
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

1998

Implementation of the Wavelet-Galerkin method for boundary Implementation of the Wavelet-Galerkin method for boundary

value problems value problems

Adam Scheider

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Scheider, Adam, "Implementation of the Wavelet-Galerkin method for boundary value problems" (1998).
Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F7340&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/7340?utm_source=repository.rit.edu%2Ftheses%2F7340&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Implementation of the Wavelet-Galerkin Method

for Boundary Value Problems

by

Adam K. Scheider

A Thesis Submitted In
Partial Fulfillment of the

Requirement for the
Master of Science

In
Mechanical Engineering

Approved by: Professor _

Josef S. Torok

Thesis Advisor

Professor _

H. Ghoneim

Professor _

K. Kochersberger

Professor _

Charles Haines

Department Head

DEPARTMENT OF MECHANICAL ENGINEERING

COLLEGE OF ENGINEERING

ROCHESTER INSTITUTE OF TECHNOLOGY

MAY 1998

Implementation of the Wavelet-Galerkin Method

for Boundary Value Problems

I, Adam K. Scheider, hereby grant permission to the Wallace Library of the

Rochester Institute of Technology to reproduce my thesis in whole or in part.

Any reproduction will not be for commercial profit.

Date: May 20, 1998 Signature of Author: _

DEDICATION

I dedicate this thesis first and foremost in loving memory of Scott Crouch

and in living recognition of Thomas Haralson. These two men have touched my

life in such a special way that I know I will never meet anyone else like them. I

believe you can only meet very few people so very special. Without them I would

not have grown to be the man that I am today. And I would not have completed

my college career at RIT in the manner in which I have if I had not worked so

hard to make them so proud.

My family took no small part in this act. If I could give any piece of advice

to any person, it would be to not take your family for granted.

The prayers of family and friends have not gone unnoticed, especially

those of Sr. Grace, Sr. Anne, and Fr. Gentile. I hold the Domes and the Denicks

in a distinguished place as well.

Finally, I would like to acknowledge Dr. Torok and the rest of the

Mechanical Engineering faculty. Without them, this would not have been

possible.

TABLE OF CONTENTS

Abstract

1. Introduction toWavelets

2. Example - HaarApproximation

Table 2.1, Subspaces of HaarApproximation

3. Daubechies Wavelets.

4. Variational Formulation

5. Approximation Methods to the Variational Form

6. Galerkin Method

7. Wavelet - Galerkin Method .

8. Example - Analytical .

9. Example Wavelet -Galerkin.

10. Example Galerkin - Quadratic

11. Conclusions

Bibliography

Appendix A (Matlab Programs) .

11

15

16

20

24

26

30

32

34

42

48

50

A1 through A7

Abstract

The objective of this work is to develop a systematic method of

implementing theWavelet-Galerkin method for approximating solutions of

differential equations. The beginning of this project included understanding what

a wavelet is, and then becoming familiar with some of the applications. The

Wavelet-Galerkin method, as applied in this paper, does not use a wavelet at all.

In actuality, it uses the wavelet's scaling function. The distinction between the

two will be given in the following sections of this paper.

The sections of this thesis will include defining wavelets and their scaling

functions. This will give the reader valued insight to wavelets and Discrete

Wavelet Transforms (DWT). Following this will be a section defining the

Galerkin method. The purpose of this section will be to give the reader an

understanding of how weighted residual methods work, in particular, the Galerkin

Method. Next will be a section on how Scaling functions will be implemented in

the Galerkin method, forming theWavelet-Galerkin Method.

The focus of this investigation will deal with solutions to a basic

homogeneous differential equation. The solution of this basic equation will be

analyzed using three separate, distinct methods, and then the results will be

compared. These methods include theWavelet-Galerkin Method, the Galerkin

Method using quadratic shape functions, and standard analytical means. Factors

to be studied include computational time, effort, accuracy, and ease of

implementing the method of solution.

After a thorough comparison has been made, there will be a section to talk

about possible applications of theWavelet-Galerkin method and

recommendations for future work. Predictions of what avenues to pursue in

refining theWavelet-Galerkin method will also be stated. And suggestions on

how to make the method more accurate will be given.

CHAPTER 1

Introduction toWavelets

A wave is usually defined as disturbance in time or space. Periodic

waves, such as a sinusoid, repeat after a finite interval. Fourier analysis is wave

analysis. It expands signals or functions in terms of sinusoids (or, equivalents,

complex exponentials) which has proven to be extremely valuable in

mathematics, science, and engineering, especially for periodic, time-invariant, or

stationary phenomena.

A wavelet is a "small wave", which has its energy concentrated in time to

give a tool for analysis of transient, nonstationary, or time-varying phenomena. It

still has the oscillating wavelike characteristic but also has the ability to allow

simultaneous time and frequency analysis with a flexible mathematical

foundation. This is illustrated below with the wave (sinusoid) oscillating with

equal amplitude over -oo<t<oo and, therefore, having infinite energy and with the

wavelet having its finite energy concentrated around a point or instant of time.

(a) A Sine Wave (b)
Daubechies'

Wavelet Voao

We will take the wavelets and use them in a series expansion of signals or

functions much the same way a Fourier series uses the wave or sinusoid to

CHAPTER 1

represent a signal or function. The signals are functions of a continuous variable,

which often represents time or distance.

A signal or function can often be better analyzed or described or

processed by decomposing it into a series or summation. An example of this

would be digital signal processing (dsp). Say whatever object that is supposed to

pick up the signal, a microphone, accelerometer, guitar pickup, etc... is too

sensitive and the signal has a significant amount of static or interference. By

expressing the signal a summation of terms, it would be possible to throw out the

terms that are causing the unwanted noise, leaving only the clear portion of the

signal.

Therefore, the first step is to express the signal as a series expressed by

linear decomposition by

/(/>= 2X^(0 (1.1)
k

where k is an integer index for the finite or infinite sum. The coefficients ai< are

real-valued expansion coefficients and Tk(t) are a set of real-valued functions of t

called the expansion set. If the expansion set is unique, it is called a basis. A

basis is orthogonal if its inner product of distinct basis functions is zero, that is

(%(t)X(t)) = \X(0% (t)dt = 0 h*l

If the basis is orthogonal, then the coefficients in (1.1) may be calculated by

multiplying both sides by the generic function TkO) and taking the inner product:

ak=(f(t),%(t))
= \f(tm(k)dt (1.2)

CHAPTER 1

For a Fourier series, the orthogonal basis functions are sin(kQ0t) and

cos(kcoot) with frequencies of kco0. For a Taylor's series, the nonorthogonal basis

functions are simple monomials tk, and for many other expansions they are

various polynomials. There are expansions that use splines and even fractals.

For the wavelet expansion, a two parameter system is constructed such

that the linear decomposition is of the form

/(0 = IZA(o (1.3)
k 1

where bothy and k are integer indices and the ^(t) are the wavelet expansion

functions that usually form an orthogonal basis. The set of expansion

coefficients ajik are called the discrete wavelet transform (DWT) of f(t) and the

linear decomposition expression is the inverse transform.

Wavelet Systems

Wavelet expansions are not unique. That is, there may be more than one

wavelet system that may successfully represent a signal or function. However,

all of them seem to have three basic characteristics:

1 . A wavelet system is a set of building blocks to construct or represent a

signal or function. It is a two-dimensional expansion set (usually a

basis, which means it is unique) for some class of one- (or higher)

dimensional signals. In other words, if the wavelet set is given by

^(tjfor indices of j,k = 1,2,..., a linear expansion would be

CHAPTER I

for some set of coefficients aj,k.

2. The wavelet expansion gives a time-frequency localization of the signal.

This means most of the energy of the signal is well-represented by the

discrete expansion coefficients, a-^.

3. The calculation of coefficients from the signal may be done efficiently.

Many wavelet transforms may be calculated with O(N) number of

operations. This means the number of floating-point multiplications

and additions increase linearly with the length of the signal. More

general wavelet transforms require 0(Nlog(N)) operations, essentially

the same as the Fast Fourier Transform (FFT).

A Fourier series maps a one-dimensional function of a continuous variable into a

one-dimensional sequence of coefficients. Whereas the wavelet expansion

maps it into a two-dimensional representation that allows localizing the signal in

both time and frequency. A wavelet representation will give location in both time

and frequency simultaneously. By this explanation, a wavelet representation

resembles a musical score in a way, where the location of the notes tells when

the tones occur and what their frequencies are.

There are three more additional characteristics, which are more specific to

wavelet expansions. These are not so much characteristics but properties that

make wavelets useful. They are:

CHAPTER I

1 . All first-generation wavelet systems are generated from a single scaling

function or wavelet by simple scaling and translation. The two-

dimensional parameterization is attained from the function

Tj,k(t)=2j/2vF(2jt-k)

where j and k are elements of Z, the set of all integers. This equation

is sometimes referred to as the "mother wavelet". The factor
2j/2

maintains a constant norm independent scale of j. This

parameterization of the time or space location by k and the frequency

or scale by j (really the log of the scale) is extremely effective.

2. In addition, almost all useful wavelet systems satisfy multiresolution

conditions. This means that if a set of signals can be represented by a

weighted sum of cb(t-k), then a larger set (which includes the original)

can be represented by a weighted sum of <j>(2t-k). Basically, if the

basic expansion signals are made half as wide and translated in steps

half as wide, they will represent a larger class of signals exactly or give

a better approximation of any signal. This last statement is in essence

what makes wavelets work!

3. Lower resolution coefficients may be calculated from higher resolution

coefficients (via a filter bank). This allows a very efficient calculation of

the expansion coefficients and relates wavelet transforms to a known

area in digital signal processing.

CHAPTER 1

Multiresolution formulation requires two closely related functions, which

are the wavelet *P(t) and the scaling function <f>(t). Together, these

functions allow a large class of functions to be expressed by the form

f(t) = Z cJ(<-*)+ Z Y,d.kV(2>t-k) (1.4)
<T=-C0 *T=-00 j=Q

Another form of this equation is given below. It is created by substituting

the mother wavelet expression into the above equation.

g(t)
=

ZS0 (k)2i0,2^(2Ju-k) +YdJ:dj(k)2^^(21t-k) (1.5)
k k j=j0

A very interesting fact should be noted here, before we go any farther. Each j

term of the summation represents its own subspace of the approximation. The

terms ^(t) actually span the differences between the approximations spanned

by the various scales of the scaling function.

To describe this better, a more general view should be taken. The goal of

the discrete wavelet transform (DWT), eqn (1
.5),

is to approximate a function or

signal over an interval in L2(R). This is the space of functions f(t) with a well

defined integral of the square of the modulus of the function. L2(R) is also known

as the space of finite-energy signals. The
"L"

signifies a Lebesque integral, the

"2"

denotes the integral of the square of the modulus of the function, and R states

that the independent variable of integration t is a number over the whole real line.

For a function g(t) to be a member of that space, it is denoted by: g e L2(R) or

simply g e
L2

Although most of the definitions and derivations are in terms of

signals that are in L2, many of the results hold for larger classes of signals. For

CHAPTER 1

example, polynomials are not in L2, but can be expanded over any finite domain

by most wavelet systems.

Anyway, if the j's reached to infinity, the approximation would span all of

L2

Since all of the j's represent the difference between the subspaces, the

symbolic representation would look like this:

L2

=VQW0W,W2...

It is important to note that the scale of the initial space is arbitrary and could be

chosen at a higher, or lower, resolution. That is to say that jo could take on any

positive or negative integer value we want to assign it. This also includes

negative infinity.

Let's take a closer look at equation (1
.5),

the DWT formula. The first

summation, the single summation, represents only one subspace. It only

represents one term. It is the initial subspace. The value of c(k) is found, almost

instinctually, by finding the dot product of the basic scaling function {t) and the

function we wish to approximate g(t).

c(k)
=

c0(k)
= (g(t)Mt)) = \g{tyt>k(t)dt (1

.6)

The dj(k) coefficients are found in a similar way by dotting the function g(t) with

the wavelet Tj,k(t), not the scaling function <f>(t).

d}(k) = d(j,k) = teCO^O) = \g(tyJk(t)dt (1
.7)

The coefficient d(j,k) is sometimes written as dj(k) to emphasize the difference

between the time translation index k and the scale parameter j. The coefficient

CHAPTER I

c(k) is also sometimes written as q(k) or c(j,k) if a more general "starting
scale"

other than j=0 is used for the lower limit. These formulas may be used so long as

the wavelet system being used is orthogonal. This is no minor point to overlook.

Although, most wavelet systems are orthogonal in nature. This is one of the

mathematical requirements that the wavelets are subjected to when being

constructed.

We shall now define the scaling function <(>(t) and the wavelet ^(t). Both of

these functions are based upon recursion. I will simply state the definitions.

^(0 =Z/2(")^(2^-) neZ (1.8)
n

T(0 =][>i(")V2<zK2/-h) neZ (1.9)
n

In these equations, Z is the set of all integers. The coefficients h(n) are a

sequence of real or perhaps complex numbers called scaling functions and the

V2 maintains the norm of the scaling function with the scale of two. The

coefficients h^n) are related to the scaling function coefficients. Due to the

requirement that the wavelets span the
"difference"

between the subspaces and

the orthogonality prerequisite, hi(n) is related to h(n) by

hi(n) = (-1)nh(1-n).

I will demonstrate how to perform a discrete wavelet transform on a simple

polynomial in order to illustrate its usage. The example is in the next chapter.

10

CHAPTER 2

Example - HaarApproximation

This example demonstrates how to use a discrete wavelet transform

(DWT) to approximate a given function. The function, chosen at random, is

defined as g(t)
=
5t2

- 3t + 1 . The wavelet to be used is the simplest wavelet

known. It is called the Haar wavelet. The Haar scaling function is what is

commonly known as the unit step function. However, if the formula that is given

for the scaling function is referred to, the scaling function has coefficients

/2(0) = 1/V2 and /z(1) = 1/V2.

> t

Haar Scaling Function <|>(t)

"? t

Haar Wavelet T(t)

The initial scale, j0, was chosen to be zero. As stated in the earlier

section, it could be chosen at random. Zero was picked because it seemed

logical. Also, the interval on which we want the approximation was picked to be

from zero to one because it seemed logical.

The first step was to integrate the function times the scaling function over

the internal. The scaling function is simply the unit step function from zero to

one.

c(k)
= $ (5t

2
- 3r + 1)(1)a& = 1 . 1 66667

11

CHAPTER 2

This becomes our V0 subspace. The plot is shown on the following page. The

next subspace is approximated by finding d0(0). This means finding the value of

the integral of the wavelet times the test function over the interval.

05

d0(0)=
J(5f2

-3f + 1)(1)df+
j(5t2

-3t + 1)(-1)df = -0.500000

05

This spans the subspaceW0 which is the difference between the adjacent

subspaces. If the spreadsheet is referred to, look at the W0 column. It shows a

negative 0.5 value halfway down, and then a positive 0.5 the rest of the way.

This is due to the DWT formula. The coefficient must be multiplied by its

wavelet. In this case, the wavelet simply flops from positive one, to negative one.

The next step is finding di(0) and di(1). This is what the associated

wavelets look like.

*i

0.5

0.5

These graphs show how the scaling and translation principles work. The

wavelets still have the same height, only they are in different places and scaled.

Both of these wavelets have magnitudes of 1 everywhere. The coefficients are

calculated using the following formulas.

025 0.5

d,(0) = J(5f2-3f + 1)(1)rf/ +
J(5r2

- 3/ + 1)(-1)df = 0.031 2500

025

12

CHAPTER 2

0 75

d, (1) =
|(5r2

-3t + 1)(1)<# +
J(5r2

- 3/ + 1)(-1)dSf = -0.281 2500

0.5 0.75

These coefficients may then be used to calculate the values in column

W1 . They must be multiplied by V2 and by the wavelet, of course. This can be

found in the formula. The approximation to g(t) may be found by summing all the

previous subspaces, including V0.

At any rate, it should be clear now how each successive subspace is

approximated. The graphs show a few more approximations. It can be seen that

the last approximation is not a very good one. However, it does serve the

purpose to demonstrate how the DWT works. Also, this example clearly shows

how coarse the Haar wavelet really is. The challenge is to find smoother

wavelets which are still orthogonal. Ingrid Daubechies has done a lot of work in

this area. She really is considered to be one of the leaders in wavelet

technology.

13

Haar Approximation of g(t)=5tA2-3t+1 Haar Approximation of g(t)=5tA2-3t+1

3

2 5

2

I 15

0 5

0

0 2 0 4 0 6 0.8 1

t

Figure 1

3

25

2

15

n

05

0

0 2 0 4 0.6 0

Figure 2

Haar Approximation of g(t)=5tA2-3t+1

02 04 06 08

Haar Approximation of g(t)=5tA2-3t+1

25

2 -

15-

i -

05

|-*-W2J

0 02 04 06 08 1 12

Figure 3 Figure 4

HaarApproximation of g(t)=5tA2-3t+1

r**

r*^

|--W3|cn

}

! C 02 04 06 08 1 1

t

2

35 -

3 -

2.5 -

2 -

1.5 -

1

05

0 J

Known Test Function

/
/
/

'
known !

'

^-^

~^~-~^^__ ___

) 0.2 0.4 0 6 0 8

t
|

Figure 5 Figure 6

14

,_ ,_

m in
,_ T ^_ ^_

in in
^_ T_ ^_ T_

in in
T_ ^_

.^
,_

in m
,- ,-

c CO CO CM CM 00 00 m in 00 00 CM CM CO CO CO CO CM CM 00 00 in in 00 00 CM CM CO CO

5
o

o o T T

CN CN CM CM Is- Is- in in in in m in r- r- CM CM CM CM
^~ T- o o

T CN CN CO CO CO CO CO CO o o oo 00 sr sr r~- r^- sr sr CO 00 o o CO CD CO CO CO CO CM >! m
CO CO o o ^ T-

in in in m r^ r^ sr sr d d CD CD r-- r-~ o o in in CO CD o o CO oo

.*

00 00 r- Is- co co
o o

in in m m CO co CO CO o q CO CO ^ 00 00 CM CM in in

O d d d d d d d d d d d d d T T CN CM C\i CM

in in CO CO in ID CM CN oo 00 sr sr CD CD CO CO CD CD CN CM CD CD
CM

in

o
in

CO

CM

in

o
in

CO

Is-

CM
Is-

CD
CD
CO
r--

Is-

CN
r--

co
CD
CO

CD CD

CO CO m in in m CO CO CN CN CD CD sr sr sr sr r-- r~- CO CO in m
T T

sr sr CD CD

CD CO o o CD CD Is- Is- CD CD o o CM CM h- r^- ^ ^ o O 00 oo r-- r-- CD CD
T

T

00 00 00 00 CM cm CO CO CO CO co CO 00 00
t

sr sr CD CD CO CO sr sr CM CM CD CO

CO OO o o o o sr sr in in
T

^ ^ o o m in m m CD CD CD CD o O CO CO
CD Is- Is- CO CO co co Is- r- CD CO 5 t h- r^ CO CO CO CO r^ r- CM CM

T T in in
T T

CD CD 00 00 CO CO Is- Is- o o o O
T T

00 CO CD CD CN CN CO CO 00 00 5
CD
5
CD

sj-

-sr

CD CD CO CO CO CO sr sr CD CD o o CO CO CD CD CO CO CD CD CO CO T ^ CM CM t
^~

Is- r- Is- Is- co CO CD CO in m CO CD CO CD CD CO
t T- T~ T

^j ^_; sr sr 00 00 CO CO

o o d d d d d d d d d d d d d d ^ ^ ^ ^ T '- *~
^

*
T~ CM CM

CM CM

.,- ,_

CD CD
,- ,-

T T~ Is- Is- OO 00 in in r~- r- CO CO
r-- c- T ^_ CO CD CD CD in m CD CO in in

CD CD CN CM
T~ x

CD co o o CO CD r^ t-~ sr sr TT sr CM CM T T o O r~- t-- 00 00 sr sr CO CD

CN CN o o CO CD CD CD o o r- r^
CN CM sr sr CO CO

T T

co co
r r--

sr sr sr ^r

O O sr sr CD CD CN CN 00 CO ^
T-

CD CD
T-

^^ o O CM CM T CO CO CM CM CO CO CO CO sr sr

CO sT f CN CN CN CN sr sf CO CO 00 00 CD CD o o o o 00 OO
T~ T-

CD co CM CM sr sr CO CO

5 CN CN CD CO sT sr CN CN CO CO in in
t T

CD CD o o CN CM 00 00 CO CO CD CD o o sr sr

CD CO CN CN CN CM T o o T
T-

T in in CM CM CD CD sr sr CM CN in in CD co Is- r- o o

CN CM o O
T T

O o o o o o o o ^ T O O CN CM o o sr sr o o in in o o Is- Is-

O O
d d

o o
d d d d

o o
d d

o o
d d

o o
d d

o CD
d d q q d d

o o

c
O d 1 1 d d 1 i d d i d d 1 1 d d i i d d i d d i 1 d d

o
CO 00 00 00 CO CO CO CO in in in in r~- r-- r- r-- CN CM CM CM r- r- Is- Is- CM CM CN CM

To sT sr sT sr Is- Is- Is- Is- CO CO CO CO
CD
in

sr

CD

CD
in

^r

CD

CD
in

sr

CO

CD
m

sr

co

m m m m 00 00 CO 00 CM CN CN CN O O o o

E in m m m T T

^ ^ o o o o CO CO CO CO sr sr sr sr t- Is- r- r- t

t ^ t

CD in in in in CD CD CD CD CD CD CD CD r- r~~ r- r- o o o o sr sr sr sr ^r sr ^ sr
X CD CD CO CD in in in in CD CD CD CD co CD co CD h- r- r~- r- 00 CO oo 00 sr sr sr -sr

2 Is- r~- Is- r^ co co CO co in in m in CO 00 00 CO 00 00 CO cq CM CM CM CM

Q.
d d d d d d d d d d d d d d d d

CM CM CM CM

<
m m m m 00 00 00 OO 00 OO CO 00 in m m m CO CO CO CO m in m in OO 00 00 00 in in in in

CO

CO

X

Is- Is- Is- Is- 00 00 00 00 CO CO CO CO
r- r~- h- r^

CD CD CD CD CM CM CM CM 00 00 oo 00
Is- Is- Is- Is-

00 oo 00 00 co co co co sr sr sr sr co co CO CO in in in in CD CD CD CD co co CD CO 00 00 00 00
CN CD CD CD CD *r sr sr sr CO CO CO CO sr sr sr

"a-

in in in in CD CD CD CD CD CO CO CD

^ sT sr sr
si-

in in in in CN CM CM CN CO CO CO CO o o o o
T- T T- T-

r- Is- r-- Is- CD CD CD CD
*? ^ m in in in o o o o o O O o CN CM CM CN T T o o o o Is- Is- h- Is-

o o o o o
d d d d d d d d

o o o O
d d d d

T_ T- T_ T_

d d d d "-;
,_

^ ^
If)

CD
d d d d i 1 1 i d d d d i i i o d o o 1 1 o o o o

O

CO CM CN CN CN CN CM CM CM CD CD CD CD CD O) CD CD sr sr sr sr sr sr sr -sr

Q_ CD CD CD CO co CD co CO Is- Is- Is- I-- r^- r~- r-- r^- ^ ^ ^ ^ ^ T*~ T~* ^ t T~" T T

V
T T~" T"~

in CO OO 00 00 00 00 00 00 sr sr sr sr sr sr sr sr CD CD CD CD CD CD CD CD sr sr sr sr sr sr sr sr

.0 CT) o o o o o o o o CN CN CM CM CM CM CM CN CO 00 00 00 00 OO 00 00 sr sr sr sr sr sr ^r -sr

3
t

^ ^ ^ T ^
t V-

CM CM CN CM CM CM CM CM CO CD CD CO CD CO CD CO CD CO CD CD co CD co co

CO Is- r- Is- Is- r- Is- r- r- CO CD co CD co CD CD CO CM CM CM CM CM CM CM CN o o O o o o o o

d d d d d d d d d d d d d d d d CM CM CN CN cn CM CM CN

CM
*T Tf

Tj-

sr sr sr sr sr sr sr sr sr sr sr
"J"

sr 00 00 00 00 00 00 00 00 CO 00 00 00 00 00 CO 00

CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD sr sr sr sr t sr sr sr sr sr sr sr sr sr sr -sr

25

i
TT ^r -3

TJ-

sr sr sr 5 5 ^ sr 5 5 5 5 r~-

r~-

r-

r~-

r-

Is- r~-

r-

r~- Is-

Is-

Is-

Is- Is-

Is-

n.

Is-

Is-

Is- Is-

r- Is-
CO
r-

"ST

o
sr

o
sr

o
sT

O
sr

o
sr

o
sr

o
sr
o

sr

o
sr

o
sr

o
sr

o
sr

o
sr

o
sr

o
sr

o CO

CD

CO

CD

CO

CD

CO

CD

CO

CD

CO

CD

CO

CD

CO
CD
CO

CD

CO

CD

CO

CD
CO

CD
CO

CD
CO

CD CD
CO CO

d d d d d d d d d
i

d d d d
i
d d d d

i
d d d

1

d
i
d d

1
d

1
d d d d d d d d

Is- Is- Is- Is- Is- Is- Is- Is- r Is- r-- r-- r^ r~- r^ r^ r^. r- r- r^ r- r-- r- r- r- Is- Is- Is- Is- Is- Is- r--

CO CD co CO CD CD CO CD CD CO CD co CO co CD CD CD CD CD CD CO co CD CD CD CO CD co CD CD co co

CD CO CD CO CO CO co CD CO CD CD CD CO CD CD CO CD CO CD co CD CD co CD CD co co CD co CD co co

O) CD co CO co CO CD CD co CD CD CD CO co co CO CO co CO co co CD CD CO CO co CD co co CD CD co co

CD CD CO co CO CD CO co CD CD CD CO CO CO CO CD CO CD co co CD co CD CO co CD CO CO CD CD CO CO

CO CD co co CD CO co CD CD CD CO co co co CO CD CD CD co CO CD CD co co CD cq co cq co CO CO CO

ci d d d d d d d d d d d d d d d

o in in in in m in in in in in in in m in in in in in in in in in in m in in in U^ in m in in

5 o
i

d
i
d d

i

d
i
d d

i

d d d
i

d
i
d d

i
d
i

d
i

d
i
d d d d d d d d d d d d d d d d

Is- t^ r- r- r-- r- r Is- Is- Is- r- h- r-~ r^ r~- r- t- r-^ r^ r^ r~- r r- r- r- Is- Is- Is- Is- Is- Is- Is-

co co co CD co co co CO co CD co co co CO CD co CD CD CD co co co co co co co co CD co co co CO
CD co CD co CD CO CD CD CO co CO CD CD CD CD CD CD CD CD CO co CD CD CD CD CD CO co co CO co co

CO co CD co CD CD CO CD CO CO CO co CO CD co CD CO co co co co co CD CD CO co CD CD co co CO CO
o co co co co CD CD CD CO CO co CO CO co CO co CO co CO CD CD CO co co CO co CO CD CD co CD co co
> co co co CD CO CD CD CO co CO CO CO CO CO CD CD CD CO CD CD CD CD co CO CO CO CO CD CD CD CD CO

CO CO CO co co co CO CD co CO co co co CO co CO co CO CO CO CD CO co co co co CD co CD CD co co

-* o

in

CN

CD
O

in

CN

CO
o

in

CM

m

CN

in
Is-

00

in
r-

co

in

CM

d

in

CN

d

in

CM

CO

in

CM

CO

in
r-

CO

in

CO

in

CO

sr

in

CO

sr

in

d

in

d

in

CM

co
in

in

CM

co
in

m

CM

CO

in

CM

co

in
r~-

00

co

in

00

CO

in
r--

d

in

d

m

CM

00

tfj

CN

00

in
t-

CD

m
Is-

00

in
r--

co

CD

m
Is-

CD

d d

m

CHAPTER 3

Daubechies Wavelets

The family of compactly supported wavelets constructed by Daubechies in

1988 opened the door to a whole new territory in mathematics. Compactly

supported means being defined over a finite, usually small, domain. In fact, the

impact of her work is so powerful that theWavelet-Galerkin method should be

renamed the Daubechies-Galerkin method.

The fundamental aspect is that the Daubechies set of wavelets provide an

orthogonal basis with which to approximate functions. As with all wavelets, the

basic recursion, or dyadic, or multi-resolutional equation takes the form

q>{x)^ak(p(2x-k). (3.1)
k

The ak's are a collection of coefficients that categorize the specific wavelet basis.

The mother wavelet also takes the conventional form

^(x)
= (-1)V^(2*-*) (3.2)

k

These formulas are standard for all the wavelets encountered in practice.

Daubechies work begins when she sets the rules on how to define the

coefficients ak. First, the scaling function must be normalized so that j<pdx = 1 .

This provides for the normalization condition.

Nfak=2 (3.3)
k=0

Hence, we refer to <p(x) and y/{x) of this form as a multiplier 2 system. This also

is gives the
2j/2

term in the DWT significance as a normalizer. Just for reference,

16

CHAPTER 3

one can generalize wavelet systems to any arbitrary nonnegative integer.

The translates of <p are required to be orthonormal, that is

j<p(x-k)<p(x-m) = Skm (3.4)

From the scaling relation this implies the condition

Z^ak_2m=S0m form=0, 1, ..., (N/2)-1. (3.5)
k=0

where 5V is the Kronecker delta symbol. This is the orthonormal condition. For

coefficients satisfying these two conditions, the functions consisting of translates

and dilations of the wavelet function,
y/(2]

x-k), form a complete, orthogonal

basis for square integrable functions on the real line, L2(R).
"L"

signifies a

Lebesque integral, the
"2"

denotes the integral of the square of the modulus of

the function, and R means that the independent variable of integration is a

number over the whole real line. In other words, this is the space of all functions

with a well defined integral of the square of the modulus of the function.

Daubechies also states that if only a finite number of the ak are nonzero,

then <p will have compact support. Thus,

\<p(x)y/{x-m)dx = (-1)V*a*-2 =

k

allows the translates of the scaling function and wavelet to define summable

orthogonal subspaces! This will be a significant aspect.

Smooth scaling functions arise as a consequence of the degree of

approximation of the individual translates. The conditions that the monomials

17

CHAPTER 3

1
,x,

. . .

,

xp"1

be expressed as a linear combination of the translates of tp(x-k) is

implied by the condition

JV-1

(-1)**X=0 form=0, 1, ...,(N/2)-1. (3.6)
k=0

The above equation is referred to as the moment zero condition.

Throughout these equations, j is the dilation parameter or simply the

scale. In the approximation to solutions of differential equations, j is also called

the approximation level. For a certain value of j and N, the support of the scaling

function (p(2J

x-k)\s given as follows:

~k N+k-i
supp(<p(2}

x-k))
2

These three conditions make it possible to express equations in the now

familiar form:

f(x) = Y,2j/2ck<p(2Jx-k) (3.7)
k

Here it is worth emphasizing that there are two convergence properties used in

the above expansion. One is the uniform convergence for the level of

approximation in relation to the scale j and the other is the rapid convergence for

smoother scaling functions which relate to the variable N. These properties are

not shared at the same time by the usual classical orthogonal functions. The

trade off for the N and j is very important. The bigger j and N gives higher

accuracy and faster convergence; it also gives a larger system of equations and

a larger number of connection coefficients needed to be calculated. A proper

couple of j and N give both rapid convergence and satisfactory accuracy.

18

CHAPTER 3

For a better understanding of this, please refer to the paper by Qian and

Weiss(6)
This paper goes into more detail about this aspect. The authors states

that a value greater than N=20 should not be considered. By looking at the error

graphs in this paper (page 165), one should not use a Daubechies wavelet with

N>12. However, on page 160, Qian and
Weiss(6)

state that for N=6, the

Daubechies-Galerkin method actually solves the Helmholtz equation in fewer

operations than the dealiased FFT algorithm (which uses shifted grids to

eliminate aliasing terms). Also, considering that reputable sources have

published values for N=6 Daubechies wavelet (or simply D6) connection

coefficients and moments, I have chosen to perform all operations using D6.

19

CHAPTER 4

Variational Formulation

This process begins with a differential equation. Suppose you are given a

differential equation defined over some boundary or interval. We let the

differential equation take the form

Au = f

within the boundary or interval where A is the differential operator and the form

Bu =
g

on the boundary or interval where B is the boundary operator.

Let us consider the problem of the following differential equation:

d_
dx

a(x)
dx

=

q{x) for 0<x<L

with the following boundary conditions:

u(0)=u0 and a =Q0
\ dxj^

In these expressions, a and q are functions of x, and u0 and Q0 are

specified values. L is the length of the one-dimensional domain, u is the

dependent variable. We will take this problem to have nonhomogeneous

boundary values, which means the specified values u0 and Q0 are not equal to

zero, for arguments sake. This type of equation may be commonly found in the

areas of heat transfer and fluid flow, to name only two applications.

To start the variational formulation, all the terms must be moved to one

side of the equation. Then, the equation is multiplied by a function w called a test

function or weight function. Next, integrate over the domain Q = (0,L).

20

CHAPTER 4

0=f
Jo

w

dx

f du~^

a

V dxj

-

q dx

The resulting equation above is called the weighted-integral or weighted-residual

statement. The expression within the brackets may be called the residual. Since

the function w is called the weight function, it is easy to see where the term

"weighted-residual"

came from. The residual does not equal zero when replaced

by its approximation.

The weight function is any function that is zero on the differential boundary

and such that the integral makes sense. In essence, it can be any nonzero,

integrable function.

The second important step is to integrate the first term of the expression

by parts. Recall that integrating by parts is simply using the equivalent

expressions below.

rb
p

rb

wdv = \wv\
-

vdw

rL

At any rate, the expression
0= \ w

dx

(du^

a

v. dxj

-

q dx becomes

rf dw du \ .

a wq
ax-

i\dxdx J

wa-

du

~dx
= 0

Notice that the weight function is required to be differentiable at least once, ruling

out constants as valid weight functions. Of special note, this is called the weak

form of the original differential equation.
"Weak"

refers to the reduced (i.e.,

21

CHAPTER 4

weakened) continuity of u, which is required to be twice-differentiable in the

weighted integral form, but only once-differentiable in the weak form.

Boundary conditions should be given some attention now. Boundary

conditions are of two types: natural or Neumann and essential or Dirichlet

conditions. The following rule is used to identify the natural boundary conditions

and their form. After completing the integration by parts, examine all boundary

terms of the integral statement. The boundary terms will involve both the weight

function and the dependent variable. Coefficients of the weight function and its

derivatives in the boundary expressions are termed the secondary variables

(SV). Specification of secondary variables on the boundary constitutes the

natural boundary conditions (NBC). For this example, the boundary term is

w(a du/dx). The coefficient of the weight function is a du/dx. Therefore, the

secondary variable is of the form a du/dx. The secondary variables always have

physical meaning, and are often quantities of interest.

The dependent variable of the problem, expressed in the same form as

the weight function appearing in the boundary term, is called the primary variable

(PV), and its specification on the boundary constitutes the essential boundary

conditions (EBC). Above, the weight function appears in the boundary

expression as w. Therefore, the dependent variable u is the primary variable,

and the EBC involves specifying u at the boundary points.

It should be noted that the number and form of the primary and secondary

variables depend on the order of the differential equation. The number of

primary and secondary variables is always the same, and with each primary

22

CHAPTER 4

variable there is an associated secondary variable. However, only one of the

pair may be specified at a point on the boundary!

The third and last step is to incorporate the boundary conditions. We

require the weight function w to vanish at the boundary points where the

essential or Dirichlet conditions occur. Accordingly, the weight function w is

required to satisfy the following conditions

W(0) = 0, because u(0)
=
u0

This leaves our equation of the form:

0=f a -wq \dx-w(L)QQ where QtiiO
du

a

V dxjx=LJ0\dx dx J

This completes the development of the weak or variational form of a differential

equation.

23

CHAPTER 5

Approximation Methods to the Variational Form

To solve the variational form, we will use an approximation. This will be

done out of necessity basically. For large or hard problems, an exact solution

may be overly difficult. On a Global level, the variational form may be solved

using the Rayleigh-Ritz method. It also may be solved on a local level using

what is called a weighted residual method. These methods include the Galerkin,

Least Squares, and Collocation methods. This paper will focus on the Galerkin

method.

In any case, we will make the following assumption:

ii =
*

= ,<:, (5.1)
n

This says that the exact solution u is approximated by
u*

which is equal to

the summation of approximation functions OF) multiplied by constants (c). This

summation may now be substituted into the variational form. Since
u*

is only an

approximation of u, the resulting Residual equation is not equivalent to the

equation into which it was substituted. That is why the Residual does not equal

zero, as mentioned in the earlier section.

In order for an approximation technique to be considered Galerkin, the

weight function w in the variational form must be exchanged with W. *F is

sometimes referred to as a shape function. This simple fact that vF=w is what

separates the Galerkin method from other methods.

The solution to the Galerkin method is found by solving the weighted-

integral form. Its solution is pinpoint accurate with zero percent difference from

24

CHAPTER 5

the exact solution, at the points where a solution is found. With this knowledge, it

is easy to see why the Galerkin method has gained so much popularity over the

past fifty years.

As stated above, shape functions are function approximations. In

variational methods, the shape function must fulfill certain requirements in order

for the approximation solution
u*

to be convergent to the actual solution u as the

number of elements increase. These are:

1 . The approximate solution should be continuous over the element, and

differentiable.

2. It should be a complete polynomial, i.e., include all lower-order terms up to

the highest order used.

3. It should be an interpolant of the primary variables at the nodes of the finite

element.

25

CHAPTER 6

Galerkin Method

The Galerkin Method is a weighted residual method of approximating

solutions to differential equations. The Least Squares Method and Collocation

are also weighted residual methods, however, we will be focusing on the

Galerkin method. It is an incredibly accurate method that has gained popularity

during the past fifty years. The actual variables that will be solved for

(displacement for a structural problem, temperature for a thermal problem, etc..)

are pinpoint accurate with zero percent difference! It is this aspect which makes

the Galerkin Method so well received.

As stated above, the Galerkin Method is a weighted residual method. The

first step of the method is to make a substitution for whatever variable the

functional is in terms of. For instance, if the functional is in terms of u, and f is a

function of x,

L(u) + f=0 (6.1)

We must make a substitution for all u's as follows:

I/ =
*

=
2^W-

(eqn5.1)

where
u*

is an approximation of u, % is called the shape functions and Uiare the

values of the solution. Shape functions are function approximations.

Now, the Residual, R, is as follows:

R =

L(w*) + f*0 (6.3)

26

CHAPTER 6

To get a solution to the problem, we must multiply R by a weighting

function, Wj(x), and integrate over the element size, h, and set this equal to zero.

h

\w,(x)Rdx = 0 i=l,2,3,...,n (6.4)
0

However, for Galerkin Method, Wj(x) = %{x). Now, Integrate n times per

element. The number n will be determined by the type of shape function used.

The resulting equations will need to be assembled in a master equation which

will take the form

[A](U0
=

(F)

The matrix A will be a square matrix. The solution vector (Ui) may be

found now using standard Linear Algebra techniques and whatever Boundary

Conditions exist in the problem.

Take as an example the differential equation:

3U"+4U'-5x = 0 0<x<L

The primes that follow the variable denote the derivative with respect to

displacement.

ir=du_tU,t=(dir

dx dx\dx j

Therefore,

tf = (34Vc7J+(42X<y,)-5x * 0

Following the procedure,

\WlRdx = r),W]
=

XJ

This is what distinguishes the Galerkin method from other weighted-residual

methods.

27

CHAPTER 6

\W]3(Yd%'Uiydx + \^j4(^l'Ui)dx =]^j5xdx
0 0 0

Now, the equation is ready to be solved. The first term on the left side of

the equation must be integrated by parts. The term on the right must be

evaluated at x =
xk + x, where xk is a constant. This means that the constant

term will change as the elements progress. In other words, xk will equal the

previous xk plus element size h. Each element will have its own set of equations.

A Global equation must be formed by assembly of the element equations. As

stated earlier, standard Linear Algebra techniques may be used to solve for the

values of U.

The requirements for shape functions may be found on page 25 in

Chapter Four. There are three common types of shape functions which satisfy

these requirements. They are linear, quadratic, and cubic hermite. Linear

elements have two equations per element (n=2) and are affected only by two

nodes. The nodes are on opposite sides of the element. This makes straight-

line approximations. The quality of the results will be more dependent on the

number of elements (the more elements the better). The Quadratic elements

make use of three nodes (n=3). The nodes are located at the beginning, middle,

and end of the element. The three nodes provide for smoother fitting of the

approximation. Cubic Hermite uses four equations (n=4). However, there are

two nodes located at the beginning and the end of the element. At each node

there are two equations, one for position and one for slope. This makes for a

very smooth approximation. The cubic Hermite gives the best results. All shape

28

CHAPTER 6

elements will give the same precise values at the nodes, but the different types

will give progressively better results between the nodes. Therefore, a trade off

exists. Cubic Hermite will not need as many elements, but will need more

equations per element. There is a distinct relationship between the number of

calculations needed and type of shape function. It is up to the person solving the

problem to decide which shape function to use.

29

CHAPTER 7

Wavelet-Galerkin Method

TheWavelet-Galerkin Method is very interesting. The method uses the

scaling functions of the wavelet as shape functions. The name "Wavelet-

Galerkin"

is actually a misnomer due to this fact. Wavelets themselves are never

actually used, only there scaling functions. Since the scaling function is being

used, the scale; must be chosen in order to complete the analysis. Any scale

greater than one will do. However, the larger the scale the more accurate the

approximation will be. This should be more than apparent from the previous

sections. Of course, the scaling which is to be used must be chosen as well.

The wavelets of choice are Daubechies wavelets.

The first step in forming the approximation is forming the Residual

equation by making the substitution

u(x) =J^ck2ll20(2]x-k), AreZ (7.1)
k

Notice that this is eqn 3.7 in another form. This equation should be used in place

of eqn 5.1 in Chapter 5; in this way the scaling function becomes a replacement

for the shape function. Once this substitution has been made, all that remains is

finding out what the coefficients ck are and plugging them back into the above

equation. This can be done by simply following the Galerkin method. Since the

scaling function <J>(2jx
- k) is the shape function, operation of the inner product

with the scaling function on the residual equation is performed. This will give an

equation of the form

\<t>(2>x-P) L(^ck2',2rj>{2sx-k) dx = 0. (7.2)

30

CHAPTER 7

The key to solving this equation lies in determining what are called

"connection coefficients". These are the values of an inner product of a scaling

function with one or more of its derivatives. A second order differential equation

would contain at least the following connection coefficient

\<t>xx{21x-k)(j>(21x-p)dx

where the notation <J>xx denotes the second derivative of the scaling function with

respect to x. Without these known values the Wavelet-Galerkin method will not

work! The way to determine these coefficients is described in the paper by Latto,

etal.

Now, everything in the equation is obtainable except for the coefficients ck.

There are a couple of substitutions that prove to be useful. Namely, these are

y
= 2jx and Ck = 2j/2ck.

A system of matrices may be made and then the column vector containing the

ck's may be solved for using Gaussian elimination or another method. The

treatment of the boundary conditions depends upon the specific problem to be

solved. The treatment according to the example problem I have chosen will be

discussed Chapter 9.

This explanation of theWavelet-Galerkin method may seem brief.

However, I feel that all questions should be answered by following the example

problem. It also should be recognized that the main theory behind using this

method is simply substituting a scaling function into the Galerkin method.

31

CHAPTER 8

Example - Analytical

This section will solve the problem I have chosen analytically. This is an

exact solution. The purpose of this paper is to compare the three methods:

analytical, Galerkin, and Wavelet-Galerkin. At any time if a percent difference is

referred to, the analytical method is the known solution for comparison.

A simple homogeneous equation with essential or Dirichlet boundary

conditions is chosen. This equation may be used to describe a freely vibrating

spring-mass system, to name one application. It is as follows

u"

+ u = 0 u(1)=1.5,u(4)=0.75

m

k will equal 3 and m will equal 2. Therefore, k/m will equal 3/2.

From any course in Differential Equations or course book(11), it can be

shown that the solution to the homogeneous equation will take the form

uh (x) = A cos(VTIjx) + B sin(^/^jx)

Substituting the values of the boundary conditions into the equation above will

solve for the coefficients A and B. This will result in two equations and two

unknowns. Very simply, the resulting analytical solution is

w(x)
= 4.291 95671 462 cos(Vl5x) + 0.04701 5528941 sin(VT^x)

This was a very simple solution. There would be no need to use an

approximation method for such a problem. However, as all scientists and

engineers realize, times do arise in which an approximation is called for. No one

32

CHAPTER 8

would ever use an approximation for this problem. However, the insight gained

by solving this problem will apply to other cases in which an approximation

method would be applicable.

Analytical Solution

Figure 8.1

33

CHAPTER 9

ExampleWavelet-Galerkin

We start with the following problem.

u"

+ -u = 0
2

u(1)=1.5, u(4)=0.75

The first thing is to substitute the scaling function approximation to u(x).

u(x)= 2>t2"V(2'*-*) (eqn 3.7)
k

At this time it should be noted that a scale of j=4 is selected. This is purely

arbitrary. Any scale greater than 1 would suffice. Also, the Daubechies scaling

function for the length 6 wavelet was selected.

Scaling Function by Successive Aprox.

Figure 9.1

34

CHAPTER 9

The next step would be to plug this approximation back into the original

equation, forming the residual equation.

^YZck2J,2<fi(2>x-k)+%yck2},2<t>(2Jx-k)*0
ctx k k

The substitutions y
= 2jx and Ck = 2j/2ck may now be made, as well as some

simplification. This results in

22;ZC^0/-*)+3/2XC^(.y-*)*0

k k

where the notation^ denotes the second derivative of <j> with respect to x. The

inner product of this residual equation with the scaling function <t>(y-p) may now

be computed. This gives

22>Y,Ck\<t>xx{y-kyf>(y-p)dy +%ZCk\t(y-k)<t>(y-p)dy = 0 (9.1)
k k

It is interesting to note that the second integral can be simplified due to the

orthogonality of the Daubechies wavelet. It simplifies as follows

J <f>{y -k)0(y-p)dy
= 8pk {orthonormal condition)

Therefore, all that is left of this integral is 3/2Cp. This simplifies matters greatly.

The integral \^>xx(y-k)^(y-p)dy defines what is called the connection

coefficient. The values for the connection coefficients of this particular type are

already defined in the paper by Latto, et al(8). They will be used discretely in the

upcoming computations. Let the symbol Q represent the coefficients such that

nP-k=\t~(y-my-p)<ty (9-2)

The working equation, (eqn 9.1), may now be expressed by

35

CHAPTER 9

22'ZQV,+|C,=0 (9.3)

This equation may be represented in matrix form by

TC = D

The matrix T will be of the form

T =
22;

Q0 +2^(1.5) Q_, Q_2

n, Q0+2"2;(1.5) Q_.,

q1 ... n_,

lZ^_2 ^'1 ^^_1

0 ... Q1 ... Q_.,

o q1 ... n_.,

o ... n1

n,_ ... n,-2-/V

Q^ Q 0

Q1

Q0+2-2^(1.5X

The N here represents the size of the Daubechies wavelet. In this case N=6, as

mentioned before. It should be noted that all the columns in the matrix T are the

same as the previous column but shifted down one row. This is what is called a

circulant matrix and the first column in known as the convolution kernel. This will

be of importance when the system is solved.

The matrix C will be a column vector containing the unknown coefficients

Ck. The matrix D will be defined using the paper by Oyoshi, et
al(3) The matrix D

will allow us to incorporate the boundary conditions. It will take the form

36

CHAPTER 9

D =

0

0

uu

size (2jb - 2ja + N + 2W) X 1

In this matrix, ua and Ub are the values at the boundary conditions. For

this example, a = 1
,
b = 4, ua = 1

.5,
and ub

= 0.75. The dimensions of these

matrices will be dictated by the scale selected, the scaling function selected, and

the values of the end conditions. Namely, T will be a square matrix of size

(2jb - 2ja + N + 2W) X (2jb - 2ja + N + 2W). W represents the additional number

of wavelet components to expand the boundary conditions by one support of the

scaling function. Basically whatW does is to increase the accuracy at the

boundary conditions. Wavelets have a hard time analyzing functions close to the

end conditions. They need some room between the boundary conditions and the

point of initial approximation. The extra space created byW gives the wavelets

the room they need. The size ofW is usually equal to N+1
,
as is the case in this

example. The idea of this treatment has been reported in numerous papers

including the ones by Oyoshi, et
al(3)

and Amaratunga, et al(4,5).

At any rate, it is important to note that both C and D are column vectors of

size (2jb - 2ja + N + 2W). Notice that b and a have a scale of 2j in front of them.

This implies that the Ck's that make up the matrix C are already at scale 2j!

Therefore, the coefficient in front of the T matrix should be 2j
and not 22j. The

most important thing is to change the first term of the convolution kernel to O0 +

2"J(1
.5)

instead of Q0 + 2"2j(1 .5). This will give the solution the proper magnitude

when solved.

37

CHAPTER 9

We may exploit the properties of the circulant matrix when solving.

Gaussian elimination is equivalent to convolution of the D matrix with the

convolution kernel. This may further be exploited by the fact that convolution in

physical space is equal to multiplication in frequency space. Let K be the

convolution kernel and FK be the Fast Fourier Transform (FFT) of K. FD and FC

will be the FFT of D and C, respectively. Therefore,

FC = FD./FK

Where . / represents component by component division. The inverse FFT of FC

will give the desired C vector. The use of the FFT in this case eases

programming and makes computation more efficient. The computer program

FastC performs these operations.

Now that the C's have been obtained they may be used to approximate

the solution u using equation (1). Remember that Ck is equal to 2j/2ck and y is

equal to 2'x. The Ck's may now be multiplied by the scaling function.

Daubechie's scaling functions can only be approximated and this will be done

using the program psa.m supplied in the book by Burrus, et al(2). The

approximation is a 640-term expansion. This implies that each k is 128, since

640/5 equals 128. The 5 comes from the length of the D6 scaling function. The

approximation to u(x) is completed using the computer program shift. It may be

followed in the appendix.

The results are very interesting. The resulting vector is 9216 components

long.

38

CHAPTER 9

2000 4000 6000 8000 10000

Figure 9.2

Now, 9216/e4o is equal to 14.4. Even though I started this approximation looking

for the interval from 1 to 4 (length 3), I got an approximation of length 14.4! This

is not bad. Admittedly, this does not seem correct at first, but upon inspection,

I've found it to be legitimate. The plot of the Wavelet-Galerkin solution with the

first and last 896 terms removed (W*1 28=896) shows this well.

39

CHAPTER 9

1000 2000 3000 4000 5000 6000 7000 8000

Figure 9.3

To approximate the interval from 1 to 4, all that needs to be done is finding

the values of the Dirichlet conditions. In this case, 1 .5 and 0.75. Simply analyze

the data looking for these values in the ranges where they should be and plot

these components against a linespace from 1 to 4. The result is less than a two

percent error.

40

Wavelet-Galerkin Overlapping Analytical

41

CHAPTER 10

Example Galerkin-Quadratic

Again, we will start with the following problem

u"+3/2u = 0 u(1)=1.5, u(4)=0.75

To start the approximation, quadratic elements will be chosen. These give better

approximation between the nodes. Six elements will be used, space 0.5 units

apart.

The first thing to do is define the approximation of u.

M*
= 2>,(x),y,(x) (eqn 5.1)it

For quadratic elements, i=1 ,2,3. For an element spanning 0.5 units, h(element

size)
= 0.25. The Y's are as follows.

^1 =

2/7

f x^

1--

v hj

*2=\-

(v\

ynj

Y,
2h

(x\
1--

l h)

\
Quadratic Sh ape Functions

1 9

psil

1-
_

.-

y

0.8 -

/ 0.6 -

"""\ - psi3 +

X

X

+:.

/

/
/

/
/
/
/

/
>

0.4 -

0.2 -

y \
\

\
\

i ^^

)
'

. . 0.5 ..

_ a_a_

elem et size h = 1

Figure 10.1

42

CHAPTER 10

The Residual Equation may now be formed by substituting the formula for

the approximation
u*

into the original equation.

The primes represent derivatives with respect to x. The residual equation R is

now ready for the inner product with the shape functions.

]%fc%Ui)dx +y2]%(ViUi)dx = 0

-h -h

Integration by parts yields

-

\v:&%u)dx+y2]%c^%u,)dx+[,^:u,]h_h =o (10.1)
-h -h

The last term in brackets may be considered to be an equivalent body force. All

of the inner body force terms (all except at the end points) will cancel upon matrix

assembly. All that will be left will be the body forces at the endpoints. Since

there are no body forces described in the problem statement, they can be

ignored, or set equal to zero.

From the rest of the equation, the general matrix form may be described.

After substituting the values of into eqn 10.1 and evaluating, we find

1

6/2

7 -8 1
"

-8 16 -8

1 -8 7
_

+

1.5/2

15

I 2 -r fu^ r)
! 16 2 >u2

= 0

1 2 4 \u2j voJ

(10.2)

This may be verified. The first row third column of the first matrix is 1/6h.

1rh . .
rh f X 1

J- 1 3

U{ff 2/2
h2 +2h

dx
6/2

43

CHAPTER 10

The second row second column of the second matrix is -1.5*16h/15.

5j>?*=-i.5r
1.

r^W2

\hjj

dx =
-1.5(16/2)

15

Eqn 10.2 will now simplify into

120

548 -646 83

-646 1232 -646

83 -646 548

'CO

u2

W

vy

(10.3)

Six quadratic elements results in thirteen nodes. The assembled matrix is as

follows

120

548 -646 83 0

-646 1232 -646

83 -646 1096 -646 83

0 -646 1232 -646

83 -646 ...

0

0

0

1096 -646 83

-646 1232 -646

0 83 -646 548

fcO f0]
u2 0

c/3 0

u4 0

U5 0

u6 0

u7 - 0

u8 0

u9 0

u10 0

u 0

c/12 0

[uj voJ

The values of Ui and U13 are known to be 1 .5 and 0.75 respectively. These

values may be plugged into the U vector and the system of equations may be

reduced down to an 1 1 x 1 1 system.

44

CHAPTER 10

120

1232 -646 0

-646 1096 -646 83

0 -646 1232 -646

83 -646 1096

0

0

... -646 0

83 -646 1096 -646

0 -646 1232

(US
r

8.075
"

u3 -1.0375

uA 0

U5 0

u6 0

u7 = 0

Us 0

u9 0

c/10 0

u -0.51875

\U-i2j v
4.0375

,

This matrix is now ready to be solved. Gaussian elimination was used and the

values for the U vector were obtained.

The results were plotted using Matlab. The use of quadratic elements to

interpolate the function between nodes proved to be very effective in

approximating the function. Throughout, there was less than 0.2% difference

between this method and the analytical.

45

Galerkin Approximation, Linear

45

Galerkin Approximation, Quadratic

46

Galerkin Overlapping Analytical

47

CHAPTER 11

Conclusions

The Wavelet-Galerkin method has proven to be a valid approximation

method. Although it was not as precise as the standard Galerkin method,

remember that as scale of j=4 was used. A larger scale of say j=6 would have

obviously given it a better resolution. Also, the Daubechies D6 wavelet was

used. For a truly accurate approximation, it is best to use a wavelet of higher

order.

The good part is that it was fairly simple to set up, suprisingly. In fact it

was much easier to set up the analysis than the standard Galerkin method. The

whole key is knowing the connection coefficients. One of my suggestions for

future mathematical pursuit would be to create a table of connection coefficients

for the family of Daubechies scaling functions. This would probably be best left

to the CRC press. The paper by Lattto, et
al(8) describes how to do it, it just plain

isn't clear. At any rate, this should be addressed.

Considering as well that the approximation spanned a time frame of 14.4

seconds as compared to only 3 seconds, it's plain to see that if a rough and

ready estimate is desired and lives are not at stake, the Wavelet-Galerkin

method is the way to go. However, if the problem calls for the most precise

estimation possible, I would have to go with the standard Galerkin Method.

As far as computational time is concerned, the Wavelet-Galerkin method

wins hands down. It was much easier to create a program. If one looks at the

program, there are simply fewer steps. Finding the U vector in the Galerkin

method is work enough. However, if the function is to be interpolated between

48

CHAPTER 11

nodes using quadratic functions, this becomes a chore very quickly. I used

twenty interpolation points between nodes. The computation time shot way up

when this happened. However, the pay of was a percent difference so small the

naked eye could not detect it on the graph. The plots appear to overlap exactly.

I performed all of these calculations using Matlab 4.2 on my home

computer, which has a Pentium Pro 200 processor. Nonetheless, when the

interpolation took place, there was no doubt my computer struggled for a few

moments. The Wavelet-Galerkin method also made the processor work when

forming the solution vector, but it was not for as long.

Another avenue which must be pursued in the Wavelet-Galerkin method is

the addition of a forcing function into the original equation. The recent paper by

Oyoshi, et
al(3)

was referred to in this paper because of its new technique for

integrating the boundary conditions. However, the idea had only been applied to

homogeneous equations. I did attempt to apply it to non-homogeneous

equations, but without luck. I did get something that resembled a solution, but it

was obvious that further investigation was necessary. For all I know, they may

be working on this very problem over in Akita right now!

Finally, natural or Dirichlet conditions should be incorporated. This would

expand the usefulness of the method even further. The method will be able to

tackle a greater number of problems than is currently possible. I feel that with

the work that has been laid out in this paper, another student could take on this

challenge in a future paper.

49

Bibliography

1) Reddy, J.N., An Introduction to the Finite Element Method, McGraw-Hill, Inc.,
1976.

2) Burrus, C. S., Gopinath, R. A., and Guo, H., Introduction to Wavelets and

Wavelet Transforms, A Primer., Prentice Hall, Inc., 1998.

3) Oyoshi, T., Lu, D., Sibuya, Y., Miura, K., Wavelet-Galerkin Analysis for a

Thermally Affected Inhomogeneous Layer., 1997.

4) Amaratunga, K., Williams, J., Qian, S., Weiss, J., Wavelet-Galerkin Solutions

for One-Dimensional Partial Differential Equations., Int. J. for Numerical

Methods in Eng., vol. 37, pages 2703-2716, 1994.

5) Amaratunga, K., andWilliams, J., Wavelet Based Green's Function Approach

to 2D PDE's, Engineering Computations, vol. 10, pages 349-367, 1993.

6) Qian, S., andWeiss, J., Wavelets and the Numerical Solution of Partial

Differential Equations., Journal of Computational Physics, vol. 106, pages

155-175, 1993.

7) Chen, M. Q., Hwang, C, and Shih, Y. P., The Computation ofWavelet-

Galerkin Approximation on a Bounded Interval., Inter. J. Num. Method. Eng.,
Vol. 39, pages 2921-2944, 1996.

8) Latto, A., Resnikoff, H., and Tenenbaum, E., The Evaluation of Connection

Coefficients of Compactly SupportedWavelets (1992), Proc. French - USA

workshop on Wavelets and Turbulence, Princeton Univ., June 1991, Springer,
NY

9) Strang, G., and Nguyen, T., Wavelets and Filter Banks, Wellesley-

Cambridge Press, Inc., 1996.

10)Part-Enander, E., Sjoberg, A., Melin., Isaksson., P., The Matlab Handbook.,
AddisonWesley Longman, 1996.

11)Nagle, R., and Saff, E., Fundamentals of Differential Equations and Boundary
Value Problems., Addison-Wesley Publishing Company, Inc., 1994.

50

APPENDIX A

Psa, upsam, dnsample
A1

Program for quadratic app. A2-A3

T vector at j=4
A4-A5

D matrix
A6

Cs matrix formula .

A6

Shiftv.m
A7

function p
= Psa(h,kk)

*
p

=

psa(h,kk) calculates samples of the scaling function
*

phi(t) =

p by kk successive approximations from the
*

scaling coefficients h. Initial iteration is a constant.

* Phi k(t) is plotted at each iteration. csb 5/19/93

if nargin==l, kk=ll; end;

h2= h*2/sum(h) ;

K = length (h2)-l;

p
= [ones (1,3*S*K

P =

p(l:K*S) ;

axis ([0 K*S+2 -.5

hu = upsam (h2, S) ;

for iter = 0 : kk

p
= dnsample (conv (hu,p

plot (p) ; pause;

% P = [P;p(l

S = 128;

,0]/(3*K)

1.4]);

:K*S)

end

P
=

L =

x =

p(l:K*S) ;

length (p) ;

([1:L])/(S) ;

axis ([0 3 -.5 1.4]);

plot (x,p) ;

title
('

Scaling Function by Succe

ylabel
('

Scaling Function Daubech

xlabel('x');

% Default number of iterations

% normalize h(n)

% Sets sample density
% Sets initial iteration

% Stores for later plotting

% upsample h(n) by S

% Successive approximation

% convolve and down-sample

% plot each iteration

% store each iter, for plotting

% only the supported part

% Final plot

ssive Aprox.
'

) ;

ies
6'

) ;

function y
= upsam (x,S)

% y
= upsam (x,S) inserts S-l zeros between each term in the row vector

x .

% for example: [10 2 0 3 0]= upsample ([1 23]). csb3/l/93

L = length (x) ;

y(:)
= [x;zeros (S-1,L)] ; y

=
y.';

y
=
y(l:S*L-l) ;

function y
= dnsample (x)

% y
= dnsample (x) samples x by removing the even terms in x,

% for example: [1 3] = dnsample ([1 2 3 4]). csb 3/1/93,

L = length (x) ;

y
=
x(l:2:L) ;

A1

quadratic. txt

A = [1232 -646 000000000

-646 1096 -646 83 0000000

0 -646 1232 -646 0 0 0 0 0 0 0

0 83 -646 1096 -646 83 0 0 0 0 0

0 0 0 -646 1232 -646 0 0 0 0 0

0 0 0 83 -646 1096 -646 83 0 0 0

0 0 0 0 0 -646 1232 -646 0 0 0

0 0 0 0 0 83 -646 1096 -646 83 0

0 0 0 0 0 0 0 -646 1232 -646 0

0000000 83 -646 1096 -646

000000000 -646 1232] ;

A = A/120;

B = [8.075 -1.0375 0 0 0 0 0 0 0 -0.51875 4.0375];

B = B
'

;

X = A\B;

U = zeros (13,1);

for k = 1:11;

U(k+1) = X(k) ;

end;

U(l,l) = 1.5; U(13, 1) = 0.75;

for k = 1:19;

US12(k,l)
=
-(k/40)*(l-k/20)*U(ll,l) + (l-(k/20)A2)*U(

12,1) +
k/40* (l +k/20)*U(13,l) ;

end;

for k = 1:19;

USll(k,l)
= ((20-k)/40)*(l+(20-k)/20)*U(ll,l) + (l-((2

0-k)/20)*2)*U(12,l)
- (20-k)/(40)*(l-(20-k)/20)*U(13/l);

end;

for k = 1:19;

US10(k,l)
= ((20-k)/40)*(l+(20-k)/20)*U(10#l) + (l-((2

0-k)/20) A2)*U(11,1)
- (20-k)/(40)*(l-(20-k)/20)*U(12,l);

end;

for k = 1:19;

US9(k,l)
= ((20-k)/40)*(l+(20-k)/20)*U(9,l) + (l-((20-

k)/20)A2)*U(10,l)
- (20-k)/(40)*{l-(20-k)/20)*U(ll,l);

end;

for k = 1:19;

US8(k,l)
= ((20-k)/40)*(l+(20-k)/20)*U(8,l) + (l-((20-

k)/20)A2)*U(9,l)
- (20-k)/(40)*(l-(20-k)/20)*U(10/l);

end;

for k = 1:19;

US7(k,l)
= ((20-k)/40)*(l+(20-k)/20)*U(7,l) + (l-((20-

k)/20) "2)*U(8,1)
- (20-k)/(40)*(l-(20-k)/20)*U(9,l);

A2

quadratic.txt

end;

for k = 1:19;

US6(k,l) = ((20-k)/40)*(l+(20-k)/20)*U(6,l) + (l-((20-

k) /20) A2)*U(7,1) -

(20-k)/(40)*(l-(20-k)/20)*U(8.1) ;

end;

for k = 1:19;

US5(k,l) = ((20-k)/40)*(l+(20-k)/20)*U(5,l) + (l-((20-

k) /20) A2) *U(6,1) -

(20-k)/(40)*(l-(20-k)/20)*U(7,l);

end;

for k = 1:19;

US4(k,l) = ((20-k)/40)*(l+(20-k)/20)*U(4,l) + (l-((20-

k) /20) ~2)*U(5,1) -

(20-k)/(40)*(l-(20-k)/20)*U(6/l);

end;

for k = 1:19;

US3(k,l) = ((20-k)/40)*(l+(20-k)/20)*U(3/l) + (l-((20-

k)/20) A2)*U(4,1)
-

(20-k)
/(40)*

(
1-
(20-k) /20) *U (5, 1) ;

end;

for k = 1:19;

US2(k,l) = (
(20-k)/40)*

(1+ (20-k) /20) *U (2, 1) + (l-((20-

k)/20) "2) *U(3,1)
-

(20-k)/(40)*(l-(20-k)/20)*U(4/l) ;

end;

for k = 1:19;

USl(k,l) = ((20-k)/40)*{l+(20-k)/20)*U(l,l) + (l-((20-

k)/20) A2)*U(2,1)
-

(20-k)/(40)*(l-(20-k)/20)*U(3/l) ;

end;

USA = [U(l,l) ,US1',U(2, 1) ,US2',U(3,1) ,US3*,U(4,1) ,US4',U(5,1) ,US5',U(

6,1),US6',U(7,1) ,US7',U(8,1) ,US8',U(9/1),US9,,U(10,1),US10,,U(11,1),US

ll',U(12,l) ,US12',U(13,1)] ;

fus = (1:1/80:4) ;

plot (fus, USA)

title ('Galerkin Approximation, Quadratic'); xlabel('X'); ylabel('U(x;

A3

Tatj4 . txt

t

3.

-0

0.

0.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

= [-5.26785714285743+0

39047619047638

-87619047638

11428571428571

00535714285714

09375

A4

Tatj4 . txt

0

0

0.

0

0

0

0

0

0

0

0

0

0

0

0

0

0.00535714285714

0.11428571428571

-0.87619047619052

3.39047619047638] ;

% This is the convolution kernel which had to be entered manuall

y-

A5

D =

zeros (68,1); % creates D matrix

D(l,l) = 1.5;

D(68,l) = 0.75;

Cs = (fft (D)) . / (fft (t)) ; % shows component by component divisi
on

Cs = ifft(Cs); % solves for Cs solution matrix

Cs =

real(Cs); % ensures that Cs matrix is real

A6

shifty. m

for k = 1:68;

u(k, :) = Cs (k) *phi;

end;

B = zeros (68, 9216) ;

for k = 1: 68;

a =

u(k, :) ;
a= [zerosd, (k-l)*128) ,a] ;

[row col]
= size (a);

B(k, (l:col)) =

a;

end

y
= sum (B) ;

for k = 1:9216;

ya(l,k)
= y(l,9216-(k-l)) ;

end;

plot (ya)

A7

	Implementation of the Wavelet-Galerkin method for boundary value problems
	Recommended Citation

