Data Collection Metrics

With all of the changes to the original darknet analysis framework, it is important to
measure the performance of the system and verify that the updates work as expected. Since
the system continuously reads new input to process, data must be collected regularly to
document the performance through time. To measure the confidence of the posterior prob-
ability calculated for each sample, the average MAP value, the standard deviation and the
standard error were calculated for the set of all samples currently in the system. A snapshot
of the current ASG topology and parallel coordinate plots for each active empirical model
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are also generated to illustrate how the models and network change with time. The average
MAP value is calculated by Equation (3.13) below where xs is the MAP value of sample s
and N is the total number of samples.

µ =

∑
si∈Sall

xsi
N

(3.13)

The standard deviation is also calculated to represent the amount of variation that exists
from the average value µ. Equation (3.14) below shows how the standard deviation is
calculated.

σ =

√
1

N

∑
si∈Sall

(xsi − µ)2 (3.14)

Once the mean and standard deviation have been calculated, the standard error as given
by (3.15) below is calculated and used as a means to measure the confidence. The standard
error represents the variance in the estimate of the population mean. Since only a finite
amount of samples can be stored by the system at any given time, older samples get replaced
by newer samples as they are observed by the tool. This means that the value calculated
by (3.13) represents a sample mean to the total population of samples collected. This
set of measurements is done for both active packets used by the attack models as well as
segmented packets. The information is kept for the segmented values to demonstrate that
these packets were indeed meant to be removed and that they no longer fit with any active
behaviors in the ASG.

SEx̄ =
σ√
N

(3.15)

Two data collection points were chosen to document how the system performs while
processing data. The first area chosen was within the logic that processes a newly observed
packet. An adjustable variable determines how often data is collected. Originally, a col-
lection occurred every 10 observations to maintain a high resolution track of the changes
occurring in the system. This value was chosen due to previous observations showing that,
on average, 10 samples were needed to create a new empirical attack model. A resolution
of this size allowed for important changes of the ASG to be documented including the gen-
eration of new models. Unfortunately, with such a high resolution, system resources would
be fully utilized which caused some experiments to fail. The resolution was changed to
be collected after every 100 observations to work around this issue. Even with fewer data
points collected, sufficient information was collected at this resolution to accurately depict
system performance.

The second data collection point was placed immediately after the EM phase. This was
done to visualize the changes to the ASG topology after all samples and attack models had
converged to their optimal models and feature distributions respectively. Once these two
data collection points were implemented along with some helper scripts written in Python,
data collection from the tool was done autonomously. While the tool is running, the met-
rics discussed earlier are being recorded along with snapshots of the ASG. Once the tool
finishes, parallel plots, CSV files and charts are generated automatically for later analysis.
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Chapter 4

Results

4.1 Design of Experiments

Traffic captures and alert information provided by the University of California, Santa
Barbara (UCSB) from their international capture the flag event in 2008 were used to mea-
sure the performance of the updated framework following the updated mechanics. This
dataset was used instead of the original Cooperative Association for Internet Data Anal-
ysis (CAIDA) because the developers of the event created additional public information
to document the network topology given to the teams as well as information describing
the participants. CAIDA data has very little, if any, documentation associated with it which
increases the difficulty of assessing the abilities of the framework. Since the original frame-
work relied on this data as a metric for performance evaluation, some new test cases utilized
this data to serve as a baseline. Ideally, the updated framework should be able to handle
the original test cases while also functioning properly with tests derived from the new data
source.

While the information included with iCTF data is in no way a ground truth about the dif-
ferent attacks and events that transpired during the game, it provides a means to judge what
traffic patterns to expect. These inferred patterns are used to measure the performance of
the graphical output of the tool. The attack social graph (ASG) topology should be able to
at least moderately match the expectations generated by the documentation associated with
the game. A lot of effort was put into designing the games and creating rules to facilitate
certain attack types while prohibiting others. DoS attacks, for instance, were strictly pro-
hibited due to the limited time and resources allotted to the game. Traffic leaving a team’s
subnetwork was also purposefully routed through a central server known as the “mainbox”
for all teams so statistics could be collected about the network usage [3].

Two key areas were focused on to validate the changes made to the original system.
The first area was in evaluating the features, both the original set of features and the newly
implemented features to see how different pairings of these sets influenced the classifica-
tion system. The second area of focus was ensuring that the tool could identify and model
the changing complexity of the ASG as defined by the incident behaviors observed over
time. These essential focus points aim to provide maximum coverage to the amendments
made to the system including changes to improve reliability and robustness to non-ideal
data configurations. The original system was designed around the CAIDA data while the
new implementation was made to be more generic allowing for diverse types of datasets
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and different sources of data to be used.

4.2 Feature Evaluation

The choice of features utilized within a machine learning environment are extremely
important. If the features used to describe the data are too weak, then samples may not
be properly classified or grouped together [9]. Incorporating the feature set described by
Strapp [20] along with the newly defined feature set, there are now seven total features
available to describe attack behaviors. Subgroups of the seven features were generated and
evaluated to determine which group best characterizes the largest variety of attack behav-
iors.

Table 4.1 below describes the groupings of the features experimented with. Theoreti-
cally, there are 27, or 128, possible combinations of these features that could be evaluated.
It would be impractical and time consuming to generate information for each combination
of the total feature set for every potential target of interest in the dataset. These groupings
are based on the most representative types of features and work to simplify the total set of
required experiments necessary.

Table 4.1: Feature Subgroups to Characterize Traffic
Feature All Critical Packet Original New Temporal Spatial

Protocol X X X X

ICMP Type X X X

Port
Entropy

X X X X

Graph
Position

X X X X

Absolute
Time

X X X

Time
Intensity

X X X X

IDS Alert
Entropy

X X

The first grouping defined as “All” represents the total feature space. Using the entire
feature space represents the naı̈ve assumption that each one is relevant and concise where
this group provides the strongest descriptions of the input data. As warned by Dy et al. in
[9], this assumption is not always accurate because features may overlap and describe the
same part of the feature space. If this happens, then the performance of the classifier may
deteriorate and not display the best representation of the data.

The “Critical” group represents the select features from the overall set that are able to
describe at least as many behaviors as the naı̈ve grouping of all features. This group serves
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to represent the diversity of the feature types without overlapping the other features in the
group. Looking at the members of the group, there is representation of an entropy feature,
a spatial feature, a temporal feature and a packet level feature. The intuition behind the
features chosen for this group is to get the best possible representation of the elements that
characterize a generic input dataset. These features were selected for this grouping once the
performance of the other feature groups was evaluated and parallel coordinate plots were
generated to visualize the feature space of those groups.

Features in the “Packet” group are all derived from information found in packet headers.
These were all defined for the original version of the darknet analysis framework as packet
level information was all that was available for processing. Since malicious users have the
ability to spoof or obfuscate their intentions by providing misleading information in the
packet headers, these features are not necessarily the strongest. Despite this disadvantage,
not all attackers spoof packet header data which can still provide vital information regarding
their intended malicious action.

The next two feature groupings are simply a measure of the performance for the original
feature set and the new feature set to see how they operate on their own. The original
feature set was tested against numerous targets of interest from the CAIDA dataset and
demonstrated strong performance [20]. This set did not include any temporal features
however, as focus was mainly put on packet header information and the novel graphical
based approach. To make up for this oversight, the temporal aspects of the input data were
utilized along with the elements found within the alert files. The essential component being
evaluated is how well the two sets of features can operate on a wider set of data given their
more specialized definitions to the datasets they were originally defined for.

The final two groupings “Temporal” and “Spatial” were inspired by the preceding two
groups. In many problem domains, the use of time and position are often employed to
measure data. Due to the availability of these features within this problem domain, it was
appropriate to evaluate the importance of these feature types. Temporal and spatial features
also provide sufficient overlap between the different sources of input data now available to
the framework as packet level information is available from each input path.

4.2.1 Determining a Baseline Measurement

Figure 4.1 below represents the baseline performance metric from the CAIDA dataset
that all other feature groups are compared against when working with CAIDA data. This
image was produced by the original tool with the features listed under the “Original” group-
ing in Table 4.1 activated. It is clear that multiple attack behaviors were identified and
distinguished from each other. This is also an example of where many of the behaviors
identified were determined to have connected with the target of interest by means of prob-
ablistic intersection and have been segmented from the model. They remain in the image
as dashed lines to maintain a visual history of the changes incident to the ASG.
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Figure 4.1: Baseline Model from CAIDA Data

Figure 4.2: Naı̈ve Model from CAIDA Data

Figure 4.2 above shows the representation of the naı̈ve model generated by the tool.
This model makes the basic assumption that traffic four hops or less away from the target
of interest is relevant. Only one empirical model is generated and all behaviors are matched
to this model regardless of how distinguished they are from each other. If a feature group
is unable to distinguish behaviors better than the naı̈ve model when the baseline model
provides a much clearer distinction, then the given set of features are not strong candidates
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for membership in the “Critical” grouping.
To test the hypothesis that the full set of features serves as a viable baseline to compare

against, all relevant features were activated and run under the same conditions that the ASG
in Figure 4.1 was generated with. A relevant feature is defined as one where information
can be extracted from the dataset being used. Since CAIDA data does not include alert
level information, the Alert Entropy feature had to be deactivated despite being a member
of the “All” feature group.

Figure 4.3: Models Generated by Relevant Group for CAIDA Data

The ASG illustrated in Figure 4.3 above was generated using the relevant features for
the CAIDA dataset. A relevant feature is any one from the “All” group in Table 4.1 that
also exists within a given dataset. Data from CAIDA, for example, would not include
alert level information making the Alert Entropy feature irrelevant. In this case, the tool
was modified such that every empirical model has its own unique color associated with
it. Previously, the models cycled through a finite range of basic colors causing confusion
as to which model some nodes belonged to. This issue can be seen in Figure 4.1 where
several different models of the same color exist. For this particular dataset, the full range
of features appears to perform successfully by identifying and displaying the same groups
of behaviors seen in the baseline image.
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Figure 4.4: Confidence Data of Relevant Group for CAIDA Data

Figure 4.4 above confirms the strong performance as speculated by the groupings shown
in the corresponding ASG. The line with ‘x’ ticks marking each data collection point rep-
resents the average best fit of all samples in the system to their MAP model. To verify
that the segmentation process was not negatively impacted by the changes, the line with
‘o’ marks was plotted. This line shows the fit of samples that have been deemed irrelevant
and segmented from processing. Since the model they belong to was removed, each time a
data point is created the segmented samples are re-associated with an active attack model
to determine how well they fit with processing.

In each case, the data fits with high confidence as indicated by the lack of visual er-
ror bars. This means that there is no variance in the mean and all samples fit with high
probability to their models. In the case with the segmented packets, their low posterior
probability to the active models validates the segmentation logic as well as showing clear
distinctions between the attack models generated. This highlights the use of the full feature
set as a baseline going for future tests. Looking at the parallel plots produced from the
software, this hypothesis is further confirmed.
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Figure 4.5: Parallel Coordinate Plot for Empirical Model 0 Feature Space

Figure 4.6: Parallel Coordinate Plot for Empirical Model 3 Feature Space
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Figure 4.7: Parallel Coordinate Plot for Empirical Model 4 Feature Space

Figure 4.8: Parallel Coordinate Plot for Empirical Model 12 Feature Space

Figures 4.5, 4.6, 4.7 and 4.8 above represent some example feature distributions from
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this experiment. Each plot shows the set of features utilized while data was being pro-
cessed. The feature space of each plot is very distinct and unique which underscores the
performance in this case. In particular, the entropy of the source and destination ports var-
ied between each model which helped to isolate the different attack behaviors.

4.2.2 Performance of Feature Groups with CAIDA Data

The other groups of features did not perform as strongly as compared to the “All” case
when they were all working together. The temporal group, for example, performed poorly
in terms of identifying the variety of attack behaviors incident on the network, but was able
to confidently determine which model any given sample belonged to.

Figure 4.9: ASG Generated from Temporal Features on CAIDA Data

Figure 4.9 above shows the ASG generated from the group of temporal features on
CAIDA data. This graph more closely resembles the naı̈ve ASG shown in Figure 4.2
than the more ideal version seen in Figure 4.3. Investigating the feature space, it becomes
clear that there was not enough variation with respect to time to visualize distinct attack
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behaviors. This is an example where the information from these features may overlap and
be unable to define clusters in the feature space as clearly as warned by [9].

Figure 4.10: Empirical 0 Model of Temporal Features on CAIDA Data

Figure 4.11: Empirical 1 Model of Temporal Features on CAIDA Data
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Investigation of the feature space as visualized by the parallel coordinate plots generated
by the tool confirms that there is little variation between samples. This is expected with
the CAIDA dataset as most samples are generated within a short time span of each other
and the traffic that occurs over edges is uniform. The samples that originally belonged to
the Empirical 1 model most likely either occurred at a slightly later time than the samples
stored in the Empirical 0 model or had a smaller edge packet rate as evidenced by the
second line heading towards the bottom of the Time Intensity axis in 4.10.

Since the ASG in 4.9 shows all packets as part of the Empirical 0 model, it can be
concluded that during the EM phase, following the creation of the Empirical 1 model, that
samples originally included in this group were folded into the existing model. Figure 4.12
below shows that samples were able to be clustered with high confidence and a high MAP
value to the existing models. For this particular case, no edges or nodes were segmented
from the ASG so the ideal consistency of 0 probability shown by the line marked with ‘o’
for the data points is expected.

Figure 4.12: Confidence Measurement of Temporal Features on CAIDA Data

Not all cases demonstrated such ideal performance from the segmented packets how-
ever. When the original feature set was used with the updated system, it was able to perform
better than some of the other groups, like “Temporal” or “Spatial”, but in terms of attack
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behaviors identified it was unable to distinguish attack strategies as well when compared
to the baseline. The snapshot of the ASG in Figure 4.13 below shows that some additional
behaviors were identified despite matching similarly to the naı̈ve model.

Figure 4.13: ASG of Original Features on CAIDA Data

Figure 4.14: Confidence Measurement of Original Features on CAIDA Data

Viewing the confidence data shows that for active samples in the system, this original
feature set was still able to classify them to models with a high MAP value. Figure 4.14
shows the confidence measurement of this feature set with the original dataset. The seg-
mented packet samples in this case have a non-zero probability and demonstrate the use of
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the confidence bars which are calculated based on the standard error of the average sample
MAP value. The average MAP value of the segmented samples is still far below that of the
non-segmented samples further demonstrating the functionality of the segmentation logic.

For most of the segmented data points, the error bars show quite a bit of variance. This
is most likely due to high variance in the behaviors captured in the Empirical 0 model.
With a larger amount of variance, the confidence of the average value is lower as the true
value of the population mean may fall anywhere within that range. Inspection of the feature
space affirms the suspicion about the variance recorded by the models. Viewing the feature
space of the Empirical 0 model given in Figure 4.15 one can see large variations in the port
based features while the other active features are relatively deterministic. This is the most
probable cause behind the uncertainty found in the segmented samples originally assigned
to the irrelevant models found in the ASG. Figures 4.16 and 4.17 are example feature space
distributions of segmented models from the ASG in Figure 4.13. The samples in these ex-
ample feature spaces show significant overlap with the space defined by Empirical Model
0. There is enough difference in the non-port features to distinguish between these behav-
iors, but samples still have a likelihood of fitting with Empirical Model 0. The behaviors
described by model 3 were identified after model 1 was segmented. This explains how they
have similar behaviors, but are still distinct from each other.

Figure 4.15: Empirical Model 0 of Original Features on CAIDA Data
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Figure 4.16: Empirical Model 1 of Original Features on CAIDA Data

Figure 4.17: Empirical Model 3 of Original Features on CAIDA Data
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Figure 4.18: ASG of Critical Features on CAIDA Data

After comparing all of these groups, the feature set comprising the “Critical” group was
chosen and evaluated. As the ASG in Figure 4.18 above illustrates, the performance seen
by the full feature set is matched in terms of firmer distinctions defining the different attack
behavior models. Evaluating the confidence data for this feature set, given below in Figure
4.19, confirms the high level of confidence in fitting samples into the appropriate model.
The dip in the confidence data corresponds to the introduction of Empirical Model 11. This
is most likely due to overlap in the feature distributions that compose each model.
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Figure 4.19: Confidence of Critical Features on CAIDA Data

Upon evaluation of the feature spaces for the active Empirical Model 0 and the space
describing Empirical Model 11 shown in Figures 4.20 and 4.21 respectively, it can be seen
that there is in fact some resemblance between the two distributions, particularly around the
spread of destination ports utilized. This explains the drop in average likelihood as some
samples will fit each model with non-zero probability. Following the segmentation of the
Empirical 11 Model, the samples that remain fit with a higher average MAP value since
they are no longer compared with the feature distribution of Empirical 11.
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Figure 4.20: Empirical Model 0 of Critical Features on CAIDA Data

Figure 4.21: Empirical Model 11 of Critical Features on CAIDA Data
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4.2.3 Performance of Feature Groups with iCTF2008 Data

With an established metric of evaluating features and generating a baseline to compare
against, the iCTF2008 data was used to provide a wider array of test cases. This dataset
contains a larger set of complex attack types that will change over time as teams try different
tactics to complete the objectives of the game. As with the CAIDA dataset, the full set of
features was tested against a target of interest selected from the iCTF2008 dataset. The
target was chosen to maximize the use of both input sources, packets and alerts. Figure
4.22 below shows the ASG produced from the full feature set being utilized. Since ICMP
information was not included with this dataset, the ICMP Type feature was deactivated.
Figure 4.23 below shows the naı̈ve model produced based on the same assumption used
earlier.

Figure 4.22: ASG of Relevant Features on iCTF2008 Data

Figure 4.23: Naı̈ve ASG from iCTF2008 Data
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Unlike the CAIDA dataset, the iCTF2008 dataset with the full set of features does
not serve to fully distinguish the ASG from the naı̈ve approach which bundles all attack
behaviors together into one model. In this case, much of the traffic is bundled into one
attack model, but it is clear that during the experiment other behaviors were identified and
segmented out from processing. Figure 4.24 below shows the confidence of the tool in
placing samples into their respective models.

Figure 4.24: Confidence Data of Relevant Features on iCTF2008 Data

Throughout the run of the experiment, it can be seen that the relevant feature set is
able to perform well. As multiple attack behaviors are involved from different sources that
change throughout time, it is expected to see a small drop in performance as time goes
on. This is because models will update their feature distributions putting more weight on
the newer samples. Older samples will not fit as well to the current version of the model
resulting in the drop seen.
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Figure 4.25: Empirical Model 0 of Relevant Features on iCTF2008 Data

Figure 4.25 above shows the large distribution of values seen for each individual feature.
This increases the possibility that all future packets will fit within Empirical Model 0 even
if they describe a behavior that would benefit from having its own empirical model. After
applying only the features within the “Critical” set, an increase in performance can be seen.
Figure 4.26 below shows the attack social graph generated by using the reduced feature set.
With these features enabled, the ASG has evolved more over time than the baseline in
Figure 4.22.

Figure 4.26: ASG of Critical Features on iCTF2008 Data
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Evaluation of the confidence data, seen in Figure 4.27 below, shows that with the addi-
tion of new edges in time, the average MAP value of the samples begins to drop. Unlike
with the full set of active features, the critical features are able to recover in time with the
addition of a new empirical model at time 14-17-39. With the addition of the new model,
a subsection of the behaviors originally associated with the larger Empirical Model 1 were
now held in their own model. This reduced the diversity of the behaviors within the original
model allowing for a better fit of the samples that belonged to each.

Figure 4.27: Confidence Data of Critical Features on iCTF2008 Data
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Figure 4.28: Empirical Model 1 of Critical Features on iCTF2008 Data

Figure 4.29: Empirical Model 3 of Critical Features on iCTF2008 Data
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Evaluation of the feature space generated by the “Critical” group of features confirms
that samples associated with a subset of the edges with varying rates of packet traffic and
portions of the graph position. Evaluation of the CSV file storing the confidence data shows
that the use of the ICMP protocol was a distinguishing factor from the variety of protocols
used earlier in Empirical Model 1. This type of traffic makes sense as participants to the
game used a variety of tools to connect to and interact with the network topology provided
by the game developers. Participants are expected to connect to the main network box
through a VPN connection and then scan the network topology to find vulnerable sources.
Reconnaissance actions such as these typically employ the use of ICMP packets to scan
the network to see what devices are connected. Tables 4.2 and 4.3 below show sample
data taken from the CSV files used to generate the parallel plots seen above in Figures 4.28
and 4.29. The distinction in traffic such as this represents the success of the framework
employing the “Critical” feature set to identify the different behaviors.

Table 4.2: Sample of Feature Distributions for Empirical Model 1

Protocol Source Port
Destination

Port
Graph

Position
Time

Intensity
TCP 22 51385 0.236537148 3
TCP 54562 80 0.499985944 0.213017751

SSHv2 58862 22 0.238043551 1.938073395
TCP 58854 22 0.238088047 1.967213115

SSHv2 58854 22 0.238088577 1.906976744
SSHv2 22 53205 0.234975826 2.109375
TCP 53205 22 0.234976856 2.375

Table 4.3: Sample of Feature Distributions for Empirical Model 3

Protocol Source Port
Destination

Port
Graph

Position
Time

Intensity
ICMP 0.297619033 0.120401338
ICMP 0.297619033 0.120401338
ICMP 0.297619033 0.120401338
ICMP 0.341904735 0.352941176
ICMP 0.297619033 0.120401338
ICMP 0.297619033 0.120401338

The remaining feature groups proved to perform similarly to the naı̈ve model fitting
all behaviors to one model with high confidence. An interesting exception was the set
of original features. The original features were able to produce an ASG similar to the
one seen in Figure 4.26 which was produced from the critical features, but with much
less confidence. Comparing this to the set of new features, the ASG produced showed
a much more naı̈ve representation of the features, but with a higher level of confidence.
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Considering the features composing the “Critical” group is a mixture from both of these
sets, it promotes the strength in using distinct, non-overlapping features to best describe
the different dimensions of the data. Table 4.4 below shows a comparison of the two ASGs
generated from each of these groups.

Table 4.4: Comparison of ASGs Generated from “New” and “Original” Feature Sets
New

Original

Reviewing the confidence data shows the strengths and weaknesses of each group set.
The iCTF dataset is very prone to experiencing a number of behaviors through time where
as the packet and graph structure are not as likely to change. The newer features are more
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based on temporal descriptions of the data while the original set was more centered around
specific information found within the packet headers and their spatial positions. This most
likely explains how the temporal features within the “New” group can classify with higher
confidence while features from the “Original” group are better at distinguishing patterns
within the traffic.

Table 4.5: Comparison of Confidence Data from “New” and “Original” Feature Sets
New

Original

Table 4.5 above shows a comparison of the confidence data generated by each of these
groups. While the original features are able to recover their confidence towards the end
of the experiment, with the introduction of a new model, the majority of the time samples
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have a lower average MAP value overall. Referring back to Figure 4.27, the pattern where
the overall confidence dips and recovers is very similar to that produced by the features in
the “Original” feature set. The overall confidence of the critical features dips much less
than that seen by the set of original features in Table 4.5 most likely due to the stronger
confidence seen with the “New” feature set. By utilizing the stronger features from each
set, the graph in Figure 4.27 asserts the validity of using only the strongest components
from the available types of features. Using a reduced feature set composed of only the
principle components shows that better overall results can be obtained.

4.3 Behavior Interpretation

The other critical aspect of the darknet analysis framework is its ability to produce a
visual to allow for the interpretation of the events that occurred within the network. It
is important to distinguish that this framework is not designed to explicitly recover all
events that transpired, but to present as much information as possible to a network analyst
or a system administrator. One of the main reasons for switching to the capture the flag
dataset was because of the larger amount of documentation that was available to describe
the topology and expected cyber attack behaviors from participants. Figure 4.30 below
represents the network topology described by the game designers [3].

Figure 4.30: Network Topology for iCTF2008 Game

Each team was given a virtual copy of the network shown above, however all traffic
leaving the team’s personal subnet was required to be routed through a central server for
data collection. The primary objective given to each team was to find and shut down a
server known as “the bomb” which would go off at the end of the game. Teams were ex-
pected to gain access to a web server located at an IP address provided to all teams and
exploit a series of vulnerabilities to open up new pathways to the internal network. Once
teams gained access to the web server, they were to scan the network and find other vulner-
able hosts that they could then exploit and island hop to. An island hop is when an attacker
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gains access to a target machine and then proceeds to continue a multistage attack from this
acquired machine. In essence, an attacker is hopping from target to target until they achieve
their goal or are caught and blocked from the network. This process would continue until
the bomb server was reached and could be shut down.

Given this scenario and topology, it would be expected that early on in the time line
of the game that patterns related to collaborators scanning the network topology would be
identified. Since a common server was used to collect metrics about traffic on the network
topology, it would be expected that IP addresses found within range of the address space
given to the teams would be identified. Each team was given an unroutable address in the
form of 10.T eamNumber.1.0/24. There were 39 unique schools with teams participating
with one school having two teams. Given this, the value for TeamNumber ranged from
1 to 40. Since the framework converts IP address strings (where each digit is a base 256
number) into integers for more efficient computation, integer values beginning with “16...”
are found to be within range of the participant’s address space while values beginning with
“17...” represent the unroutable addresses that were not specified by the owners of the
dataset. No ground truth was provided detailing specific attacks used, what time teams
completed objectives or even the addresses assigned to the machines detailed in the topol-
ogy diagram. Due to this, attack behaviors and targets of interest selected are based purely
on inference given the overview provided from the game developers and from examination
of the source data.

The targets of interest used during the experimentation of feature evaluation on the
iCTF2008 dataset were used as a starting point to examine the types of behaviors inci-
dent on the network. As the ASG developed, probable targets were chosen based on the
traffic flow connecting them to other nodes in the network. Figure 4.31 below is a snap-
shot collected during the evaluation of critical features of the iCTF dataset. In this image,
highly-active elements have been identified as indicated by the larger gray circles encom-
passing the various clusters. A highly-active element is defined as an attack behavior that
generates edges at a very high rate in which a node has an inbound degree or an outbound
degree of one [20]. Behaviors that are likely to cause this are spoofed addresses from DoS
attacks and random fast scans.



63

Figure 4.31: Full ASG with Scanning and Island Hopping

Figure 4.31 above shows the full topology of the ASG from which the following ex-
ample of a multi-step behavior was observed. This ASG shows a high level view of the
captured behaviors on this network topology. From this perspective it is difficult to inter-
pret these behaviors and understand the situation. Figures 4.32, 4.33 and 4.34 are closer
looks at this ASG showing that there is evidence to support the framework’s ability to cap-
ture and display complex cyber attack behaviors. When a context is provided describing
both the network topology and goals of the attackers, it becomes possible to infer and iden-
tify the events that may have occurred on the network. Combining the information acquired
from the given context with the intuition of the expected behaviors it is possible to closely
examine the ASG as it forms over time to verify that the models resemble expected behav-
iors. Following the behaviors generated from a single team, it is possible to verify the steps
being taken to achieve the final goal of the game.
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Figure 4.32: Network Topology Scan iCTF2008

Given this information, the node at the center of the gray area in Figure 4.32 is likely
performing a vertical scan looking for other machines connected to the network. The ad-
dress seen at the center of the gray area, node 169279745, is the integer form of the IP
address 10.23.1.1 which is allocated to the team “We 0wn Y0u”. Addresses beginning
with the digits “17...” can be seen as destinations from this team’s address which suggests
that team “We 0wn Y0u” is performing a vertical scan. The next expected phase would be
to see an edge from a “16...” address connecting to a “17...” address with further extensions
signifying a potential island hop in the traffic. Edge 8 stands out in this image because it
shows a double ended arrow between the highly active address and what is most likely the
access point at 174357325, or 10.100.123.77.
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Figure 4.33: Island Hop Example

Figure 4.33 above centers around access point 174357325 to evaluate actions taken
beyond the initial connection to the topology. Connections from addresses 169279865 and
169279857, or 10.23.1.121 and 10.23.1.113 respectively, also belong to the address space
of the team “We 0wn Y0u” further establishing node 174357325 as an access point to the
main network topology for this team. In addition to these host nodes, edges connecting
to other “17...” addresses from the team can be seen which is indicative of scanning. The
traffic leaving the access point is trying to find a significant resource to exploit and control.
Further investigation confirmed that these edges had only one or two instances each which
is indicative of a vertical scan. Edge 3 in Figure 4.33 shows an outgoing connection to
an additional “17...” address (175636738). Unlike the previously seen “17...” addresses,
further hops were identified following the hop to 175636738. Focusing on this edge shows
early signs of hopping from one resource to additional resources on the network in the
search for “the bomb” server.



66

Figure 4.34: Second Stage Island Hop Example

Figure 4.34 above shows an example of a second stage island hop in the network topol-
ogy. In this snapshot of the ASG, highly active nodes can be observed including address
174358861 (10.100.129.77) in the upper left hand corner and 174358093 (10.100.126.77)
in the lower right hand corner. Outgoing edges from the previous address 175636738, or
10.120.1.2, connect to these highly active nodes as well as a node with a smaller amount
of traffic in between these two clusters. These edges display evidence that members of
the team “We 0wn Y0u” successfully compromised the previous node to traverse the net-
work topology. This is supported by the image because each of the outgoing edges con-
nect to other “17...” addresses which fan out to other nodes not within a participating
team’s address space. The pattern of scanning and hopping to resources expected from
this dataset is demonstrated by the progression of behaviors synthesized by members of the
“We 0wn Y0u” team. The middle, non-highly active node appears to be an access point for
the team “squareroots”. Outgoing edges from this access point include “16...” IP addresses
for hosts from the “squareroots” team and other “17...” addresses. This is an important ob-
servation because it shows that teams have the ability to scan and observe the access points
and address spaces of other participants. Combining this observation with the fact that the
collection point includes traffic generated from all teams means that the feature space for
this ASG will incorporate a variety of strategies.
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Figure 4.35: iCTF2008 Empirical 0 Model Feature Space

Figure 4.35 above shows the parallel coordinate plot for the feature space composing
the larger Empirical Model 0 seen within the images earlier. As predicted, many dimen-
sions of the feature space hold a large variety of values. The Protocol feature is the most
homogeneous with only a couple of values observed, compared with the Time Intensity
feature dimension which is very diverse. Having a heterogeneous model such as this one
means it will act like a “blob” and incorporate multiple behaviors. Additional behaviors
were identified while observing traffic for this experiment, but they were quickly segmented
out. These behaviors were most likely synthesized after a small amount of observations ex-
isted within the Empirical 0 model and were later found to not have a strong path to the
target of interest. Figures 4.36 and 4.37 below show the feature space of these segmented
behaviors. The protocol and port values are the likely differentiators in these cases com-
pared with the communication methods captured in the more diverse Empirical 0 model.
These segmented behaviors are seen emanating from highly active nodes in Figure 4.34. It
is likely that other teams were scanning or communicating over similar edges at different
times which distinguished the behaviors on these edges. Unfortunately, without a ground
truth to compare against, it is impossible to fully verify the accuracy of the framework and
tool to display a representation of the events that arose on a network. However, given the
previous examples, there is strong potential for an experienced user to be able to interpret
the information and react accordingly based on the behavior of the traffic incident on their
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network.

Figure 4.36: iCTF2008 Empirical 1 Model Feature Space

Figure 4.37: iCTF2008 Empirical 3 Model Feature Space
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Chapter 5

Conclusions

The original darknet analysis framework employed the novel Attack Segmentation and
Model Generation algorithm to create a semi-supervised online learning mechanism. While
this algorithm proved successful at identifying and describing attack behaviors, there were
limitations in the design of the tool. The principle contributions towards enhancing these
limitations includes the implementation and evaluation of an expanded feature set, the abil-
ity to scale the size of the input data and revising the logic driving the introduction of new
empirical models.

Previously, features were selected to describe the dataset based on limited information
provided from packet headers. This scarcity of available information was due, in part, to
the dataset utilized for evaluation of the original implementation of the tool. The Coop-
erative Association for Internet Data Analysis has restrictions in place on many of their
datasets to anonymize the information captured to reduce issues related to liabilities. This
coupled with the limited documentation available make verification and evaluation of fea-
tures difficult. These difficulties led to the use of the international capture the flag (iCTF)
dataset created in 2008 provided by the University of California, Santa Barbara (UCSB).
Switching to this new source of data provided several advantages over the original CAIDA
dataset. These advantages included no restrictions on the use of the data, alert information
produced by the Snort IDS and limited documentation describing the background scenario
guiding the actions of the participants of the game.

Using iCTF data allowed for the inclusion of a secondary dataset as well as context to
compare identified attack behaviors. Having a context to compare against, even if it is not a
true ground truth, allows for a deeper evaluation to be conducted on the performance of the
system. This context also allows for the identification of a principle set of features which
provide the best possible classification of samples in any generic dataset. The additional
source of input data, IDS metadata, served to successfully allow the framework to analyze
a larger pool of information. This expansion of information helped to better characterize
and reconstruct some of the events that transpired on the network.

An expanded feature set was also possible due to the new input information available.
The expanded feature set provided valuable dimensions to describe samples and further
characterize network attack behaviors. The iCTF2008 dataset offered the opportunity to
test the framework against a wider range of attack behaviors. The availability of extra test
cases exposed weak areas in the design of the tool and framework allowing for a more
robust implementation to be produced.
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5.1 Future Work

Development of the enhanced implementation of the darknet analysis framework show-
cased several opportunities for future work. While evaluating the network topology de-
scribed by the ASG, it was observed that several edges were segmented from processing
that were part of a group most likely detailing a vertical network scan from an attacker.
The edge itself may have been irrelevant at the time of segmentation, however in a network
where behaviors can change drastically over time, these edges may become important or
relevant again in the future. Under the current implementation, once an edge is segmented
from processing, future traffic related to the edge is ignored. The reintegration of segmented
edges has the potential to provide a more dynamic means of analyzing the information pre-
sented by the ASG and puts more emphasis on current attack behaviors rather than stale
models that are less relevant.

Scaling the input data types supported by the framework allowed for new features to be
derived that expanded the dimensionality of the feature space used to characterize behav-
iors. Improving the depth and scale of the existing the framework may afford new features
to surface which will further describe the variety of existing attack behaviors and allow for
more specific descriptions of the attacks being observed. Sensor data from network based
intrusion detection systems was incorporated to expand and improve the existing feature set
defined by the framework. Other sensors, such as host-based intrusion detection systems,
may provide additional and more specific information that can be utilized to enhance the
feature space of the framework.

Another potential source for improvement with the system would be to experiment
with different classifiers for processing samples. The naı̈ve Bayesian based classifier has
its benefits, but the assumption of independence for each observation is a potential source
for performance degradation. Attack types may consist of multiple stages to accomplish
the goal that the malicious user is trying to achieve. The probability of a certain sample
being observed may be skewed depending on the sample packets previously seen. For ex-
ample, if an attacker is looking to exploit a JavaScript vulnerability in a website, it is more
probable that following packets would be attempts at JavaScript injections or other forms
of cross-site scripting (XSS) behaviors than the attacker sending packets more indicative
of a MySQL injection attack. The ability to skew or weight the probability of a packet be-
longing to a given behavior based on the current track of behaviors can potentially provide
a stronger distinction between attack behaviors as they change through time.

The feature selection process is currently very manual in nature. Each dataset typically
performs better with a different subset of features from the total available. Implementing
a mechanism to automatically select features will help in optimizing the system to better
describe empirical attack behaviors. In addition to the performance enhancement, less time
will be needed prior to running the dataset through the system to find the best set of fea-
tures. Going forward, these benefits will increase the overall usability of the framework. A
system administrator or a network analyst can focus more on the feedback synthesized by
the tool rather than spending time configuring the system and potentially missing impor-
tant information. Ideally, the user will spend minimal time installing and configuring the
system to their needs and maximize the time spent examining and analyzing traffic.
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Removing irrelevant information is an important aspect of the attack segmentation and
model generation (ASMG) algorithm powering this framework. Once an edge is segmented
from processing, it is never revisited. The only indication that it has been removed is a
dashed line representing where the edge once was. While performance is improved by
removing this unnecessary information, it is conceivable that these removed edges may
become important again in the future. In the iCTF dataset, for example, edges were seg-
mented out earlier in the traffic flow as they were the result of scanning and were only
observed once or twice. As time goes on, these edges may become important again as
teams traverse the network in search of a path to the goal. If this path or part of the path
is thought to be irrelevant before more interesting traffic is observed along the edges, then
the system will not capture or display this to the user. In practice, the user will have full
knowledge of the network topology and important resources to manage as opposed to the
potential attack types with minimal knowledge of the network. The user will be able to
tell if a segmented edge leads to an important resource in practice, but there is currently
no mechanism in place to reactive the edge. Incorporating this functionality will equip the
user with the ability with a finer degree of control over the system while it is running.

The Python scripting language provides many benefits including weakly-typed vari-
ables which allows for rapid prototype development and dynamic run-time modification.
Native support for regular expressions and easy configurations to handle file I/O make
working on localized and smaller projects very convenient. Unfortunately, when develop-
ing scripts for larger projects the Python language can prove to be difficult to work with
and have negative impacts with productivity. When working with a large code base, for
example, small bugs injected into the software are not checked at compile-time. This can
mask simple errors until hours into a test when the bad code is eventually executed. Errors
in the code can lie dormant for long periods of time causing delays in production when they
are eventually exposed. This may not be much of a problem in environments with rapid
test and debug cycles, but it is certainly not an ideal aspect of the language [4].

Another disadvantage with the Python language is the reliance on third party libraries
for more complex scientific and mathematical operations. For example, the Matplotlib li-
brary provides Python users with the ability to produce plots of their data. If a different
computer needs to execute the script and has the wrong version of the library installed,
the program will not run and require either a work around in the software or changes to
the environment to be made. An example of this is the reliance on third party support for
graphic user interface (GUI) development. To accomplish this in Python, the TkInter li-
brary is required. TkInter is a Python module that wraps Tcl and Tk and allows for tools
such as widgets to be developed for a GUI. The TkInter library, however, is not thread-safe
which restricts the functionality that may be desired in a GUI and potentially increases the
chance for run-time errors.

The Python scripting language has distinct advantages when developing a series of
classes as one can take advantage of the object-oriented nature of the language. However, a
drawback to Python is that variable privacy is not a feature of the language. This increases
the difficulty of handling the complexity of the program. There is no protection available
to prevent a user from accessing class members and changing their values in a manner that
could hinder or break the flow of the program. This also adds complications when handling
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larger code bases as a bug related to a data member in a class can exist in a larger number
of places and be much harder to track down and fix.

Going forward, it will be beneficial to port the framework into a statically typed lan-
guage such as Java. Statically-typed languages offer compile-time error checking, good
performance and better overall control of the code base which allows for more hardened
components to be developed [4]. Java, for example, also offers a large variety of native
support for different applications. GUI development can be done using built-in, thread-
safe libraries which are documented and supported by Oracle. Java is a compiled language
which means once the binary has been generated, the code can run on any Java-compatible
machine. This allows for greater portability of the software and robustness to changes in
the run-time environment. Porting the darknet analysis framework to the Java programming
language will allow for greater control, maintainability and portability in future iterations
of the software.
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