
Figure 5.3: The 32-bit width datapath key schedule that was modified from [51] to better
fit the architecture of the target FPGA.

This implementation width is better aligned with the AES key schedule algorithm since an

entire word can be generated in a key schedule round. The dependencies between 32-bit

words in the key schedule are illustrated in Figure 2.6 and Figure 2.7.

The 32-bit wide key schedule was modeled on an implementation in [51]. This imple-

mentation was modified to make better use of the target FPGA’s resources. The modified

version of this key schedule is shown in Figure 5.3. The original version targets the 128-

bit key length. This modified version supports all three AES key lengths. Here, an eight

element shift register is used with two additional taps that provide access to the fourth and

sixth elements. Please note that in the figure, these elements are indexed from zero, thus

they are offset by one. Depending on the selected key length, the multiplexor chooses the

appropriate output of the shift register.

The private key for this circuit is stored in its own memory. The original circuit utilized

the shift register for this completely. The memory approach has the advantage that the

private key words can be applied in any order. In a system where this engine is operating

for hardware acceleration, this allows the software to write the key words in any order or

rewrite specific key words without having to reload all the key words in the correct order.

The key schedule shown in Figure 5.3 was designed to have a combinational SubWord

component. A second version of the key schedule was designed that supported a memory
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Figure 5.4: The 128-bit width AES encryption datapath modified from [59]

based SubWord component. In this version, the single 32-bit round register is moved after

the multiplexor that previously had followed it. The datapath for this implementation with

a combinational SubWord component is longer.

5.1.2 AES Encryption

Corresponding to the two key schedule implementations, there were two main AES encryp-

tion components developed. Both implementations utilized a combinational MixColumns

component. The first encryption implementation made use of a 128-bit datapath and was

based on the simple loop method given in [59]. Since work was targeting an ASIC ap-

proach, several modifications were made to make better use of the FPGA being targeted in

this work. This modified version is shown in Figure 5.4.

The 128-bit round register was moved from after the final XOR in a round to the loca-

tion immediately following the input multiplexor. In this location, the round register can

also register the initial XOR with the first round key. In the round registers previous lo-

cation, the expanded key memory would be required to provide both the first round key

and the second round key within the same cycle. This is very possible since the target
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FPGA supports true dual-port memory; however, the expanded key memory’s other input

for true dual-port mode is allocated to the key schedule. So, to eliminate the need to add

another 128-bit register in the circuit or multiplexor for the true dual-port memory control

signals, the round register was simply moved. This also reduces the length of the critical

path through the encryption implementation when a combinational S-Box implementation

is utilized.

In [59], an additional 128-bit input is given into the component that is multiplexed with

128 zero bits. The output of the multiplexor feeds into an XOR gate. During normal iter-

ative rounds, the all zero input is used. Once the final ARK is complete, the multiplexor

is switched to XOR the encrypted data with the input data. This is to facilitate the encryp-

tion implementations function in the counter mode of operation. This final value is then

registered in the round register.

In the version of encryption that uses a memory based implementation of SubBytes, the

round register is removed from the main round datapath. The round register is still retained

in the circuit itself, but is used to register the final output data value.

The 32-bit wide version of AES encryption is based on a word iterative approach and is

shown in Figure 5.5. The subcomponent requirements are reduced from the 128-bit wide

version, especially in the SubBytes round function where only four S-Boxes are needed

instead of sixteen. Eight 32-bit registers are used during round operations. The first group

of four registers is used between round rounds, while the second group of registers is used

to realign the data before it is processed by the ShiftRows round operation. This is due to a
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dependency that exists between 32-bit words in this operation. Once the data is aligned, the

ShiftRows round operation is simply a rewiring of signals at the byte level. Multiplexers

are used to select the appropriate 32-bit word for the remaining round operations.

This 32-bit implementation also has a 128-bit additional input for counter mode opera-

tion. In this case, the multiplexor on this input toggles between all four 32-bit words in this

128-bit input in addition to the zero input.

5.1.3 AES S-box

For each of the encryption and key schedule designs, an appropriate S-Box implementation

must be selected for the SubBytes or SubWord round operation. Four S-Box implemen-

tations were explored in this work: 1) single-port M9K memory based, 2) dual-port M9K

memory based, 3) LUT based, and 4) composite field based. The composite field based im-

plementation makes use of combinational logic to calculate the S-Box output value, while

the other three implementations reference a precalculated value.

As was described subsection 2.2.1, an S-Box is no more than a Galois field inversion

and an affine transform performed on one byte. In total, that is 28 possible values which

can all be precalculated. To use a LUT to implement an S-Box, 256 one byte elements must

be allocated. These large LUTs are formed by combining four input LUTs from the target

FPGA’s logic elements (LEs). The output of the LUTs is available after one cycle.

The memory based implementations are created in the same manner, except that the

FPGA’s M9K memory elements are utilized instead of the LE’s LUTs. Each M9K provides

8192 bits of memory. Single-port memory instances have one address input, one data input

and one data output. True dual-port memory instances have two address inputs, two data

inputs and two data outputs. The cost savings when utilizing true dual-port memory based

S-Boxes is half of single-port memory because it requires half the number of M9Ks to

implement the same number of S-Boxes.

The composite field S-Box was chosen for use in this work to present an alternative to

the memory and LUT approaches. Depending upon usage, the composite field approach
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can be used to achieve high performance or low area. In this work, the composite field

S-Box components are not pipelined. In other words, there is no registers present between

individual components within the composite field S-Box component. This was done in or-

der to explore the reduced logic cost of the composite field implementation. The composite

field S-Box structure is shown in Figure 3.2. Pipelining the unit would result in a much

shorter critical path through the component, but would increase its resource utilization.

5.1.4 GHASH

The implementations of GHASH explored in this work differ based on their implementa-

tion of the GF(2128) multiplier. A bit serial approach, a full parallel approach and a variety

of sequential multiply and add approaches are examined. The full parallel approach cal-

culates a result in one clock cycle, but has a very large critical path. In contrast to the

full parallel approach, the bit serial approach has a much smaller critical path, but requires

128 clock cycles before a result is calculated. The sequential multiply and add approaches

reduce the number of clock cycles found in the bit serial approach by multiplying a power

of two number of bits in one clock cycle. Due to the data dependency in these Galois

field multiplications, these calculations are not performed in parallel. Thus, the larger the

number of bits multiplied in one clock cycle, the deeper the critical path of the multiplier.

All of the implementations of the GF(2128) multiplier were created from one generic

instance. At a minimum, the generic multiplier operated in bit-serial. At a maximum, the

generic multiplier implemented a full parallel approach. This implementation was based on

the description of the sequential multiply and add approach presented in [57]. The desired

number of clock cycles till completion directly corresponds to the width of the sequentially

multiplied bits in the reduced Galois field multiplier. For example, an implementation that

takes 16 cycles to complete would utilize a GF(28) X GF(2128) multiplier.

Each round of the GHASH function, a number of bytes from the H constant are mul-

tiplied by the 128-bit current GHASH value. Reductions are performed based on the

GHASH primitive polynomial: x128 + x7 + x2 + x + 1. A 128-bit register stores the
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partial product until the final product has been evaluated. Once this is complete, this final

product is registered in a 128-bit register. The values stored in this register will always be

the final result of the sequential multiply and add operations.

5.1.5 GCM

The highest level of the GCM algorithm is shown in Figure 5.6 with the control logic for

the state machine shown in Figure 5.7. It is the responsibility of this module to control

the functionality of all the previously designed subcomponents. Registers that receive their

input from the top level data input of the GCM engine are written in 32-bit words. Internally

to the engine, operations are handled at 32-bit or 128-bit widths, as defined by the particular

component. All implementations of GCM in this work utilize a 96-bit IV, as recommended

by the NIST standard [9] for efficiency purposes [55].

The AAD and CT length registers are 64-bits each. These registers were added so that

the processor could report to the engine the length of the data that was processed. The

GCM engine was designed to support data only in lengths of the AES block size. This

moves the data padding operations to the processors, which is a trivial operation. These

lengths are required when the final tag is generated.
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The IV and private key are stored within the top level of this engine. The private key is

stored in the lowest bits of the expanded key memory. The AES key schedule performs this

copy by design. The controlling state machine, Figure 5.7, was designed such that when

the private key is changed, recalculation is also performed for the Y0 value. This feature

was added so that some additional savings could be gained by not needing to invoke a

second operation to simply calculate this value when the IV is written after the private key

is changed. If the IV is not going to be changed with the private key, then the savings still

takes place because the Y0 will be recalculated with the new key. The state machine was

designed so that the IV could be changed on its own, which would then update Y0.

Although it is not necessary, the GCM engine provides read access to the AAD and CT

length registers. This can be helpful in a debugging scenario. This is not necessary because

GCM is an online algorithm.

This engine was designed to support all three AES key lengths and GCM in both en-

cryption and decryption modes. Figure 5.6 shows a signal in thick red that is only active

during decryption mode and a signal that is only active in encryption mode in thick black.

The AES key length is indicated to the engine by means of a one hot encoded signal. The

encryption mode is indicated by means of a single signal that is logic level high when in

encrypt and logic level low when in decrypt.

An internal control register is continually read by the state machine to determine next

state information. The inputs to this control register are external strobe signals. These

signals correspond to the operations available in the engine: 1) start key change, 2) start IV

change, 3) start aad hash, 4) start CT/PT encryption/decryption and hash, 5) and start final

TAG generation.

An additional register was created to report to the controlling state machine when the

last component has finished in a decryption operation. A high level goal in this thesis work

was to put an emphasis on modularity. The addition of this register allows different AES

and GHASH implementations to be changed without having to modify the top level GCM

state machine to identify which consumes more cycles. This is important because the AES
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encrypt component and the GHASH component can run in parallel during a decryption

operation. Each component in the engine notifies the controlling state machine that it

is finished by means of a done flag. If these state machine monitored for this condition

directly, it would require three additional states if they finished simultaneously or if either

one finished before the other.

5.2 System Organization

At the highest level, the system consists of two Nios II microprocessors and two GCM

engines. This layout is shown in Figure 1.1. This Nios II processors were designed with a

custom component that merely output the Avalon bus signals as a conduit. These Avalon

bus signals were then interfaced with another component that registered each of the signals.

The waitrequest signal was handled as a special case since it signals to the processor that

the engine would like it to wait. These registered signals were then outputs of the processor

subsystem (black or red). In this way, the register interface wraps the conduits of the Nios

II processor. A register interface was also placed around each of the GCM engines signals.

The two register interfaces were then connected.

The register interfaces are at the highest level of the design hierarchy within a subsys-

tem partition. Thus, any signal passing between a processor partition and a GCM engine

partition is registered at its output and again at its corresponding input on the destination

component. This register interface was added based on a recommendation in [67], which

stated, “Registers minimize the delays on inter-partition paths, and prevent the need for

cross-boundary logic optimizations.”

The GCM module was originally designed to support 128-bit inputs, but was modified

to support 32-bit inputs. This modification was necessary due to the maximum width of the

data bus of the Nios II processor. Since this system was targeted to be used by the Nios II,

this was a required modification. If this change was not made, more logic would have been

necessary on the top GCM wrapper layer to properly handle data presented to the engine.
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The only defined requirement in this area was that the engine would interface with a Nios

II processor, so a 128-bit input and output from the system was unnecessary.

Immediately below the register wrapper interface on a GCM engine is a GCM interface

component. It is the role of this module to translate all signals passing between the pro-

cessors and the engines into formats that each expect. One of the most important features

of this component are the control, configuration and status registers. The status register

can be read by either processor and simply registers when each of the GCM engines tasks

is complete. There are twice as many bits as there are GCM operations because both the

black processor and the red processor have their own bits that indicate which task is com-

plete. These bits must be cleared by the corresponding processor. For example, the black

processor cannot clear the red processors status register bits. The purpose of clearing a bit

is notify the other processor that the current processor has finished working with the data

corresponding to a particular operation. Again, all of these bits can be read by either pro-

cessor. Thus, each processor can read when an operation their waiting on is complete and

when the other processor has finished performing operations with respect to a particular

GCM operation.

The control register allows a processor to start a GCM operation and the configuration

register sets the AES key length and encryption or decryption mode of operation. The

configuration register may only be set by the red processor. Restrictions are placed on

other control and status register bits such that the black processor may not write to them.

This depends on the current configuration of the engine. Table 5.1 indicates which address

can or cannot be written or read by a given processor under certain conditions. Writing

to a register from the incorrect processor has no effect. Reading from a register that is

inaccessible to a particular processor will result in all zero output.
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5.2.1 High-Performance Design

The high performance implementation in this work targets a 128-bit AES datapath. The im-

plementation of AES encryption is based on a round iterative design, where the round keys

are read out of on-chip memory as was described in subsection 5.1.2. These round keys

are placed into on-chip memory by the 128-bit offline key schedule described in subsec-

tion 5.1.1. The on-chip memory is organized such that it is addressable by 128 bit blocks.

This allows one entire round key to be read or written in one cycle. The GHASH multiplier

was implemented fully parallel.

5.2.2 Small Area Design

The small area implementation in this work focused on using a 32-bit datapath for the AES

key schedule and encryption components. The key schedule was based upon the 32-bit

iterative version described in subsection 5.1.1. The AES 32-bit encryption implementation

is a simple word iterative design that was discussed in subsection 5.1.2. The round keys

are stored in on-chip memory, addressable by 32 bit words. The GF(2128) multiplier in the

GHASH component was implemented in bit serial fashion: multiplying and accumulating

one bit of the input data by the 128-bitH value sequentially for 128 clock cycles. The high-

level architecture differs from Figure 5.6 in the additional logic required by the GHASH

component to accumulate the partial products.

5.2.3 Balanced Performance Design

The implementation targeting a balance between high performance and small area utilizes

the same 128-bit datapath AES key schedule and encryption components as the high perfor-

mance implementation. The difference lies in the GHASH component, which utilizes the

sequential multiply and add approach from [58]. A result is calculated in 16 clock cycles

by sequential multiply and accumulate operations using one 128 bit operand and one byte

operand. The high-level architecture for the GCM engine differs from Figure 5.6 in the
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Figure 5.7: The GCM top level state machine.
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GHASH component, where an additional register and several multiplexors are necessary to

compute the partial product.

5.3 Software Design

This section details the organization and build process of the software running on the em-

bedded Nios II processors. A description is given of the automation scripts that were de-

signed to create, build and download the software.

5.3.1 Organization

At a high-level, the software is organized into three major projects:1) blk proc, 2) red proc

and 3) lib gcm The blk proc and red proc projects contain code that pertains only to the

black and red processors respectively. The lib gcm directory contains shared code that is

used reference by both processors to interact with their associated GCM engine.

5.3.2 Build process

The software bitstream is created by executing a series of scripts. These scripts are outlined

below:

create-this-bsp <red/black>.sh Creates the board support package (BSP) binary files for

a Nios II processor

create-this-app <red/black>.sh Creates the application binary files for a Nios II proces-

sor

create-this-lib.sh Attempt to make a statically linked library for the GCM engine func-

tions

The BSP and application creation scripts were modified from versions provided in the

Altera software. All three scripts use relative locations to address files and directories.

Thus, it is necessary for software to be organized in the directory structure discussed in
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subsection 5.3.1. Additionally, the scripts need access to the files created during hardware

compilation. These scripts expect that the hardware files are one directory level above the

location of the scripts themselves in a directory labeled “hw altera”.

The BSP generation scripts pass the appropriate files and directories to “nios2-bsp”.

This application then creates the ucosii net zipfs BSP which is required to utilize the soft-

core Nios processor. The application generation scripts pass the appropriate files and direc-

tories to “nios2-app-generate-makefile”, which recursively generates the Makefile required

to create application code for a particular BSP. Once this Makefile has been created, the

script executes “make” on the newly created Makefile.

The GCM software static library creation script was ultimately not utilized in this

project. This is because of the way that the Nios build tools create the static library. The

tools require that the static library be built for a particular processor architecture and feature

set. In this project, this level of abstraction from the GCM code base was simply not nec-

essary. The best practice, in this case, was to guarantee that both processors were using the

same code interact with the GCM engines. This simplifies interaction with the engine and

allows changes to be made to the underlying GCM engine hardware interaction code with-

out necessarily changing the software interface presented to the embedded microprocessor

application code.

From a security perspective, the black processor does have access to the same GCM

engine interaction code as the red processor. This does not present an issue because the

hardware configuration prevents the black processor from attaining the same level of con-

trol given to the red processor. Again, this is only hardware interaction code.

The shell scripts were utilized in this project rather than the available Nios interactive

development environment (IDE) mainly to simplify the build process. In the normal em-

bedded processor software development cycle using the Nios IDE, the IDE must be opened

and used to build the BSP and application code, download the bitstream, execute it and per-

form any debugging desired by the user. In this project, many different hardware designs

were created, each requiring their own associated software environment for verification
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testing. The high-level GCM hardware interface wrapper for the Nios II processor did not

change between hardware projects as well. This being the case, the software was consis-

tent across all of the different hardware projects. It was much faster to simply execute

these series of scripts to verify functionality of the system, rather than create an entire new

development project simply to test the same software on different hardware.

5.3.3 Download and execution

To facilitate easy interaction with the softcore processors, a series of scripts were created

to download hardware and software. These scripts are outlined below:

download-hw-sw-terminal.sh Downloads the hardware bitstream to the FPGA and the

software to each softcore processor. A console window is opened for each processor

download-sw-terminal.sh Downloads the software to the softcore processors and opens

a console window to each

download-sw.sh Downloads the software to the softcore processors

download-sw-<red/black>.sh Downloads the software to a specific softcore processor

The console windows that are opened for each softcore processor display the standard

error and standard output from each using the universal serial bus (USB) Joint Test Action

Group (JTAG) universal asynchronous receiver/transmitters (UARTs). All of these scripts

expect that the hardware bitstream has been created and all of the software, BSP and appli-

cation code, has been compiled.

The hardware bitstream is downloaded using relative paths passed to the “quartus pgm”

command. The software binaries are downloaded using relative paths passed to the “nios2-

download” command. Once the software is downloaded, it begins execution immediately.

The scripts that download software to both processors downloads the red processor first,

but the software could be downloaded in any order.
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6. Evaluation

This chapter describes the three areas of analysis of this work: 1) verification, 2) perfor-

mance and 3) security analysis. The verification analysis section gives a brief discussion

on how the system output was found to be correct. The performance analysis section de-

tails the maximum frequency and throughput values of the GCM hardware engines. The

security analysis section provides a detailed analysis on the impact of the FPGA security

features on the system implementation.

6.1 Verification

Verification of the hardware modules was done using VHDL test benches and operating in

the FPGA by means of the softcore microprocessors used as stimulus. Once the hardware

bitstream was compiled, the software was compiled to match this hardware. The compi-

lation and download processes were discussed in section 5.3. The actual verification was

performed using test vectors provided in [20].

The red processor was given the test vector data in the form of static constants. The

testing was broken down into a C function for each test vector. The configuration and

private key data was first used to configure both GCM engines, then the plaintext data was

sent to the GCM encryption engine. The black microprocessor received this encrypted data

from the encryption engine and passed it back into the decryption engine. The decryption

engine was initialized with the same configuration as the encryption engine by the red

processor. If the data received by the red processor from the decryption engine was the

same as the data originally sent to the encryption engine, the test is labeled as successful.

The success or failure of each test is written to standard output.
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Table 6.1: Single GCM engine performance statistics

Target AES AES GHASH GCM 128-bit 2K-bit
App. Width S-Box Arch Max Pckt. Pckt.

(bits) Arch Freq. Th/put Th/put
(MHz) (Mbps) (Mbps)

Small 32 C-Field Bit serial 68.7 33.6 63.6
area 32 M9K Bit serial 119 58.1 110
High 128 C-Field Full parallel 71.2 434 528
perf. 128 M9K Full parallel 79.7 486 591
Bal. 128 C-Field 16-Sequen. 64.6 218 430
perf 128 M9K 16-Sequen. 97.0 327 645

6.2 Performance

The performance results of each system configuration is shown in Table 6.1. The packet

size is the amount of encrypted data that is processed by the GCM engine before an au-

thentication tag is generated. Functionality was verified for proper handling of the AAD,

but AAD processing was not included in the performance tests. The architectures and

peripherals of the two Nios II/e processors were consistent through every test.

As expected, the deep critical path found in the composite field S-Box implementation

limited the maximum frequency of the GCM engine. A possible advantage to this approach

is the low requirements on M9Ks, as shown in Table 6.2. The GCM implementations taking

advantage of the true dual-port on-chip memory are much more resource efficient given the

prevalence of M9K memory blocks on the target FPGA. Additionally, the throughput and

clock frequency were higher for the implementations using memory based S-Boxes. The

balanced performance memory based implementation had the highest throughput for the

larger packet size. This is because of its higher frequency and that the high performance

implementation had an equivalent AES encryption component which continued to perform

its computations while the parallel GHASH component was idle.

Implementation floorplans for the Cyclone III LS (EP3CLS70) can be seen in Fig-

ure 6.1. In these figures, labels one and two identify the red and black subsystem partitions

respectively. Labels three and four identify the GCM encryption and decryption engine
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partitions respectively. The darker shaded blocks are utilized resources, except on the bor-

ders of secured regions. These are fences of unused logic where no routing connections are

permitted. The small lightly shaded regions containing no logic between secured regions

are SRIs that allow routing to pass between regions. The strips passing vertically through-

out the FPGA are M9K memory elements and embedded multipliers. It is important to

note that the unallocated space is where the global signals are input to the global routing

structures for distribution throughout the entire FPGA.
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(a) (b)

Figure 6.1: Low area (3a) and high performance (3b) implementation floorplans for the
EP3CLS70 FPGA.

6.3 Security Costs and Analysis

In this work, the designs were first functionally verified on a Cyclone III device and the

final designs were synthesized for a Cyclone III LS device. While the implemented hard-

ware is functionally equivalent, additional resources were necessary to satisfy the security

requirements on the LS device. Table 6.2 illustrates the total utilized LEs and M9Ks out of

the total allocated for a particular secured region.

Together the size and position of the secured regions 1. dictate the amount of resources

available to a region, 2. set the timing of on-chip and off-chip data transfers to and from

regions, and 3. limit the available routing paths between secured partitions. Each secured

region is also a logical partition in itself, which prevents optimizations that would have
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Figure 6.2: A planar graph showing the flow of data between subsystems.

taken place at the partition boundaries [67]. As such, these secured regions are highly

design and platform dependent. To allow conclusions to be drawn more easily, the sizes of

the secured regions were fixed for a given target application.

For the high performance implementation in Figure 6.1b, overhead costs include 8912

LEs, 36 M9Ks, and 20 embedded multipliers that must remain unused to form the borders

between secured regions. SRIs may only contain routing, thus the 3120 LEs, 12 M9Ks,

and 8 embedded multipliers contained within SRIs are allocated, but not utilized. Taking

these figures into account, this leaves 20576 LEs, 35 M9Ks and 20 embedded multipliers

free for use as global logic.

An additional concern when choosing the size of a secured region is routability. [2]

specifies that the minimum size of a secured region is 8x8 LABs, else the possibility exists

that routing would need to protrude beyond the regions borders to connect to each LAB.

The width of an SRI is also recommended to be 12 LABs when signals are passing up or

down and 17 LABs when signals are passing left or right within the FPGA. The encryption
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and decryption partitions pass 78 connections vertically, necessitating an 8 LAB width.

The red and black partitions have 186 connections each to the Altera JTAG Hub, requiring

16 LABs for vertical connections. The final size was selected to be 10 LABs for vertical

and 5 LABs for horizontal, yielding a value of 205 possible connections. This minimum

recommended region size contributes significantly to the excessive height of the red and

black partitions.

The I/O banks available for global logic are limited in a secured design because I/O

banks may not be shared by secured regions [2]. In this work, one free bank was utilized

at the global level to provide the system clock and reset inputs. Excluding the Altera JTAG

interface signals, no other I/O banks were utilized. The secured routing constraints in

Figure 6.1b precluded complete access to I/O banks 7 and 6, with only partial access to the

pins on banks 8 and 5.

Designing for the previously mentioned constraints resulted in an inefficient use of

FPGA resources within the secured regions. The reference design for this project uti-

lized the Altera JTAG connection for input and output to the systems. This restricted the

floorplan such that the red and black subsystem partitions both needed to connect to the

JTAG signals, obscured by the black box in Figure 6.1. In a practical application, a de-

signer would assign pins such that data could flow across the FPGA, removing the need for

excessive logic to be allocated for circuitous routing. The balanced performance GCM im-

plementation utilizing the true dual-port memory makes the most efficient use of memory

and logic, while still providing a high throughput.
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7. Conclusions

In this work, a red/black separated system was designed with independent encryption and

decryption implementations of GCM using AES to pass authenticated and encrypted infor-

mation between two Nios II processors. The implementations of this system were evalu-

ated on a Cyclone III LS (EP3CLS70) FPGA based on the metrics of high performance,

low resource usage and a balance between the two. An analysis of resource utilization was

performed, yielding the additional cost of red/black separation on this platform. FPGA

hardware designers with a need for high security should be able to use this work to assist

in selecting component architectures that best meet their performance or resource require-

ments.

Future high performance designs based on this work could explore pipelined approaches

or passing data directly to the hardware engines from the input and output. Low area ap-

proaches could benefit from an 8 bit datapath or a T-box approach for further reduction in

required resources.

7.1 Suggestions for Future Work

Depending on desired implementation attributes and the target architecture this system is to

be placed on, there are a number of improvements that can be made. At the subcomponent

level, S-Box sharing could be implemented between the AES key schedule and encryption

implementations. During normal GCM operation, it is unlikely that the IV or private key

would be changed frequently. In this case, the key schedule would be idle the vast ma-

jority of the time. The key schedule for all datapath widths uses a four S-Box SubWord

component. A 32-bit wide version of the AES encryption function could make use of this.

Along the same lines as the S-Box substructure sharing, a 32-bit wide key schedule
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could be used in conjunction with a 128-bit wide AES encryption component. Again,

the key schedule is not invoked frequently and the tradeoff could be made to save logic

resources at the expense of a slower key schedule on an IV or private key change. The

expanded key memory component would need some additional control logic in order to

have 32-bit words written into it and still be able to provide 128-bit round keys to the

encryption engine.

It is worth noting that in all the implementations explored in this work, the majority of

the logical resources on the FPGA were utilized by the GHASH component. Thus, it seems

likely only a moderate savings would be achieved by utilizing substructure sharing between

S-Boxes. An 8-bit datapath width implementation for the key schedule and encryption

components might see a more significant area savings over a 128-bit width approach. Pair-

ing these 8-bit AES components with a bit-serial GHASH implementation would create a

circuit that uses very few logical resources and would have similar throughputs for both the

GHASH and encryption operations. A very large delay would be experienced during an

encryption operation since GHASH must follow encryption sequentially due to an existing

data dependency. Such a circuit would be useful in a situation where a very small, low cost,

secured FPGA is being employed and performance is not an issue. This could also be a

preferable implementation in an FPGA where redundancy must be implemented. It could

be possible to fit many of these GCM engines within one chip.

At a high level, first in, first outs (FIFOs) data structures could be used to queue up data

for the engine, which could then be pipelined during encryption operations. Additionally

or separately, direct data inputs into the GCM engine could be explored. In this case,

the processors would manage the flow of data throughout the circuit, but would not pass

the data directly through themselves. This would remove any software processing of data,

allowing it to pass completely through hardware. The performance benefits to this approach

are great, but this type of implementation would need to be scrutinized more closely to

make certain that it would pass a security evaluation.

A simpler improvement could be to remove redundant registers that exist at the top
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level of the GCM component. This would result in a cost savings as far as logical resources

are concerned, but might reduce the modularity of the system. A final suggestion from Dr.

Łukowiak to reduce utilized resources would be to use shift registers for the expanded key

memory. This would remove the need for counters and their corresponding control lines to

memory address signals. This technique might require less memory elements from FPGA,

depending upon their organization and usage in the design.

To create a more self-contained version of GCM, the data lengths could be registered

internally by the engine itself. Currently the length of the data must be multiple of the

AES block size and the total length of the data must be provided to the engine via two

64-bit registers. In the implementation designed in this paper, the padding and masking

can be performed by the processors. If the recommendation is take to pass data directly to

the engine instead of passing through the processors, this padding might no longer be so

trivial. At that time, it might become appropriate to register the data lengths internally and

add in a barrel shifter to mask the data if it is not a multiple of the AES block size.
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Acronyms

AAD . . . . . . . . . .Additional Authenticated Data

AES . . . . . . . . . . .Advanced Encryption Standard

ARK . . . . . . . . . .AddRoundKey

ASIC . . . . . . . . . .Application Specific Integrated Circuit

ASIP . . . . . . . . . .Application Specific Instruction Processor

BDD . . . . . . . . . . binary decision diagram

BRAM . . . . . . . . . block random access memory

BSP . . . . . . . . . . . board support package

CBC . . . . . . . . . . .Cipher Block Chaining

CCM . . . . . . . . . .Counter with Cipher Block Chaining-Message Authentication Code

CFB . . . . . . . . . . .Cipher Feedback

CLB . . . . . . . . . . . configurable logic block

CMAC . . . . . . . . .Cipher-based Message Authentication Code

DES . . . . . . . . . . .Data Encryption Standard

ECB . . . . . . . . . . .Electronic Codebook
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EDA . . . . . . . . . . .Electronic Design and Automation

FIFO . . . . . . . . . . First in, first out

FIPS . . . . . . . . . . . Federal Information Processing Standard

FPGA . . . . . . . . . . Field Programmable Gate Array

FSDA . . . . . . . . . . Fail-Safe Design and Analysis

GCM . . . . . . . . . .Galois/Counter mode

GSM . . . . . . . . . .Global Switch Matrix

ICB . . . . . . . . . . . initial counter block

IDE . . . . . . . . . . . interactive development environment

IP . . . . . . . . . . . . Intellectual Property

IV . . . . . . . . . . . . Initialization Vector

IVT . . . . . . . . . . . Isolation Verification Tool

JTAG . . . . . . . . . . Joint Test Action Group

LAB . . . . . . . . . . . logic array block

LE . . . . . . . . . . . . logic element

LUT . . . . . . . . . . . lookup table

MAC . . . . . . . . . .message authentication code

NBS . . . . . . . . . . .National Bureau of Standards

NIST . . . . . . . . . .National Institute of Standards and Technology
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NSA . . . . . . . . . . .National Security Agency

OFB . . . . . . . . . . .Output Feedback

OPB . . . . . . . . . . .On-chip Perhipheral Bus

SCC . . . . . . . . . . . Single Chip Cryptographic

SCC . . . . . . . . . . . Single Chip Cryptography

SRI . . . . . . . . . . . security routing interface

UART . . . . . . . . . . universal asynchronous receiver/transmitter

USB . . . . . . . . . . . universal serial bus

VHDL . . . . . . . . .VHSIC hardware description language

XOR . . . . . . . . . . bitwise exclusive OR
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