Material Engineering for Phase Change Memory

David Cabrera

Follow this and additional works at: https://scholarworks.rit.edu/theses

Recommended Citation

This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact ritscholarworks@rit.edu.
R·I·T

Material Engineering for Phase Change Memory

by

David Cabrera

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science In Electrical and Microelectronic Engineering

Department of Electrical and Microelectronic Engineering
Kate Gleason College of Engineering

Rochester Institute of Technology
Rochester, NY
June 20, 2014
Material Engineering for Phase Change Memory

By

David M. Cabrera

A Thesis Submitted

In Partial Fulfillment

Of the Requirements for the Degree of

Master of Science

In

Electrical and Microelectronic Engineering

Approved By:

Prof. ________________________________

Dr. Santosh K. Kurinec (Thesis Advisor)

Prof. ________________________________

Dr. Robert E. Pearson

Prof. ________________________________

Dr. Ivan Puchades

DEPARTMENT OF ELECTRICAL AND MICROELECTRONIC ENGINEERING

COLLEGE OF ENGINEERING

ROCHESTER INSTITUTE OF TECHNOLOGY
Material Engineering for Phase Change Memory

By

David M. Cabrera

I, David M. Cabrera, hereby grant permission to the Wallace Memorial Library of the Rochester Institute of Technology to reproduce this document in whole or in part and that any reproduction will not be for commercial use or profit.

_______________________________ _____________________
David M. Cabrera Date
Acknowledgements

I’d like to thank the following people for all their help and support:

My family

The Microelectronic Engineering Faculty which includes
 My thesis committee
 Dr Santosh Kurinc
 Dr Robert Pearson
 Dr Ivan Puchades

All of the SMFL staff

Dr Simone Raoux from IBM TJ Watson Research Center

Archana Devasia
Brett Cucci
Venkata Kandala
Zachary Sonner
Abstract

As semiconductor devices continue to scale downward, and portable consumer electronics become more prevalent there is a need to develop memory technology that will scale with devices and use less energy, while maintaining performance. One of the leading prototypical memories that is being investigated is phase change memory. Phase change memory (PCM) is a non-volatile memory composed of 1 transistor and 1 resistor. The resistive structure includes a memory material alloy which can change between amorphous and crystalline states repeatedly using current/voltage pulses of different lengths and magnitudes. The most widely studied PCM materials are chalcogenides - Germanium-Antimony-Tellerium (GST) with Ge$_2$Sb$_2$Te$_3$ and Germanium-Tellerium (GeTe) being some of the most popular stochiometries. As these cells are scaled downward, the current/voltage needed to switch these materials becomes comparable to the voltage needed to sense the cell’s state. The International Roadmap for Semiconductors aims to raise the threshold field of these devices from 66.6 V/μm to be at least 375 V/μm for the year 2024. These cells are also prone to resistance drift between states, leading to bit corruption and memory loss.

Phase change material properties are known to influence PCM device performance such as crystallization temperature having an effect on data retention and lifetime, while resistivity values in the amorphous and crystalline phases have an effect on the current/voltage needed to write/erase the cell. Addition of dopants is also known to modify the phase change material parameters.

The materials Ge$_2$Sb$_2$T$_5$, GeTe, with dopants - nitrogen, silicon, titanium, and aluminum oxide and undoped Gallium-Antimonide (GaSb) are studied for these desired characteristics. Thin films of these compositions are deposited via physical vapor deposition at IBM Watson Research Center. Crystallization temperatures are investigated using time resolved x-ray diffraction at Brookhaven National Laboratory. Subsequently, these are incorporated into PCM cells with structure designed as shown in Fig.1. A photolithographic lift-off process is developed to realize these devices. Electrical parameters such as the voltage needed to switch the device between memory states, the difference in resistance between these memory states, and the amount of time to switch are studied using HP4145 equipped with a pulsed generator. The results show that incorporating aluminum oxide dopant into Ge$_2$Sb$_2$T$_5$ raises its threshold field from 60 V/μm to 96 V/μm, while for GeTe, nitrogen doping raises its threshold field from 143 V/μm to 248 V/μm. It is found that GaSb at comparable volume devices has a threshold field of 130 V/μm. It was also observed that nitrogen and silicon doping made Ge$_2$Sb$_2$T$_5$ more resistant to drift, raising time to drift from 2 to 16.6 minutes while titanium and aluminum oxide doping made GeTe drift time rise from 3 to 20 minutes. It was also found that shrinking the cell area in GaSb from 1 μm2 to 0.5 μm2 lengthened drift time from 45s to over 24 hours.

The PCM process developed in this study is extended to GeTe/Sb$_2$Te$_3$ multilayers called the superlattice (SL) structure that opens opportunities for future work. Recent studies have shown that the superlattice structure exhibits low switching energies, therefore has potential for low power operation.

![Fig. 1 Cross sectional view of PCM structure.](image-url)
Table of Contents

Chapter 1 – Introduction ... 1

1.1 – Overview of Semiconductor Memory Technology .. 1
1.2 – DRAM Memory .. 4
1.3 – Flash Memory .. 5

Chapter 2 – Background of Phase Change Memory .. 9

2.1 – Phase Change Memory Background .. 9
2.2 – Phase Change .. 10
2.3 – Current Technology Phase Change Memory .. 13
2.4 – Future Phase Change Memory Trends .. 14

Chapter 3 – Thesis Objectives .. 17

3.1 – Motivation ... 17

Chapter 4 – Fabrication .. 18

4.1 – Introduction ... 18
4.2 – Mask Set Design ... 19
4.3 – Process Flow for Device Fabrication ... 20

Chapter 5 – PCM Cells with Droped GST & GeTe. .. 27

5.1 – Dopant Effects in Phase Change Memory Introduction .. 27
5.2 – Device Fabrication ... 28
5.3 – Time-Resolved XRD Analysis .. 29
5.4 – Structural Results .. 30
5.5 – Electrical Results .. 33
5.6 – Conclusions ... 35

Chapter 6 – Investigating Resistance Drift .. 37

6.1 – Introduction to Resistance Drift ... 37
6.2 – Resistance Drift ... 38
6.3 – Drift Measurements ... 39
6.4 – Conclusions .. 40
List of Tables

Table 5.1 - Phase Change Material Parameters and the Influenced Characteristics27
Table 5.2 - Summary of Doped PCM Film Compositions ...28
Table 5.3 - Summary of Threshold Field and ON/OFF Ratio in Doped Devices35
Table 6.1 - Summary of Drift Time for Doped PCM Devices ..40
Table 7.1 - Summary of Findings for GaSb Devices of Different Dimensions45
Table 7.2 - Summary of Drift Time for GaSb Devices of Different Dimensions45
Table 7.3 - Summary of Drift Time for GaSb Devices for Different Pulse Characteristics46
Table 8.1 - Summary of Threshold Voltage for Superlattice Wafers Studied52
List of Figures

Figure 1.1 Memory hierarchy by type (on right), with includes volatility and retention length inside the triangles, and examples on left.................................2

Figure 1.2 Memory hierarchy divided by volatility..3

Figure 1.3 Typical memory components in a computer, structured by access latency. Types of memory are encircled...4

Figure 1.4 DRAM memory configuration...5

Figure 1.5 Cross section of a typical flash memory structure...........................6

Figure 1.6 NOR flash memory configuration..6

Figure 1.7 NAND flash memory configuration..7

Figure 1.8 Phase change memory structure..8

Figure 2.1 Ternary phase diagram depicting chalcogenide alloys, with year of discovery and their uses. [6] ...10

Figure 2.2 I-V characteristics of a phase change memory device showing switching between resistive states...11

Figure 2.3 Phase change memory pulse time vs. temperature to reach different states.........12

Figure 2.4 Umbrella flip model during switching of GST, between a tetrahedral (left) and octahedral (right) configuration [8]..13

Figure 2.5 Potential of phase change memory compared to industry standard, adapted from ITRS ...14

Figure 2.6 PCM Technological requirements. Yellow cells have manufacturable solutions, while red cells do not. (ITRS)..15

Figure 4.1 Cross sectional view of memory cell design.....................................17

Figure 4.2 (a) Sample test structure for (b) mask designed for Canon lithography tool........18

Figure 4.3 (a) Sample test structure for (b) mask designed for ASML lithography tool19

Figure 4.4 Process flow chart divided by lithography step....................................20

Figure 4.5 Atomic force microscopy of a cell after lift-off process.......................23

Figure 4.6 EDAX mapping of a cell after lift-off process.....................................24
Figure 4.7 PCM devices, active area located within the delineated circle. ..25
Figure 5.1 Time resolved XRD measurements on GST and GeTe, centered on 20 = 31°.28
Figure 5.2 Time resolved XRD measurements on different dopant compositions plot as the intensity of the peaks vs. temperature as was ramped. These show the transition between amorphous and crystalline states for the materials investigated..30
Figure 5.3 θ-20 scans of undoped and doped, GST and GeTe respectively, after a ramp to 450°C.. ..31
Figure 5.4 Resistivity as a function of temperature for undoped and doped, GST and GeTe respectively. ..32
Figure 5.5 Representative electrical data for doped and undoped GST.33
Figure 5.6 Representative electrical data for doped and undoped GeTe.33
Figure 5.7 Graphical representation of threshold field vs. dopant compositions investigated.....35
Figure 6.1 Chalcogenide material drift from amorphous to crystalline state.37
Figure 6.2 Chalcogenide material drift from crystalline to amorphous state.37
Figure 6.3 Resistance Drift in doped GST devices..38
Figure 6.4 Resistance Drift in doped GeTe devices..38
Figure 7.1 Ternary phase diagram depicting different GaSbTe compositions and their respective crystallization temperature. [28] ..41
Figure 7.1 Representative electrical data for 0.5 μm sized devices..42
Figure 7.2 Representative electrical data for 1.0 μm sized devices..43
Figure 7.3 Summary of threshold field in GaSb cell dimensions ...46
Figure 8.1 (a) Ge is in a tetrahedral environment in amorphous GST and transitions to octahedral in its cubic crystalline phase; (b) Crystal schematic of GeTe/Sb2Te3 superlattice; (c) Superimposed images of two projected sheets of GeTe/Sb2Te3. Ge atoms (with arrows) in GeTe layers move forwards and backwards to the interface with Sb2Te3 layers..48
Figure 8.2 EELS line scan showing superlattice layers present in device.49
Figure 8.3 TEM showing superlattice layers present in device (darkest layer).........................50
Figure 8.4 Resistance drift for superlattice devices by wafer ..52
List of Symbols

V_{th}
Threshold Voltage
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIT</td>
<td>Rochester Institute of Technology</td>
</tr>
<tr>
<td>VLSI</td>
<td>Very Large Scale Integrated</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>DRAM</td>
<td>Dynamic RAM</td>
</tr>
<tr>
<td>SRAM</td>
<td>Static RAM</td>
</tr>
<tr>
<td>ROM</td>
<td>Read Only Memory</td>
</tr>
<tr>
<td>NVROM</td>
<td>Non-Volatile ROM</td>
</tr>
<tr>
<td>PROM</td>
<td>Programmable Read-Only Memory</td>
</tr>
<tr>
<td>STT-MRAM</td>
<td>Spin Tranfer Torque Magnetoresistive RAM</td>
</tr>
<tr>
<td>FeRAM</td>
<td>Ferroelectric RAM</td>
</tr>
<tr>
<td>PCM</td>
<td>Phase Change Memory</td>
</tr>
<tr>
<td>SD</td>
<td>Secure Digital</td>
</tr>
<tr>
<td>ITRS</td>
<td>International Technology Roadmap for Semiconductors</td>
</tr>
<tr>
<td>PECVD</td>
<td>Plasma-Enhanced Chemical Vapor Deposition</td>
</tr>
<tr>
<td>EDAX</td>
<td>Energy-Dispersive X-ray Spectroscopy</td>
</tr>
<tr>
<td>GST</td>
<td>Germanium Antimony Telluride</td>
</tr>
<tr>
<td>GeTe</td>
<td>Germanium Telluride</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray Diffraction</td>
</tr>
<tr>
<td>GaSb</td>
<td>Gallium Antimonide</td>
</tr>
<tr>
<td>IPCM</td>
<td>Interfacial Phase Change Memory</td>
</tr>
</tbody>
</table>
Chapter 1
Introduction

Semiconductor memories are an important part of modern day technology, and like all modern technology, it needs to grow in performance and density to keep furthering technological advancement. This advancement has driven rapid growth of very large scale integrated (VLSI) systems for a wide range of applications, including personal and commercial computing, consumer electronics, smart phones, tablets, sensors for different applications, and even medical devices. To keep up with demand for high performance, low-power applications, it is required to have a large amount of low-power embedded memory to support the data bandwidth needed for high performance computing. Typical semiconductor memory is an electronic device used to store data, implemented on a semiconductor circuit.

1.1 Overview of Semiconductor Memory Technologies

Memory is often divided into primary storage, secondary storage, and tertiary storage which takes in consideration the speed and cost of the component, as seen in figure 1.1. Primary storage is what is most commonly referred to as internal memory. This category is composed of the fastest components, which also tend to be the costliest. Unfortunately, this type of memory loses data when it is powered down. This type of memory includes processor registers, processor cache, and main memory. Secondary storage is usually known as external memory. This type of memory has an average speed for an average cost, but it does not lose data when powered down. This type of memory includes memory sticks, hard drives, CD/DVD and solid state drives. Tertiary storage is the slowest level of storage, which is often used for archiving information which is rarely accessed.
Figure 1.1 Memory hierarchy by type (on right), with includes volatility and retention length inside the triangles, and examples on left.

Memory can be further divided within two types, volatile and non-volatile memory, as seen in figure 1.2. Volatile memory requires power to maintain storage, while non-volatile does not. Current volatile memories being used today include all types of primary memory such as Random Access Memory (RAM) which includes Dynamic RAM (DRAM) and Static RAM (SRAM). These memories have been utilized as primary cache memories for many electronics due to their fast read and write performance. Unfortunately, they cannot be used as a storage technology due to their volatility.
Non-volatile memories include secondary and tertiary storage such as Read Only Memory (ROM) and Non-Volatile Read-Only Memory (NVROM) which include various types of Programmable Read-Only Memory (PROM) and Flash memory. Non-volatile memory is the type of memory used in storage devices, which include solid state drives, memory cards, USB drives, etc. These memories are not as fast in terms of read/write performance, but the data is retained when power is disconnected.

Main memory is the type of memory that has been the focus on development, a primary storage option with high speed and non-volatility. This emerging technology needs to have performance that matches DRAM with the capacity and cost of flash memory. These attributes describe what is often called universal memory. Some of the potential candidates for this universal memory include spin transfer torque magnetoresistive RAM (STT-MRAM), ferroelectric RAM (FeRAM), and phase change memory (PCM). The goal of this development is
to create compact, robust memory systems with an improved cost to performance ratio relative to current technology. The defining qualities for this technology include nonvolatility, solid-state implementation, very low latency, or how fast it takes to receive a data request, (tens to low hundred nanoseconds), low cost per bit, and physical durability. Figure 1.3 shows typical access latency (in cycles) of different memory technologies, with their relative place in the memory hierarchy. Hard disk drive latency is typically four to five orders of magnitude higher than DRAM. [1] Universal memory should bridge the gap between DRAM and hard disk drives.

![Figure 1.3](image)

Figure 1.3 Typical memory components in a computer, structured by access latency. Types of memory are encircled.

1.2 DRAM Memory
Dynamic random-access memory (DRAM) is the volatile memory industry standard. Universal memory must be competitive and provide comparable or favorable cost and characteristics compared to DRAM. This type of memory is a 1 transistor, 1 capacitor device, shown in figure 1.4. It was created by Dr. Robert Dennard from IBM and granted a patent in 1968 (U.S. parent number 3,387,286). DRAM is arranged in a matrix with the gates tied together with a word line, with each transistor having a capacitor on one end, connected to ground, and the other connected to a transistor in the next row through a bit line.
Writing to memory consists of biasing the desired word line and bit line to allow the capacitor to charge or discharge. To read the memory, the bit line is charged up, followed by the word line connected to a high voltage. This will turn on the selected transistor, and the capacitor and bit line will share charges. Depending on the voltage the capacitor was holding, the bit line will have a difference in voltage, which can then be read by a sense amplifier. After each read operation, the charge on the capacitor is disturbed, so the data needs to be written back to it (charged or discharged). This type of memory is what is referred to as RAM in modern day electronic systems.

1.3 Flash Memory

Flash memory is the currently leading industry standard for non-volatile storage devices. Due to the popularity of flash memory, universal memory needs to be at least as cost effective and with characteristics that surpass this industry standard. Flash was first invented by Dr. Fujio Masuoka while working for Toshiba around 1980. [2] Intel introduced the first commercial NOR flash memory chip in 1988. [3] Flash memory is composed of 1 transistor with two stacked gates, a floating gate underneath a control gate, shown in figure 1.5. The threshold voltage of this
transistor depends on whether the floating gate is charged or not. These transistors are then arranged in either a NOR or a NAND configuration to create the memory device.

![Cross section of a typical flash memory structure.](image)

Figure 1.5 Cross section of a typical flash memory structure.

A NOR flash memory configuration can be seen in figure 1.6. The gate is connected to a word line, while the drain and source are connected to a bit line and to ground. When a positive bias is applied to the control gate, the channel turns on and the electrons can flow. This current across the channel causes electrons to move into the floating gate through hot-carrier injection, programming the cell. Erasing the cell is done by applying an opposite polarity bias to the control gate, removing the electrons off the floating gate through quantum tunneling. Reading is done by selecting the appropriate word and bit line.

![NOR flash memory configuration.](image)

Figure 1.6 NOR flash memory configuration.
NAND flash memory connects the transistors that compose the memory device in series, as seen in figure 1.7. These blocks of memory are further linked together in a NOR style configuration explained previously. Write and erase procedures are done in the same style as the NOR configuration, although in this configuration, erasing clears whole “blocks” of data due to the serialized nature.

![NAND flash memory configuration](image)

Figure 1.7 NAND flash memory configuration.

NAND flash is the most common type of flash memory and can be found in many forms, including USB memory sticks, camera memory storage in the form of compact flash or secure digital (SD) memory, embedded into MP3 players, game consoles, mobile phones, and even as the primary storage in solid state drives. The typical size of a flash memory device is about the size of a postage stamp. Storage capacity is usually anywhere from 512 MB up to 256 GB. This configuration is economical with a fast read (about 20 MB/s) and a fast write (about 6 MB/s) and an average erase time (2 ms). NOR based flash memory is costlier and usually used to replace ROM applications. These have much faster read performance (103 MB/s) but suffer in write speeds (0.5 Mb/s) and erase speeds (900 ms).

These two types of memories, flash and DRAM, each have the qualities that a universal memory needs. This next generation of memory needs fast read, write, and erase speeds, low
cost and power, high endurance and scalability, multiple bits per cell, and long retention times. Phase change memory is a leading prototypical memory technology that can meet all these standards. Phase change memory (PCM) is a non-volatile memory composed of 1 transistor and 1 resistor. The resistive structure includes a memory material alloy sandwiched between electrodes, as seen in figure 1.8. These memory materials are composed of elements that belong to group VIA of the periodic table. These elements are referred to as chalcogens and can form compounds called chalcogenides. These chalcogenide alloys exist at room temperature in a stable crystalline phase, and a metastable amorphous phase, with some alloys having additional metastable phases in between. This material can be switched repeatedly between these two phases, which have distinct optical and electrical properties.

![Phase change memory structure](image)

Figure 1.8 Phase change memory structure.
Chapter 2
Background of Phase Change Memory

This chapter provides an overview of phase change materials, including operations and phenomena that are fundamental to the operation of phase change memory. It concludes with the current state of phase change technology.

2.1 Phase Change Memory Background

This phase change effect being used as storage was first described [4] and patented [5] by Stanford Ovshinsky in the 1960s. The lack of fast switching materials prevented development at that time. In 1987, a new alloy was discovered [6], Ge$_2$Sb$_2$Te$_3$ which led to development of rewriteable storage technology such as CDs (CD-RW), DVDs (DVD±RW), and most currently rewritable Blu-ray disks (BD-RE) [7]. The most widely studied PCM materials are alloys of Germanium-Antimony-Tellerium (GST), seen in figure 2.1, with Ge$_2$Sb$_2$Te$_3$ and GeTe being some of the most popular stochiometries.
Figure 2.1 Ternary phase diagram depicting chalcogenide alloys, with year of discovery and their uses. [6]

2.2 Phase Change

In its crystalline state, a typical cell reveals ohmic I-V characteristics. When the bias on the cell is increased, the temperature rises, which causes the GST material to melt. If the current pulse is quickly dropped off, the molten material has no time to rearrange its bonds and is left in an amorphous state. In the amorphous state, at low bias, the resistance is very high, which is termed as the RESET state of the device. Increasing bias in this state will reach a threshold voltage V_{th} in which a current path in the amorphous material switches to a highly conductive state. This is shown in figure 2.2.
Figure 2.2 I-V characteristics of a phase change memory device showing switching between resistive states.

To transition back to a fully crystalline state, a similar current is applied as previously done, but using lower amplitude and a longer falling edge. This will heat the material into its glass transition temperature, and give the bonds time to rearrange to the crystalline, low resistance state, which can be seen in figure 2.3. This low resistance state is termed as the SET state of the device. The overlap of curves seen on the graph indicates that the device can be rewritten without an intermediate erase step, a desirable characteristic that simplifies writing to memory and improves write performance.

The resistivity of the two phases differs by orders of magnitude. Depending on the material used for the phase change cell, the resistance can vary from a few kΩ in the low resistance state to MΩ or GΩ in the high resistance state.
Figure 2.3 Phase change memory pulse time vs. temperature to reach different states.

In order to read the memory bit, a very low voltage can be applied, which will cause no joule heating, thus it will not disturb the cell. In its low resistance state, the voltage applied across the cell will generate a small amount of current, while in the high resistance state, the resulting current is practically null. The magnitude of this current can be sensed to evaluate which logic the cell is at. The difference between the resistances found in the SET and RESET state can be a few orders of magnitude, this is called the ON/OFF ratio.

Fundamental understanding of the switching process is still being investigated. As GST is the most widely studied material, it has been found that the Ge atom changes sites during its atomic configuration. This is called the umbrella flip model, which proposes that the Ge atom changes from a tetragonally coordinated position in the amorphous phase, to an octahedrally coordinated site in the crystalline phase [8]. This can be seen in figure 2.4. This could be described as a single atom bistable switch, which would be the ultimate scaling limit of memory,
but the real situation is not as straightforward due to amorphous states lacking long-range periodicity.

Figure 2.4 Umbrella flip model during switching of GST, between a tetrahedral (left) and octahedral (right) configuration [8].

2.3 Current Technology Phase Change Memory

PMC has been used in test markets inside a Samsung cell phone in 2011 [9]. Since then, there have been various milestones, including a 20 nm, 8 Gb, 1.8V, 40 MB/s bandwidth PRAM developed by Samsung in early 2012 [10]. Micron has even started volume production in July 2012 to deliver 45 nm, 1 Gb, low power PCM targeted towards mobile devices [11].

These cells have already shown fast read times (12ns) [12], fast write/erase times (500ps) [13], low power (100-15 J/bit) [14], low cost (already used in CDs and DVDs) [7], high endurance (10^8-10^12 cycles) [15], high scalability (3 nm stable films) [16], multiple bits per cell [17] and long retention time (>10 years) [18]. This displays all the qualities of a universal memory, but continued research is needed to keep it competitive within the memory market.
2.4 Future Phase Change Memory Trends

Currently the International Technology Roadmap for Semiconductors (ITRS) classifies phase change memory as a prototypical memory, with a very good potential for storage class applications. This means that it matches or exceeds flash memory for: scalability, multilevel cell storage, 3D integration, low fabrication cost, endurance, and retention. Specifics can be seen in figure 2.5.

![Figure 2.5 Potential of phase change memory compared to industry standard, adapted from ITRS](image-url)
Even though it’s predicted that PCM will be extremely viable, there are still some challenges to overcome. The technological requirements for PCM to be viable are shown in figure 2.6.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PCRAM technology node (nm)</td>
<td>45</td>
<td>38</td>
<td>32</td>
<td>26</td>
<td>24</td>
<td>21</td>
<td>18</td>
<td>16</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>PCRAM cell size area, factor a in multiples of P² (nMOSFET access device) [37]</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PCRAM cell size area, factor a in multiples of P² (nMOSFET access device) [37]</td>
<td>14</td>
<td>12</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCRAM optical cell size (nm²) (nMOSFET access device)</td>
<td>8100</td>
<td>5776</td>
<td>4006</td>
<td>3136</td>
<td>2304</td>
<td>1764</td>
<td>1296</td>
<td>1024</td>
<td>784</td>
<td>676</td>
</tr>
<tr>
<td>PCRAM optical cell size (nm²) (nMOSFET access device)</td>
<td>28350</td>
<td>17328</td>
<td>8192</td>
<td>6272</td>
<td>4688</td>
<td>3646</td>
<td>2844</td>
<td>1836</td>
<td>1176</td>
<td>1014</td>
</tr>
<tr>
<td>PCRAM number of bits per cell (MLC) [25]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>PCRAM optical cell area per bit size (nm²) (nMOSFET access device) [38]</td>
<td>8100</td>
<td>5776</td>
<td>4006</td>
<td>3136</td>
<td>2304</td>
<td>1764</td>
<td>1296</td>
<td>1024</td>
<td>784</td>
<td>676</td>
</tr>
<tr>
<td>PCRAM optical cell area per bit size (nm²) (nMOSFET access device) [38]</td>
<td>28350</td>
<td>17328</td>
<td>8192</td>
<td>6272</td>
<td>4688</td>
<td>3646</td>
<td>2844</td>
<td>1836</td>
<td>1176</td>
<td>1014</td>
</tr>
<tr>
<td>PCRAM phase change volume (nm³) [31]</td>
<td>11649</td>
<td>7014</td>
<td>4160</td>
<td>3519</td>
<td>3136</td>
<td>2304</td>
<td>1764</td>
<td>1296</td>
<td>1024</td>
<td>784</td>
</tr>
<tr>
<td>PCRAM read current (µA) [32]</td>
<td>224</td>
<td>174</td>
<td>134</td>
<td>110</td>
<td>87</td>
<td>71</td>
<td>57</td>
<td>47</td>
<td>39</td>
<td>35</td>
</tr>
<tr>
<td>PCRAM set resistance (KΩm) [33]</td>
<td>2.2</td>
<td>2.6</td>
<td>3.1</td>
<td>3.8</td>
<td>4.1</td>
<td>4.7</td>
<td>5.5</td>
<td>6.2</td>
<td>7.1</td>
<td>7.6</td>
</tr>
<tr>
<td>PCRAM read current density (A/cm²) [34]</td>
<td>1.4E⁻07</td>
<td>1.5E⁻07</td>
<td>1.7E⁻07</td>
<td>1.0E⁻07</td>
<td>1.9E⁻07</td>
<td>2.1E⁻07</td>
<td>2.2E⁻07</td>
<td>2.4E⁻07</td>
<td>2.6E⁻07</td>
<td>2.0E⁻07</td>
</tr>
<tr>
<td>PCRAM R/R transistor area (nm²) [35]</td>
<td>1596</td>
<td>1134</td>
<td>804</td>
<td>616</td>
<td>452</td>
<td>346</td>
<td>254</td>
<td>201</td>
<td>154</td>
<td>133</td>
</tr>
<tr>
<td>PCRAM R/R transistor area (nm²) [35]</td>
<td>1.4</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.2</td>
<td>1.4</td>
<td>1.4</td>
<td>1.1</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>PCRAM nMOSFET apparent current density for reset (A/nm²) [36]</td>
<td>164.0</td>
<td>135.0</td>
<td>104.0</td>
<td>86.0</td>
<td>72.0</td>
<td>62.0</td>
<td>46.0</td>
<td>42.0</td>
<td>23.0</td>
<td>28.0</td>
</tr>
<tr>
<td>PCRAM nMOSFET apparent device width (nm) [37]</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td></td>
</tr>
<tr>
<td>PCRAM nonvolatile data retention (years) [35]</td>
<td>1.0E⁻09</td>
</tr>
</tbody>
</table>

Figure 2.6 PCM Technological requirements. Yellow cells have manufacturable solutions, while red cells do not. (ITRS)

As can be noted, solutions for device scaling, as well as consistent multi-level cell operation necessitate improvement.
Chapter 3
Thesis Objectives

This chapter presents the motivation of this investigation, including the goals of this research.

3.1 Motivation

As cells are scaled downward, V_{th} will become comparable to the reading voltage needed to sense the cell’s state. The ITRS predicts that for PCM to be viable, there needs to be a way to raise the threshold field from the current 66.6 V/μm up to at least 375 V/μm for the year 2024. This investigation proposes to find new materials with increased threshold field, which is the ratio of the size and thickness of the cell. Dopants introduced into memory materials could have an effect on the characteristics of these. A larger difference between resistance in amorphous vs. crystalline would be very beneficial, further advancing multi-bit densities inside one cell. ITRS also predicts the need for 4 bits per cell. This ON/OFF ratio will be investigated in all materials studied. These multi-bit storage options need to be drift resistant. Resistance drift happens when the cell is not fully amorphized or crystallized, so it will tend to drift towards the prevailing state. Materials with reduced resistance drift are required as to not lose the stored memory in these cells. Drift will also be investigated for all the devices created, and attempted to be reduced and explained. Many applications are also temperature sensitive, such as the automotive industry which needs devices that can withstand higher temperatures. This investigation will also look into gallium antimonide, GaSb, a material with high temperature resistance. Lower switching energies can be beneficial for device scaling. A new device structure, the superlattice, will be investigated for its low switching energies.
Chapter 4
Fabrication

This chapter presents the process from bare wafer to completed device for the phase change memory cells created.

4.1 Introduction

In this investigation, it was important to create a simple phase change memory cell using a simple fabrication process with minimal steps. A cross section of the design can be seen in figure 4.1. The phase change material is sandwiched between a tantalum bottom electrode and an aluminum top electrode.

Figure 4.1 Cross sectional view of memory cell design.

Tantalum is frequently seen in PCM cell operations, and its ability to withstand high temperatures makes it ideal for a bottom electrode candidate. The design uses the bottom
electrode as the heating element to switch the phase of the memory material being used. The simple design will reduce any fabrication difficulties.

4.2 Mask Set Design

Two different mask sets were used due to an upgrade in lithography tool between investigations. Both mask layouts were created using the IC Station layout editor from Mentor Graphics. The first mask set features two terminal PCM cells of varying feature sizes starting from 1 μm² and larger, shown in figure 4.2.

![Mask Set Design](image)

Figure 4.2 (a) Sample test structure for (b) mask designed for Canon lithography tool.

This mask layout also included various test structures for evaluating different steps of the process. This was the first mask set developed for this purpose so test structures were needed for evaluating the fabrication process.
The second mask set features two terminal PCM cells of sizes 0.35, 0.4, 0.5 and 1 μm² with CBKR test structures for measuring contact resistances, shown in figure 4.3. Material overhang was kept at 3λ compared to the active layer throughout the different cell sizes.

Figure 4.3 (a) Sample test structure for (b) mask designed for ASML lithography tool.

4.3 Process Flow for Device Fabrication

The process flow for the two terminal devices is summarized in figure 4.4. Fabrication was carried out at the Semiconductor and Microsystems Fabrication Laboratory at the Rochester Institute of Technology (RIT). Masks fabrication is performed using a MEBES III system at RIT. Deposition of the memory material was performed at the IBM T.J. Watson Research Center.
Silicon wafers, 150 mm in diameter are subjected to an RCA clean. The RCA clean is a standard set of cleaning steps used in industry that consist of 10 minutes in 3:1 hydrogen peroxide + ammonium hydroxide, 5 minutes of deionized water rinse, 1 minute in 50:1 hydrofluoric acid + deionized water, another 5 minute rinse, 10 minutes in 3:1 hydrogen peroxide + hydrochloric acid, 5 minute rinse, and finally a spin-rinse-dry step. Even though the surface is not part of a device, and is being used as a substrate, it is important to keep clean the tools being used. This is followed by a 650 nm oxide growth to electrically isolate the device from the substrate.

Tantalum, 150 nm thick, is DC sputtered by flowing 20 sccm of Ar gas at a deposition pressure of 5 mTorr and 250 W of power in a CVC 601 sputtering system. To pattern the bottom
electrode, the surface of the wafer is primed using HMDS at 140°C for 60s to enhance adhesion between the photoresist and wafer surface. Wafers are then spin coated with about 1 μm of OIR 620-10 PR at 3250 rpm for 30s. This is followed by a soft bake at 90°C for 60s to drive the solvent out of the spun on resist. Wafers are then exposed by means of the lithography tool available at that time. The first mask set used was exposed by means of a Canon i-line stepper (λ = 365 nm), using a dose of 200 mJ/cm². The second mask set used was exposed using an ASML PAS 5500/200 stepper, using a dose of 250 mJ/cm². A post exposure bake follows the lithography step, for 60s at 110°C. The resist film is developed for 48s in CD-26 developer, followed by a rinse and a hard bake for 60s at 120°C. The tantalum bottom electrode is then etched using a Drytech Quad tool, a reactive ion etcher, via 125 sccm of SF₆ at a power of 125 W and a pressure of 125 mTorr. Removal of resist at this point was done via asher using an O₂ plasma tool (Branson Asher or GaSonics Aura 1000 Asher) pending availability.

The interlevel dielectric being used is a plasma-enhanced chemical vapor deposition (PECVD) SiₓNᵧ. Prior to deposition, a de-scum is required to remove any residual resist that might have hardened during previous steps. A Piranha clean is carried out by heating a back containing a 4:1 mixture of H₂SO₄ and H₂O₂ respectively. Following this, PECVD SiₓNᵧ of 100 nm is deposit at 400°C in an AME P5000 tool, flowing 130 sccm of SiH₄ and 60 sccm of NH₃ at 4.5 Torr and at a power of 600 W. The SiₓNᵧ is patterned using photolithography following the process described above. This is then etched in a LAM 490 AutoEtch tool, by flowing 200 sccm of SF₆ at 125W of power, and a pressure of 260 mTorr. This step is timed due to both the SiₓNᵧ and the underlying Ta being subject to the etch. Residual photoresist is ashed once again in O₂ plasma.
The substrate up to this point is now prepared for chalcogenide material deposition. To be able to define the chalcogenide material active layer, a lift of process is developed. This process helps protect the chalcogenide after deposition so it does not come into contact with any abrasive chemicals or environments. The wafer is prepared for lift-off by priming it with HMDS at 140°C for 60s, followed by about 1 μm of AZ1518 resist at 2000 rpm for 30s. This is followed by a soft bake at 110 °C for 60s. The wafers are then subject to a lithography step and developed, as previous. The success of the lift-off process was verified through atomic force microscopy as shown in figure 4.5. Atomic force microscopy is a high resolution microscope that consists of a cantilever with a sharp tip at the end that is used as the specimen scanner. When the probe tip comes into close proximity of the surface of the sample, the forces between them cause the cantilever that is supporting the probe to deflect, avoiding collision between the sample and the probe tip. The specimen is line-scanned until the desired resolution is reached.
Confirmation that the chalcogenide deposit was present in the area defined was also verified through energy-dispersive X-ray spectroscopy (EDAX) mapping, shown in figure 4.6. EDAX is a technique used to characterize the elemental composition of a sample. As a beam of electrons interacts with the surface (such as when using a scanning electron microscope), characteristic x-rays are emitted from the sample which correspond to specific elements. These x-rays are measured and counted to produce the image shown in figure 4.6.
Figure 4.6 EDAX mapping of a cell after lift-off process.

The prepared substrate is cleaned at the IBM T.J. Watson Research Center using a brief Ar sputter clean to remove any oxidation on the exposed Ta surface. The chalcogenide is then co-sputtered from GST and GeTe alloy targets, and targets for specific the dopants needed. The newly deposit wafers are then ready for lift-off. This is done in an acetone bath on an Ultrasonic Wet Bench for 10 min, followed by a rinse using isopropyl alcohol.

The aluminum top electrode is deposited using a CHA Flash Evaporator tool. A target of 600 nm of aluminum is desired and monitored on an Inficon Film Thickness Monitor tool attached to the evaporator. Lithography is preformed using the previous method as the bottom electrode. The aluminum is in a solvent strip bath using Baker PRS-2000 Resist Stripper. The finished devices, shown in figure 4.7, go on to the testing phase which will be discussed in each section.
Figure 4.7 Finished PCM devices, active area located within the delineated circle.
Chapter 5
PCM Cells with Doped GST & GeTe

This chapter discusses the effects of introducing dopants to phase change memory operation. Cells are created with different dopants and tested for desired characteristics.

5.1 Dopant Effects in Phase Change Memory Introduction

Doping has been shown to be an efficient way to modify the properties of phase change materials. Modification of the phase change material parameters can influence PCM device performance. Table 5.1 summarizes the influence that material parameters have on performance.

<table>
<thead>
<tr>
<th>Phase change material parameter</th>
<th>Influence on PCM device performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystallization temperature & thermal stability of the amorphous phase</td>
<td>• Data retention and lifetime
• SET power</td>
</tr>
<tr>
<td>Melting temperature</td>
<td>RESET power</td>
</tr>
<tr>
<td>Resistivity in amorphous and crystalline phases</td>
<td>• ON/OFF ratio
• SET and RESET current</td>
</tr>
<tr>
<td>Threshold voltage</td>
<td>SET voltage and reading voltage</td>
</tr>
<tr>
<td>Thermal conductivity in both phases</td>
<td>SET and RESET power => power</td>
</tr>
<tr>
<td>Crystallization speed</td>
<td>• SET pulse duration
• Data rate</td>
</tr>
<tr>
<td>Melt-quenching speed</td>
<td>RESET pulse duration => power</td>
</tr>
</tbody>
</table>

Oxygen doping in phase change material Ge$_1$Sb$_2$Te$_4$ has shown a change in the high resistance crystalline structure [20]. Nitrogen, silicon, and carbon doping has also been used in Ge$_2$Sb$_2$Te$_5$ (GST) materials, which alter the amorphous structure of the atoms [21]. Implanted Sb
atoms in GST materials enhances the crystallization rate [22]. Molybdenum doping in GST was found to reduce the resistivity level in its amorphous phase [23]. These investigations show that dopants can lead to improvement in material parameters for memory applications. High crystallization temperatures are expected to improve data retention and help integrate into high temperature applications. An increased resistance in both the amorphous and crystalline phase can reduce programming current and decrease power use. Threshold field, the ratio of the threshold voltage to the thickness of the cell, also needs to be increased for ultra-scale devices. Current PCM technology shows threshold field voltages on the order of 1V, which reduce with device dimensions. For ultra-scale devices, this voltage becomes comparable to the reading voltage, which can disturb the device state during the read operation, causing memory loss.

5.2 Device Fabrication

This section investigates the influence of nitrogen, silicon, titanium, and aluminum oxide doping on the characteristics of GST and GeTe phase change materials. The films were co-sputtered at IBM T.J. Watson Research Center from GST and GeTe alloy targets, and silicon, titanium or aluminum oxide targets. For nitrogen doping, films were deposited from GST and GeTe alloy targets in an argon-nitrogen gas mixture. The thickness of the phase change material films was 50 nm. After doping, the film composition was determined by Rutherford backscattering spectroscopy and particle-induced x-ray emission. Table 5.2 summarizes the film compositions.

<table>
<thead>
<tr>
<th>Phase change material</th>
<th>Dopant</th>
<th>Composition (at. %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GST</td>
<td>None</td>
<td>Ge 23.3 Sb 27.3 Te 49.4</td>
</tr>
<tr>
<td>GST</td>
<td>N</td>
<td>Ge 21.0 Sb 246 Te 44.5 N 9.9</td>
</tr>
<tr>
<td>GST</td>
<td>Si</td>
<td>Ge 22.6 Sb 26.5 Te 47.9 Si 3.0</td>
</tr>
<tr>
<td>GST</td>
<td>Ti</td>
<td>Ge 22.0 Sb 25.8 Te 46.7 Ti 5.5</td>
</tr>
<tr>
<td></td>
<td>GST</td>
<td>GeTe</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>Al2O3</td>
<td>Ge 22.4</td>
</tr>
<tr>
<td>GeTe</td>
<td>None</td>
<td>Ge 50.7 Te 49.3</td>
</tr>
<tr>
<td>GeTe</td>
<td>N</td>
<td>Ge 45.5 Te 44.2</td>
</tr>
<tr>
<td>GeTe</td>
<td>Si</td>
<td>Ge 48.7 Te 47.4</td>
</tr>
<tr>
<td>GeTe</td>
<td>Ti</td>
<td>Ge 45.0 Te 43.8</td>
</tr>
<tr>
<td>GeTe</td>
<td>Al2O3</td>
<td>Ge 46.7 Te 45.5</td>
</tr>
</tbody>
</table>

5.3 Time-Resolved XRD Analysis

The films were characterized by in situ time-resolved x-ray diffraction (XRD). During x-ray diffraction, a beam of x-rays strikes the target crystal, producing scattered beams. These beams land on a detector set to a specific angle of incidence which creates a diffraction pattern of beams of different magnitudes and distances between them.

Time-resolved XD was done in a helium atmosphere at beamline X20C of the National Synchrotron Light Source. The beamline is equipped with an in situ boron nitride heater stage and the intensity of the XRD peaks was detected by a fast linear diode array detector that monitors the intensity of the XRD peaks over a 2θ range of 15°. The center of the detector was located at 2θ = 31° (as seen in figure 5.1) which allowed the detection of strong GST and GeTe XRD peaks at the x-ray wavelength used of 1.797 Å.

Figure 5.1 Time resolved XRD measurements on GST and GeTe, centered on 2θ = 31°.
The heater was ramped at a rate of 1°C/s up to a maximum temperature of 450 °C. Devices were then fabricated using the doped materials, with electrical testing done to determine the threshold field. The devices used a tantalum bottom electrode with an aluminum top electrode. Low temperature processes were used such that the phase change material was still in the amorphous, as-deposited state after device fabrication was finished. Single cell devices of 1 μm² area were electrically tested, using an HP4145B parameter analyzer, by sweeping a 0-50 uA current and recording the threshold voltage. Resistance ratio measurements were done using the same parameter analyzer, sweeping the current, and applying 6V amplitude, 100 ns width, 20 ns rise/fall time pulse using an Agilent 81101A pulse generator. The SET and RESET resistances were then read at a voltage of 0.2V across the cell. The threshold field was calculated assuming the full 50 nm film thickness was amorphous.

5.4 Structural Results

Time resolved XRD revealed an increase in the crystallization temperature for all dopants. Nitrogen increased the GST crystallization temperature the most, while titanium increased the GeTe crystallization the most. Figure 5.2 shows the intensity of diffracted XRD peaks as a function of temperature for undoped and doped GST and GeTe at a ramp of 1°C/s to 450°C.
Figure 5.2 Time resolved XRD measurements on different dopant compositions plot as the intensity of the peaks vs. temperature as was ramped. These show the transition between amorphous and crystalline states for the materials investigated.

As the GST samples are heated, phase change occurs; the original amorphous state crystallizes into a rocksalt crystal structure, followed by a hexagonal phase structure at much higher temperatures. For GeTe based samples, the amorphous state crystallizes into rhombohedral crystal structures. The material that exhibited the highest crystallization
temperature was Ti doped GeTe with a crystallization temperature of about 350°C compared to undoped GeTe which exhibits a crystallization temperature of around 170°C. Aluminum oxide doping had the least effect, probably due to the low doping levels. All the GST samples first crystallized into a rocksalt crystal structure, followed by a hexagonal phase at higher temperature shown in figure 5.3.

Figure 5.3 θ-2θ scans of undoped and doped, GST and GeTe respectively, after a ramp to 450°C.

Not only did the crystallization temperature increased with the doping, but so did the transition temperature from rocksalt structure to hexagonal structure, up to 540°C for nitrogen doped GST compared to 380°C for undoped GST. Doping also caused some transitions to be more gradual, in particular for N-GST and Ti-GST. For doped GeTe, the crystal structure after heating was rhombohedral, similar to undoped GeTe.
Figure 5.4 Resistivity as a function of temperature for undoped and doped, GST and GeTe respectively.

Crystallization temperatures determined using resistivity vs. temperature measurements seen in figure 5.4 correspond within a few degrees with the crystallization measurements measured by time-resolved XRD. For GST, the resistances in the amorphous and crystalline phase were increased for all dopants except for Ti. For GeTe, nitrogen doping increased the resistance in the amorphous phase and Ti doping reduced the resistivity of even more substantially than in the case of GST.

5.5 Electrical Results
Electrical testing of these devices showed threshold switching for all materials. The threshold voltage was found to be a function of phase change material and dopant. Undoped GST showed a threshold field of 60 V/μm, in good agreement with values found in the literature [24].
Undoped GeTe had a substantially higher threshold field of 143 V/μm. High threshold fields are desirable for ultra-scaled devices because the threshold voltage might become
comparable to the reading voltage and the reading operation would disturb the state of the cell. For GST, doping with nitrogen and titanium has little effect, silicon led to a small increase and the largest increase was observed for aluminum oxide doping (60% increase), as shown in figure 5.5. For GeTe, titanium and aluminum oxide doping reduced the threshold field while silicon and nitrogen doping increased it, seen in figure 5.6. Nitrogen-doped GeTe had the highest threshold field of around 248 V/μm, a 73% increase compared to undoped GeTe. Table 5.3 summarizes the data for the threshold field of the various phase change materials.

<table>
<thead>
<tr>
<th>Phase change material</th>
<th>Dopant</th>
<th>Threshold Voltage (V)</th>
<th>Threshold Field (V/μm)</th>
<th>ON/OFF Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>GST</td>
<td>None</td>
<td>3</td>
<td>60</td>
<td>10^-8</td>
</tr>
<tr>
<td>GST</td>
<td>N</td>
<td>3.5</td>
<td>70</td>
<td>10^-7</td>
</tr>
<tr>
<td>GST</td>
<td>Si</td>
<td>3.95</td>
<td>79</td>
<td>10^-7</td>
</tr>
<tr>
<td>GST</td>
<td>Ti</td>
<td>2.9</td>
<td>58</td>
<td>10^-7</td>
</tr>
<tr>
<td>GST</td>
<td>Al2O3</td>
<td>4.8</td>
<td>96</td>
<td>10^-7</td>
</tr>
<tr>
<td>GeTe</td>
<td>None</td>
<td>7.15</td>
<td>143</td>
<td>10^-7</td>
</tr>
<tr>
<td>GeTe</td>
<td>N</td>
<td>12.4</td>
<td>248</td>
<td>10^-7</td>
</tr>
<tr>
<td>GeTe</td>
<td>Si</td>
<td>9.65</td>
<td>193</td>
<td>10^-6</td>
</tr>
<tr>
<td>GeTe</td>
<td>Ti</td>
<td>3</td>
<td>60</td>
<td>10^-7</td>
</tr>
<tr>
<td>GeTe</td>
<td>Al2O3</td>
<td>3.5</td>
<td>70</td>
<td>10^-5</td>
</tr>
</tbody>
</table>

5.6 Discussion
Dopants have shown a definite change in the characteristics of the phase change materials that were investigated. For GST, nitrogen was the most successful in terms of modifying materials parameters that are beneficial for PCRAM applications leading to an increase in crystallization temperature (good for data retention) and increase in resistances (reduction in RESET current). Doping with nitrogen suppresses grain growth in the phase change material, creating smaller grain sizes. The small grains increase crystallization temperature and increase the resistivity of the material [25]. Aluminum oxide doping had the largest effect for increasing
the threshold voltage (important for device scaling). For GeTe, titanium doping led to the highest crystallization temperature, but it also reduced the ON/OFF ratio. Nitrogen appears to be a better candidate; it also increases the crystallization temperature substantially and leads to higher threshold fields. Figure 5.7 shows a summary of these results, ordered by the magnitude of the threshold field.

Figure 5.7 Graphical representation of threshold field vs. dopant compositions investigated.
Chapter 6
Investigating Resistance Drift

This chapter introduces the phenomenon of resistance drift in phase change memory. It discusses a theory of the failure mechanism, and investigates it in the doped devices made previously.

6.1 Introduction to Resistance Drift

Resistance drift is a form of bit failure that can happen in phase change memory applications. The resistance of a cell can change over time, which would cause data loss and lower lifetime. Reasons for this failure and mitigation factors need to be found. This resistance drift might be related to structural rearrangement of the chalcogenide [19]. The amorphous chalcogenide volume develops compressive stress as it solidifies, thus after a cell RESET operation, the amorphous region is surrounded by a crystalline phase, creating an increased stress which eventually nucleates causing a loss of data [26]. This nucleation of crystalline grains are found to be random in nature, causing data loss to have a stochastic behavior, which in turn makes the phenomenon difficult to model [27].

Usually chalcogenide materials rest in a crystalline state. When material is switched to its amorphous state, resistance drift will bring the material back to its original crystalline state, as seen in figure 6.1.
6.2 Resistance Drift

For this investigation, the chalcogenide received is kept in its as-deposited amorphous state throughout processing. After switching to its crystalline state, drift brings the material to its original amorphous state, shown in figure 6.2.

It can be theorized that since drift in these devices was encountered from its crystalline state towards an amorphous state, that the random nucleation of grains are not limited to crystalline grains, but can also produce amorphous grains.
6.3 Drift Measurements

Testing this phenomenon is done by first finding its amorphous resistance using a small read voltage sweep, 0.1-0.5V, and using the resulting current to get an average resistance at that point in time. The materials state is then switched to its crystalline state with a current sweep from 0-50 μA. The same small read voltage sweep, from 0.1-0.5V, is reapplied at regular time intervals up until the cell exhibits its amorphous state resistance. The previous section’s devices are used to investigate the resistance drift using different dopants. Figures 6.3 and 6.4 show the resistance drift in these devices.

![GST-based Device Drift](image)

Figure 6.3 Resistance Drift in doped GST devices.
6.4 Discussion

Drift testing in these devices show a definite resistance drift for all doped devices. This shows that resistance drift is a function of the dopants in the device material. A summary is shown in Table 6.1.

Table 6.1. Summary of Drift Time for Doped PCM Devices

<table>
<thead>
<tr>
<th>Phase change material</th>
<th>Dopant</th>
<th>Drift Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GST</td>
<td>None</td>
<td>120</td>
</tr>
<tr>
<td>GST</td>
<td>N</td>
<td>1000</td>
</tr>
<tr>
<td>GST</td>
<td>Si</td>
<td>1000</td>
</tr>
<tr>
<td>GST</td>
<td>Ti</td>
<td>600</td>
</tr>
<tr>
<td>GST</td>
<td>Al2O3</td>
<td>600</td>
</tr>
<tr>
<td>GeTe</td>
<td>None</td>
<td>180</td>
</tr>
<tr>
<td>GeTe</td>
<td>N</td>
<td>120</td>
</tr>
<tr>
<td>GeTe</td>
<td>Si</td>
<td>180</td>
</tr>
<tr>
<td>GeTe</td>
<td>Ti</td>
<td>1200</td>
</tr>
<tr>
<td>GeTe</td>
<td>Al2O3</td>
<td>1200</td>
</tr>
</tbody>
</table>
At this 1 μm2 size, undoped GST shows a drift time of 120s. Undoped GeTe had a comparable drift time of 180s. Eliminating drift is important for retention of data in non-volatile memory devices. Any resistance drift could compromise stored data, in addition to making it impossible to create multi-level memory cells. For GST, doping with titanium and aluminum oxide had the smallest impact, lasting an average of 600s before drift occurs. The largest impact was found with nitrogen and silicon doping, making the cell last 1000s before the occurrence of drift. For GeTe, nitrogen doping was found to adversely affect drift time, lowering the time down to 120s, from the undoped 180s. Silicon doping was found to have very little to no change. The largest impact was found in titanium and aluminum oxide dopings, where the cells lasted an average of 1200s for both types of dopants.
Chapter 7
Gallium Antimonide PCM

This chapter introduces a new material used for phase change memory. It presents a description of the desired characteristics and goes on to creation and testing of these devices.

7.1 GaSb Introduction

Gallium Antimonide (GaSb) has shown a high melting temperature of 711.7°C [28], which correlates with a high crystallization temperature. This makes it ideal for data retention and high temperature applications. Stochiometric films of Ga$_{50}$Sb$_{50}$ have been found to have very short (<15) crystallization times from as-deposited amorphous to crystalline phase [28]. These fast phase change times make it ideal for high-speed applications. Figure 7.1 shows composition as a function of crystallization temperature for different compositions which include stochiometric Ga$_{50}$Sb$_{50}$.

Figure 7.1 Ternary phase diagram depicting different GaSbTe compositions and their respective crystallization temperature. [28]
7.2 Device Creation
This section investigates the influence of different volume cells on the threshold voltage, ON/OFF ratio, and resistance drift in GaSb memory devices. GaSb was sputtered at IBM T.J. Watson Research Center onto the device wafers to create a stochiometric Ga₅₀Sb₅₀ composition. Single cell devices of area 1 μm² and 0.5 μm², with thicknesses of 50, 75, and 100 nm were fabricated, with electrical testing done to determine the threshold voltage, ON/OFF ratio and resistance drift. The devices used a tantalum bottom electrode with an aluminum top electrode. Low temperature processes were used after the phase change material was deposited such that the material was still in the amorphous, as-deposited state after fabrication was finished. Electrical testing was done using an HP4145 parameter analyzer, by sweeping the current and recording the threshold voltage. Resistance measurements were also done before and after the resistance sweep, at 0.1V across the cell. Resistance drift was done by setting the material to its low resistance state, and measuring the resistance of the cell at regular intervals.

7.3 Electrical Results
Electrical testing of these devices showed threshold switching for all sized cells, as shown in the following representative curves, figures 7.1 and 7.2.
Figure 7.1 Representative electrical data for 0.5 μm sized devices.
Threshold voltage was also found to be a function of the phase change volume. The largest GaSb cell of volume 0.1 μm3 showed a threshold field of 55 V/μm2, which corresponds to the smallest threshold field in the investigation. High threshold field is desirable for ultra-scaled devices, because at those sizes, the threshold voltage might be comparable to the reading voltage and could disturb the stored memory in the cell. The smallest GaSb cell of volume 0.0125 μm3 showed a threshold field of 156 V/μm2, a difference of 101 V/μm2 between the smallest and largest cell. The threshold field was expected to rise as the cell volume decreased, but this was not the case with the GaSb cell of area 0.5 μm2 and volume of 75 nm which had a low threshold field of 64 V/μm2. A summary of the data can be seen in table 7.1.
Table 7.1. Summary of Findings for GaSb Devices of Different Dimensions

<table>
<thead>
<tr>
<th>Phase change material</th>
<th>Cell Area (μm²)</th>
<th>Cell Thickness (nm)</th>
<th>Threshold Voltage (V)</th>
<th>Threshold Field (V/μm²)</th>
<th>ON/OFF Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaSb 1</td>
<td>1</td>
<td>50</td>
<td>6.5</td>
<td>130</td>
<td>10⁻⁵</td>
</tr>
<tr>
<td>GaSb 1</td>
<td>1</td>
<td>75</td>
<td>5.2</td>
<td>69</td>
<td>10⁻⁵</td>
</tr>
<tr>
<td>GaSb 1</td>
<td>1</td>
<td>100</td>
<td>5.5</td>
<td>55</td>
<td>10⁻⁵</td>
</tr>
<tr>
<td>GaSb 0.5</td>
<td>0.5</td>
<td>50</td>
<td>7.8</td>
<td>156</td>
<td>10⁻⁶</td>
</tr>
<tr>
<td>GaSb 0.5</td>
<td>0.5</td>
<td>75</td>
<td>4.8</td>
<td>64</td>
<td>10⁻³</td>
</tr>
<tr>
<td>GaSb 0.5</td>
<td>0.5</td>
<td>100</td>
<td>10.7</td>
<td>107</td>
<td>10⁻⁵</td>
</tr>
</tbody>
</table>

7.4 Drift Measurements

Drift measurements on these devices were also performed; summarized in table 7.2. This was done by switching the material’s state with a current sweep from 0-50 μA, then using a small read voltage sweep, from 0.1-0.5V, and using the resulting current to get an average resistance at that point in time. This is done at regular time intervals. All the devices show different drift times, which means that resistance drift is also a function of the device area and thickness. The GaSb cell of 0.5 μm² area, and thickness of 50 nm stood out as having the longest time before drift, with 24 hours, while the shortest time before drift occurred was the GaSb cell of 1 um² area, and thickness of 50 nm, at 45s. It was expected that as the cell volume decreased, the time to drift would increase, but this was not the case as in the GaSb cells of 0.5 um² area, the 100 nm thick cell lasted 5 minutes while the 75 nm thick cell lasted 2 minutes.

Table 7.2. Summary of Drift Time for GaSb Devices of Different Dimensions

<table>
<thead>
<tr>
<th>Phase change material</th>
<th>Cell Area (μm²)</th>
<th>Cell Thickness (nm)</th>
<th>Drift Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaSb 1</td>
<td>1</td>
<td>50</td>
<td>45 s</td>
</tr>
<tr>
<td>GaSb 1</td>
<td>1</td>
<td>75</td>
<td>4 min</td>
</tr>
<tr>
<td>GaSb 1</td>
<td>1</td>
<td>100</td>
<td>2.5 min</td>
</tr>
<tr>
<td>GaSb 0.5</td>
<td>0.5</td>
<td>50</td>
<td>24 hours</td>
</tr>
<tr>
<td>GaSb 0.5</td>
<td>0.5</td>
<td>75</td>
<td>2 min</td>
</tr>
<tr>
<td>GaSb 0.5</td>
<td>0.5</td>
<td>100</td>
<td>5 min</td>
</tr>
</tbody>
</table>
7.5 Discussion

The ON/OFF ratio of the devices was also affected due to cell sizes. This was seen in the 0.5 \(\mu m^2 \) area cells, while the 1 \(\mu m^2 \) area cells exhibited no change, with their ON/OFF ratio of \(10^5 \) \(\Omega \) difference. An increase in resistances is beneficial due to a large ratio being able to clearly define what memory SET and RESET state would be. This is very important for multi-level cell applications where different range of resistances can represent a different cell state. The GaSb cell of 0.5 \(\mu m^2 \) area, and thickness of 50 nm showed the highest ratio of \(10^6 \) \(\Omega \) difference, while the cell of 0.5 \(\mu m^2 \) area, and thickness of 75 nm showed the lowest ratio of \(10^3 \) \(\Omega \) difference. A graphical summary is shown in figure 7.3.

![Graphical Summary](image)

Figure 7.3 Summary of threshold field in GaSb cell dimensions.

It was also found that the smallest volume devices of 0.5 \(\mu m^2 \) area, and thickness of 50 nm stood out as having the longest time before drift, 24 hours, while the largest volume devices of 1 \(\mu m^2 \) area, and thickness of 50 nm, only took 45s for drift to occur. This shows a correlation
between device volume and drift time, which fortunately, as technology scales downward, drift
due to volume of the cell can be ignored as a factor.
Chapter 8
Superlattice PCM

This chapter provides an analysis of a new phase change memory structure. This includes creation and testing of these new structures to attempt to find desired characteristics.

8.1 Superlattice Introduction
After investigating characteristics of devices due to introduced dopants, and different phase change chalcogenides for their characteristics, it made sense to also investigate different phase change memory structures. Using superlattice nanostructures, another phase change device can be created which exhibits desirable characteristics.

8.2 Superlattice
A superlattice structure using phase change memory can achieve low switching energies and has been demonstrated in nanostructures of GeTe and Sb$_2$Te$_3$ of thicknesses between 5Å and 4Å [29]. This is referred to as Interfacial Phase Change Memory (IPCM). The basic concept of superlattice PCM is to alternatively deposit two phase change materials: one with a high crystallization speed and the other with high stability. In bulk phase change phenomena in GST, in its amorphous state, Ge atoms occupy sites principally with covalent bonding. This bonding phase is the high resistance amorphous phase of the material, known as the RESET state. The switching energy needed to switch between the two phases depends on the properties of the device material. This switching energy can be reduced by limiting the movement of the atoms to a single dimension. By aligning the c-axis of the hexagonal Sb$_2$Te$_3$ layer and the <111> plane direction of a cubic GeTe layer, the Ge atoms can switch at the interface of the superlattice
layers, which is shown in figure 8.1. In these nanostructures, the RESET and SET states can be described by their ‘covalent’ and ‘resonant’ bonding states, respectively.

Figure 8.1 (a) Ge is in a tetrahedral environment in amorphous GST and transitions to octahedral in its cubic crystalline phase; (b) Crystal schematic of GeTe/Sb$_2$Te$_3$ superlattice; (c) Superimposed images of two projected sheets of GeTe/Sb$_2$Te$_3$. Ge atoms (with arrows) in GeTe layers move forwards and backwards to the interface with Sb$_2$Te$_3$ layers.

The covalent IPCM nanostructures consist of atomic planes of covalently bonded Ge atoms separated by planes of crystalline Sb$_2$Te$_3$. During the phase transition, the interface between the atomic structures allows the Ge atoms to switch into resonantly bonded octahedral sites. The switching rate for IPCM samples is shown to be approximately four times greater than that of the GST film for low power laser pulses (9.5 mW). Higher power (16.5 mW) and shorter pulses with duration of 25 ns significantly shorten the period of time before crystal growth commenced and allowed complete crystallization without subsequent damage. Resistance R of IPCM and GST based PCRAM cells showed that the currents necessary to reversibly switch IPCM based devices between the SET and RESET states were substantially lower than those
required for identical devices based on GST. The electrical energy needed to SET the GST and IPCM devices is reported as 90 pJ and 11 pJ, respectively [29].

8.3 Device Creation
The devices were created as per the process described in chapter 3, up to the deposition of the superlattice layer. The superlattice layer was co-sputtered at IBM T.J. Watson Research Center onto the device wafers to create a structure of alternating stacks of materials. The structure consists of 8-10 stacks of alternating 1 nm GeTe and 4 nm Sb$_2$Te$_3$ layers for a total thickness of 40-50 nm deposit at room temperature. The structure was then capped with 10 nm of TiN to prevent oxidation of the chalcogenide layer. The process was then continued as described in chapter 3, up to its completion. Film composition was determined by doing an EELS line scan of a device, shown in figure 8.2. The superlattice layers can be seen in the TEM image shown in figure 8.3.

![Figure 8.2](image)

Figure 8.2 EELS line scan showing superlattice layers present in device.
Figure 8.3 TEM showing superlattice layers present in device (darkest layer).
8.4 Electrical Results

It was found that the superlattice devices of 1 μm by 1 μm had a threshold voltage averaging 16.8 V on as-deposit wafers. These devices exhibit a drop in threshold voltage after drift occurred, averaging down to 9.9 V. Table 8.1 shows a summary of each wafer tested.

<table>
<thead>
<tr>
<th>As-Deposit (V)</th>
<th>After Drift (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z8 12.06 ± 0.14</td>
<td>10.87 ± 5.51</td>
</tr>
<tr>
<td>Z9 18.28 ± 3.32</td>
<td>12.73 ± 4.56</td>
</tr>
<tr>
<td>Z10 20.14 ± 5.00</td>
<td>6.15 ± 3.25</td>
</tr>
</tbody>
</table>

The results show that wafer Z10 exhibits the largest as-deposit threshold voltage, although with a large standard deviation, 20.14 ± 5.00 V. This same wafer shows the lowest threshold voltage after drift occurs, 6.15 ± 3.25 V.

8.5 Drift Measurements

These wafers also exhibit drift, which occurred before the 25 minute mark, averaging around 13 minutes. Figure 8.4 shows a graphical summary of these results.
The results show wafer Z10 exhibiting a cell with the longest time to drift, which occurred at 25 minutes. Wafer Z9 exhibits many cells drifting within the 5 minute range.

8.6 Discussion
The threshold voltage found for the superlattice devices created was higher than expected, with an average of 16.8 V. A large variation between wafers was also encountered, which could account for the high threshold voltage. The time to drift averaged about 13 minutes which is expected at the sizes studied, compared to data from previous sections.
Chapter 9
Conclusions and Future Work

Memory technology is an important part of the semiconductor industry, and investigations to further advancements are needed. Phase change memory has shown to be a great candidate for next generation applications, both for low power, and performance. It has been found that further tailoring in material composition of the chalcogenides used can drastically impact device characteristics. Knowledge of these material compositions can be used for specialized applications, or for further advancement in today’s technological standards. Underlying principles of resistance drift should be further explored so it does not affect future devices.

Doping devices has shown to be an effective way of changing the characteristics of phase change materials. It was found that for GeTe based devices, nitrogen doping increased the threshold field from 143 V/μm up to 248 V/μm. Titanium reduced the threshold field the most, down to 60 V/μm. For GST based devices, Al₂O₃ increased the threshold field from 60 V/μm up to 96 V/μm, while none of the other dopants lowered the threshold field significantly. It is also important to consider the ON/OFF ratio for these devices, since in GeTe based devices, doping the material with Al₂O₃ substantially reduced it from 10⁻⁷ down to 10⁻⁵, 3 orders of magnitude difference. In GST based devices, all dopants reduced the ON/OFF ratio by 1 magnitude, from 10⁻⁸ to 10⁻⁷.

Resistance drift is a concern, but doping devices has also shown to be an effective way of extending time before drift occurs. For GeTe devices, doping with Ti or Al₂O₃ raised the time to drift from 180s up to 1200s. Unfortunately, nitrogen doping lowered drift time down to 120s. For
GST based devices, nitrogen or silicon doping raised the average time to drift up from 120s to 1000s. Fortunately, none of the dopings lowered the time to drift. It is determined that dopants will affect drift time drastically for most devices, although there could be a trade-off with threshold field.

Investigating new materials, such as GaSb is also an effective way to change the characteristics of phase change memory. Different dimensions also enhance the effectiveness of these devices. Small dimensions, cell volume of 0.0125 μm³, of GaSb exhibit a high threshold field, of 156 V/μm². This same cell volume also exhibits a higher ON/OFF ratio of 10⁻⁶. Furthermore, average drift time was raised to 24 hours, much higher than the previous studies discussed.

Investigating new structures is also a good way to tailor phase change memory characteristics. Superlattice structures showed a high threshold voltage of 16.8V. The average drift time in this case was about 13 minutes.

There are many further studies that can be done to investigate the different phenomena in these phase change materials. It has been found that size plays an important role in the characteristics of these devices. Creating devices in the nanometer regime can lead to further understanding of the characteristics of these devices. It can also be used to create models that can predict device behavior as scaling occurs. The drift phenomenon needs to be studied, explained, and reduced. The devices created in this investigation never saw a high thermal step before testing, so drifting from crystalline to amorphous state was found, which is the opposite of what is found in literature. New devices should be created which see a high thermal step, as to
investigate if there are characteristic differences in threshold fields, ON/OFF ratios, and time to drift.

It is also important to find out how the physical switching works. Creation of nanoscale devices can help limit the amount of material in the active region of the device. This can then be studied to find how much volume of this material has switched states when the device is in use. Perhaps switching of a larger volume of the material could lead to longer drift times, or the elimination of the phenomenon.
References

