Polynomial time primality testing algorithm

Takeshi Aoyama
Department of Computer Science
Rochester Institute of Technology
Master’s Project Report

Polynomial Time Primality Testing Algorithm

Takeshi Aoyama

May 19, 2003

Committee
Chairman: Stanisław P. Radziszowski
Reader: Edith Hemaspaandra
Observer: Peter G. Anderson
Abstract

In August 2002, three Indian researchers, Manindra Agrawal and his students Neeraj Kayal and Nitin Saxena at the Indian Institute of Technology in Kanpur, presented a remarkable algorithm (the AKS algorithm) in their paper “PRIMES is in P.” It is the deterministic polynomial-time primality testing algorithm that determines whether an input number is prime or composite. Until now, there was no known deterministic polynomial-time primality testing algorithm, thus it has fundamental meaning for complexity theory.

This project centered around the AKS algorithm from “PRIMES is in P” paper. The objectives are both the AKS algorithm itself and theorems and lemmas showing the correctness of the algorithm. The first task of the project is to provide easy-to-follow explanations of the paper for average readers. The second task is to analyze the AKS algorithm in detail. Ideas and concepts in the algorithm are studied and possibilities of improvement of the algorithm are explored. Some simple programs are made for these experiments according to need.
Contents

1 Overview of the project

2 Detailed Commentary on “PRIMES is in P”
 2.1 Preparations .. 4
 2.2 The Algorithm ... 11
 2.3 Terminology ... 11
 2.4 An Overview of the AKS Algorithm
 2.5 A Proof of Correctness of the AKS Algorithm 13
 2.5.1 Existence of Useful Primes
 2.5.2 If n is Prime ... 17
 2.5.3 If n is Composite ... 17
 2.6 Time Complexity Analysis .. 24
 2.7 Future Work and Improvements 29

3 Analyzing the AKS algorithm
 3.1 Finding Useful Primes .. 30
 3.1.1 The Algorithm ... 31
 3.1.2 Experiments and Results 31
 3.2 Finding Useful Primes with Multiple Precision Integers 45
 3.3 Implementation of the Congruence in the for-loop 49
 3.3.1 The Algorithm ... 49
 3.3.2 Experiments and Results 52
 3.4 Full Implementation and Measurement of CPU time 57
 3.4.1 Implementation ... 57
 3.4.2 Measurement of CPU time 58

4 Conclusions ... 61

A Tables of Useful Primes ... 62

B Source Code ... 66
Chapter 1

Overview of the project

Primality testing is a decision problem because if we are asked whether the given positive integer is prime or not, the answer must be “yes” or “no.” The AKS algorithm proved primality testing is in the class P. That is why the title of the paper is “PRIMES is in P.” PRIMES represents primality testing in their terminology. The class P problem can be solved in polynomial time in the size of the input of the problem. A method using the bit length of the given number \(n \) (\(\approx \log_2 n \)) as the size is reasonable in PRIMES. Whether PRIMES is in the class P or not had been one of the most important problems in the theoretical computer science field for a long time.[27] Here is the brief history of the primality testing.[14]

- Eratosthenes, 276 BC-194 BC: the Eratosthenes Sieve
- Pratt ’75: in NP
- Miller ’76: \(O((\log_2 n)^4) \)-time solvable if the Extended Riemann Hypothesis is true
- Solovay and Strassen ’77; Rabin ’80: in coRP, still the choice in applications
- Adleman, Pomerance, and Rumely ’83: deterministic \(O((\log_2 n)^{\log_2 \log_2 n}) \)-time algorithm
- Goldwasser and Kilian, ’86: “Almost all” primes can be proven to be prime in \(O((\log_2 n)^{12}) \) time
- Adleman and Huang ’87: in RP
- Fellows and Koblitz ’92: in UP
- Agrawal, Kayal and Saxena 2002: in P, \(O((\log_2 n)^{12 \text{ poly}(\log_2 \log_2 n)}) \)-time
NOTE: Complexity Classes [27],[28]

NP (Nondeterministic Polynomial-time) If we can magically get some extra input, we can check if the given number is prime or not in polynomial time.

corP (complementary Randomized Polynomial-time) Solvable in polynomial time by randomized algorithms (The answer “prime” is probably right, “composite” is certainly right.

RP (Randomized Polynomial-time) Solvable in polynomial time by randomized algorithms (The answer “composite” is probably right, “prime” is certainly right.

UP (Unambiguous Polynomial time) The class of sets that are accepted by non-deterministic polynomial-time Turing machines that on no input have more than one accepting computation path [16]

P (polynomial-time) Solvable on a deterministic sequential machine in an amount of time that is polynomial in the size of the input.

Many researchers have been interested in the primality testing algorithm from a theoretical standpoint. But some primality testing algorithm are also important from a practical standpoint because some cryptosystems such as RSA use this kind of algorithm for their key generation. RSA needs two large prime numbers for their key generation and a primality testing algorithm is used in this part of the system.[17]

Consequently, many researchers have provided various algorithms. There are some very efficient algorithms such as the Solovay-Strassen or Miller-Rabin algorithm. They are termed probabilistic polynomial time primality testing algorithms. (It is same as the class coRP.) The term “probabilistic” implies that they can make mistakes sometimes. That is to say there is a possibility that the algorithm may claim the given number is prime when in fact it is composite. But this error possibility can be reduced to an arbitrarily small percentage by repeating the test enough times. The algorithm is basically very fast, so the algorithm is practical enough in real cryptosystems.

Despite efforts of many researchers, no one could find the algorithm in the class P up to the AKS algorithm. Therefore, people believed that very complex mathematical techniques were necessary to solve this problem. However, Agrawal et al. accomplished their important achievement by using only a relatively basic number theory and group theory. That further surprised many researchers.

This Project and Report Chapter 2 explains the AKS algorithm and proofs in detail. We also have implemented the algorithm and conducted some experiments. Their results show some characteristics of the algorithm and help us to understand it better. They are shown in chapter 3.
Chapter 2

Detailed Commentary on “PRIMES is in P”

In this chapter a detailed explanation of “PRIMES is in P” is given. The theorems and lemmas in this chapter are quoted from the original paper. Other quotations are indented for clarity. A page number of a reference part of the original paper is indicated at each time.

2.1 Preparations

[2 Basic Idea and Approach] (page 2)

[Identity] (page 2) Suppose that \(a\) is coprime to \(p\). Then \(p\) is prime if and only if

\[
(x - a)^p \equiv (x^p - a) \pmod{p}
\]

(2.1)

We do not care what \(x\) is specifically in this congruence. What is required in order to know whether this congruence is true or not is to compare each coefficient on both sides by mod \(p\).

Proof. Identity

\[
LHS = (x - a)^p = x^p + \sum_{i=1}^{p-1} (-1)^i pC_i a^{p-i} x^i + (-1)^p a^p
\]

(2.2)

If \(p\) is prime: \(a^p \equiv a \pmod{p}\) by Fermat’s Little Theorem. And if \(p\) is odd prime \((-1)^p a \equiv -a \pmod{p}\) and if \(p = 2\), also \((-1)^2 a \equiv a \equiv -a \pmod{2}\), thus

\[
LHS = (x - a)^p = x^p + \sum_{i=1}^{p-1} (-1)^i pC_i a^{p-i} x^i - a \pmod{p}.
\]

(2.3)

Here

\[
pC_i = \frac{p!}{(p - i)!i!} \quad (1 \leq i \leq p - 1).
\]

(2.4)
Since $p - i < p$ and $i < p$, p is not a factor of the denominator, then pC_i is a multiple of p for $1 \leq i \leq p - 1$. As a result,

$$pC_i \equiv 0 \pmod{p} \quad (1 \leq i \leq p - 1). \quad (2.5)$$

Therefore

$$(2.3) \Rightarrow LHS \equiv x^p - a \pmod{p} \quad (2.6)$$

$$= RHS \pmod{p}. \quad (2.7)$$

If p is composite: Let $p = mq^k$, (q is a prime factor of p, $q \nmid m$, $k \geq 1$)

$$pC_q = \frac{p(p-1) \ldots \{p - (q-2)}{q!} \{p - (q - 1)}{q!}$$

$$= \frac{mq^k(q^k - 1) \ldots \{mq^k - (q-2)}{q!} \{mq^k - (q - 1)}{q!}$$

$$= \frac{mq^{k-1}(q^k - 1) \ldots \{mq^k - (q-2)}{q!} \{mq^k - (q - 1)}{(q - 1)!} \quad (2.10)$$

Since $q \nmid (mq^k - 1), \ldots, \{mq^k - (q-2)}, \{mq^k - (q - 1)}$,

$$q^k \nmid pC_q \quad (2.11)$$

$$\Rightarrow p \nmid pC_q. \quad (2.12)$$

And a is coprime to p, then for the coefficient of x^q in LHS

$$(-1)^q pC_q a^{p-q} \not\equiv 0 \pmod{p} \quad (2.13)$$

On the other hand, the coefficient of x^q in RHS is zero \pmod{p}, hence

$$(x - a)^p \not\equiv (x^p - a) \pmod{p}. \quad (2.14)$$

\[3 \text{ Notation and Preliminaries} \] (pages 2-3)

[Lemma 3.1.] (page 2) Let p and r be prime numbers, $p \neq r$ in fact 1 to fact 4.

[Lemma 3.1.(fact 1)] (page 3) The multiplicative group of any field F_p^t, for $t > 0$, denoted by F_p^*, is cyclic.

Proof. See [12]. \[\square \]

[Lemma 3.1.(fact 2)] (page 3) Let $f(x)$ be a polynomial with integral coefficients. Then

$$f(x)^p \equiv f(x^p) \pmod{p} \quad (2.15)$$
Example: Let $f(x) = a_0 + a_1 x + a_2 x^2$ and $p = 3$, then

$$f(x)^3 = (a_0 + a_1 x + a_2 x^2)(a_0 + a_1 x + a_2 x^2)(a_0 + a_1 x + a_2 x^2).$$ \hspace{1cm} (2.16)

Let $i_0 + i_1 + i_2 = 3 (= p$ or the number of clauses above).

\begin{center}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
i_0 & i_1 & i_2 & i & $a_0^{i_0} a_1^{i_1} a_2^{i_2}$ & $a_0^{i_0} a_1^{i_1} a_2^{i_2}$ & coefficient of x^i & x^i mod 3 \\
\hline
3 & 0 & 0 & 0 & a_0^3 & a_0^3 & x^0 & a_0 \\
2 & 1 & 0 & 1 & $a_0 a_1$ & $a_0 a_1$ & x^1 & 0 \\
1 & 2 & 0 & 2 & $a_0 a_1^2$ & $a_0 a_1^2$ & x^2 & 0 \\
2 & 0 & 1 & 2 & $a_0 a_1 a_2$ & $a_0 a_1 a_2$ & x^2 & 0 \\
0 & 3 & 0 & 3 & a_1^3 & a_1^3 & x^3 & a_1 \\
1 & 1 & 1 & 4 & $a_0 a_1 a_2$ & $a_0 a_1 a_2$ & x^4 & 0 \\
0 & 2 & 1 & 5 & $a_1 a_2^2$ & $a_1 a_2^2$ & x^5 & 0 \\
0 & 1 & 2 & 6 & a_2^3 & a_2^3 & x^6 & a_2 \\
\hline
\end{tabular}
\end{center}

From the table above, we get $f(x)^3 = a_0 + a_1 x^3 + a_2 x^6 \equiv f(x^3)$ (mod 3).

For example, the term of x^2 can be found in two ways. Use a_0 from one of the three clauses in (2.16) and $a_1 x$ from the other two of the three clauses in (2.16), and multiply them, or use a_0 from two of the three clauses in (2.16) and $a_2 x^2$ from the other one of the three clauses in (2.16) and multiply them. These two ways correspond to $i_0 = 1, i_1 = 2, i_2 = 0$ and $i_0 = 2, i_1 = 0, i_2 = 1$.

Proof. Lemma 3.1. (fact 2)

Let $f(x) = a_0 + a_1 x + \cdots + a_d x^d$. The coefficient of x^i in $f(x)^p$ is

$$\sum_{i_0 + \cdots + i_d = p \atop i_1 + 2i_2 + \cdots + di_d = i} \frac{a_0^{i_0} \cdots a_d^{i_d}}{i_0! \cdots i_d!} \frac{p!}{i_0! \cdots i_d!}.$$ \hspace{1cm} (2.17)

That is because

$$i_0 + \cdots + i_d = p \quad (= \text{the number of multiplied terms.})$$ \hspace{1cm} (2.18)

$$i_0 \times 0 + i_1 \times 1 + i_2 \times 2 + \cdots + i_d \times d$$ \hspace{1cm} (2.19)

$$= i_1 + 2i_2 + \cdots + di_d = i \quad (= \text{the degree of the term.})$$ \hspace{1cm} (2.20)

Then if we fix the values of i_0, \ldots, i_d, then the number of ways picking up each term from p clauses is

$$\frac{p!}{i_0! \cdots i_d!}.$$ \hspace{1cm}

As for the coefficients of $f(x)^p$, there are two cases below. (Because $i_0 + \cdots + i_d = p$.)
(case 1) All \(i_k\)'s are less than \(p\). \((i_0, \ldots, i_d < p)\) In this case
\[
\frac{p!}{i_0! \cdots i_d!} \equiv 0 \pmod{p}.
\]
Because \(p\) is not a factor of the numerator.

(case 2) \(i_j = p\) for \(\exists 1j\), and \(i_k = 0\) for all \(k \neq j\) \(i.e.\) using the same terms, \(a_jx^j\), from all clauses. In this case, from (2.20),
\[
i = i_j \times j
\]
\[
= pj. \tag{2.22}
\]
Since there is only one way to chose terms from the \(p\) clauses in this case, the coefficient of \(x^{i(= x^{pj})}\) is
\[
a_j^p \equiv a_j \pmod{p} \text{ [By Fermat's little theorem]}
\]
From case 1 and 2, we get
\[
f(x)^p \equiv a_0x^{p \times 0} + a_1x^{p \times 1} + \ldots + a_dx^{p \times d} \pmod{p} \tag{2.23}
\]
\[
\equiv f(x^p) \pmod{p} \tag{2.24}
\]
\[
\square
\]

[Lemma 3.1.(fact 3)] \((\text{page 3})\) Let \(h(x)\) be any factor of \(x^r - 1\). Let \(m \equiv m_r \pmod{r}\). Then
\[
x^m \equiv x^{m_r} \pmod{h(x)} \tag{2.25}
\]

Proof. Lemma 3.1.(fact 3)
Let \(m = kr + m_r\). Now
\[
x^r \equiv 1 \pmod{x^r - 1} \tag{2.26}
\]
Raise both sides to the power \(k\)
\[
\Rightarrow x^{kr} \equiv 1^k \pmod{x^r - 1} \tag{2.27}
\]
\[
\Rightarrow x^{kr} \equiv 1 \pmod{x^r - 1} \tag{2.28}
\]
Multiply both sides by \(x^{m_r}\)
\[
\Rightarrow x^{kr + m_r} \equiv x^{m_r} \pmod{x^r - 1} \tag{2.29}
\]
\[
\Rightarrow x^m \equiv x^{m_r} \pmod{x^r - 1} \quad \text{[By } m = kr + m_r\] \tag{2.30}
\]
Since \(h(x)\) is a factor of \(x^r - 1\)
\[
\Rightarrow x^m \equiv x^{m_r} \pmod{h(x)} \tag{2.31}
\]
\[
\square
\]
[Lemma 3.1.(fact 4)] (page 3) Let \(o_r(p) \) be the order of \(p \) modulo \(r \). Then in \(F_p \), \(\frac{x^r - 1}{x - 1} \) factorises into irreducible polynomials each of degree \(o_r(p) \).

Proof. Lemma 3.1.(fact 4)

Let \(d = o_r(p) \) and \(Q_r(x) = \frac{x^r - 1}{x - 1} \). Let \(h(x) \) of degree \(k \) be an irreducible factor of \(Q_r(x) \) in \(F_p \). We prove \(k = d \) by showing \(k|d \) and \(d|k \).

(a) **Show \(k|d \)** Now \(F_p[x]/h(x) \) forms a field of size \(p^k \), \(F_{p^k} \), and the multiplicative subgroup of \(F_p[x]/h(x) \), \(F_{p^k}^* \), is cyclic by Lemma 3.1 (fact 1) with a generator, say \(g(x) \). Then, by Lemma 3.1 (fact 2),

\[
g(x)^p \equiv g(x^p) \pmod{p} \tag{2.32}
\]

\[
g(x)^h \equiv g(x^{q_{r^k}}) \pmod{h(x), p} \tag{2.33}
\]

\[
g(x)^e \equiv g(x^{q_{r^k}}) \pmod{h(x), p} \tag{2.34}
\]

Proof of the congruence (2.34) by induction.

The base case is the congruence (2.33).

The inductive hypothesis:

\[
g(x)^{p^k} \equiv g(x^{q_{r^k}}) \pmod{h(x), p} \quad (k \geq 1) \tag{2.35}
\]

The induction step:

\[
g(x)^{p^k+1} \equiv g(x)^{p^{k+1}} \tag{2.36}
\]

\[
\equiv (g(x)^{p^k})^p \tag{2.37}
\]

\[
\equiv (g(x^{q_{r^k}}))^p \quad \text{[By the induction hypothesis]} \tag{2.38}
\]

\[
\equiv g((x^{p^k})^{q_{r^k}}) \quad \text{[By lemma 3.1.(fact 2)]} \tag{2.39}
\]

\[
\equiv g(x^{q_{r^{k+1}}}) \tag{2.40}
\]

Therefore we get the congruence (2.34).

Since

\[
p^d \equiv 1 \pmod{r} \quad \text{[By } d = o_r(p)\text{]} \tag{2.41}
\]

\[
h(x)|x^r - 1 \text{ in } F_p \quad \text{[By } h(x)|Q_r(x) \text{ and } Q_r(x)|x^r - 1 \text{ in } F_p\text{]} \tag{2.42}
\]

by lemma 3.1.(fact 3), we get

\[
x^{p^d} \equiv x \pmod{h(x), p} \tag{2.43}
\]

\[
\implies x^{p^d} \equiv x \pmod{h(x), p} \tag{2.44}
\]

\[
\implies g(x^{p^d}) \equiv g(x) \pmod{h(x), p}. \tag{2.45}
\]
From the congruence (2.34) and (2.45),

\[g(x)^{p^d} \equiv g(x) \pmod{h(x), p} \] \hspace{1cm} (2.46)

\[\Rightarrow g(x)^{p^d - 1} \equiv 1 \pmod{h(x), p}. \] \hspace{1cm} (2.47)

The order of \(g(x) \) is \(p^k - 1 \) because \(g(x) \) is a generator of \(F_{p^k}^* \). That means \(g(x)^{p^k - 1} \equiv 1 \pmod{h(x), p} \), and \(p^k - 1 \) is the smallest such exponent. Thus we get

\[p^k - 1 | p^d - 1 \]

which implies that

\[k | d. \] \hspace{1cm} (2.48)

Proof. \(p^k - 1 | p^d - 1 \Rightarrow k | d. \)

Let \(d = nk + a \) (\(n \geq 1, \quad 0 \leq a < k \)).

\[p^d - 1 = p^{nk + a} - 1 \] \hspace{1cm} (2.49)

\[= p^{nk}p^a - 1 \] \hspace{1cm} (2.50)

\[= (p^{nk} - 1)p^a + p^a - 1 \] \hspace{1cm} (2.51)

\[= (p^k - 1)(p^{k(n-1)} + p^{k(n-2)} + \ldots + p^k + 1)p^a + p^a - 1 \] \hspace{1cm} (2.52)

Therefore,

\[p^k - 1 | p^d - 1 \Rightarrow p^a - 1 = 0 \] \hspace{1cm} (2.53)

\[\Rightarrow a = 0 \] \hspace{1cm} (2.54)

\[\Rightarrow k | d. \] \hspace{1cm} (2.55)

(b) Show \(d | k \). Because \(h(x) \) is a factor of \(x^r - 1 \), we have

\[x^r \equiv 1 \pmod{h(x), p} \] \hspace{1cm} (2.56)

Thus the order of \(x \) in \(F_{p^k}^* \) is \(r \). (since \(r \) is prime and \(x \neq 1 \).) Recall that the order of an element in a cyclic group is a factor of the order of the cyclic group. The order of \(F_{p^k}^* \) is \(p^k - 1 \). Therefore \(r | p^k - 1 \), i.e.

\[p^k - 1 \equiv 0 \pmod{r} \] \hspace{1cm} (2.57)

\[\Rightarrow p^k \equiv 1 \pmod{r} \] \hspace{1cm} (2.58)

\[\Rightarrow d | k \quad \text{[by } d = O_r(p)\text{]} \] \hspace{1cm} (2.59)

From (a) and (b), we get \(k = d \). \(\square \)

[Lemma 3.2.] (page 3) [6], [3] Let \(P(n) \) denote the greatest prime divisor of \(n \). There exist constants \(c > 0 \) and \(n_0 \) such that, for all \(x > n_0 \)

\[|\{p|p \text{ is prime}, p \leq x \text{ and } P(p - 1) > x^{3/4}\}| \geq c \frac{x}{\log_2 x} \] \hspace{1cm} (2.60)
[Lemma 3.3.] (page 3) [2] Let \(\pi(n) \) be the number of primes \(\leq n \). Then for \(n \geq 1 \)

\[
\frac{n}{6 \log_2 n} \leq \pi(n) \leq \frac{8n}{\log_2 n} \tag{2.61}
\]

Proof. From the original book [2].

\[
\pi(n) \geq \frac{n}{6 \log_e n} \tag{2.62}
\]

\[
\geq \frac{n}{6 \log_2 n} \tag{2.63}
\]

And also from the book,

\[
\pi(n) \leq \frac{n}{\log_e n} \left(6 \log_e 2 + \frac{3}{e} \right) \tag{2.64}
\]

\[
= \frac{n \log_2 e}{\log_2 n} \left(6 \log_2 e + \frac{3}{e} \right) \tag{2.65}
\]

\[
= \frac{n}{\log_2 n} \left(6 + \frac{3 \log_2 e}{e} \right) \tag{2.66}
\]

\[
\leq \frac{n}{\log_2 n} \left(6 + 3 \times 1.45 \right) \tag{2.67}
\]

\[
\leq \frac{8n}{\log_2 n} \tag{2.68}
\]
2.2 The Algorithm

[4 The Algorithm] (pages 4-7)

The AKS algorithm (page 4)

Input: integer $n > 1$

1. if (n is of the form $a^b, b > 1$) output COMPOSITE;
2. $r = 2$;
3. while($r < n$) {
 4. if (gcd($n, r) \neq 1$) output COMPOSITE;
 5. if (r is prime) {
 6. let q be the largest prime factor of $r - 1$;
 7. if ($q \geq 4\sqrt{r} \log_2 n$ and $(n^{r-1} \neq 1 \pmod{r})$)
 8. break;
 }
 9. r \leftarrow $r + 1$;
4. }
11. for $a = 1$ to $2\sqrt{r} \log_2 n$
12. if ($(x - a)^n \neq (x^n - a) \pmod{x^r - 1, n}$) output COMPOSITE;
13. output PRIME;

2.3 Terminology

We introduce the following terms for the arguments that are presented later.

$P(n)$ The largest prime factor of n. (n is a composite number.)

$q = P(r - 1)$. (r is a prime.)

$o_r(n)$ The order of n modulo r.

COND 1 $q \geq 4\sqrt{r} \log_2 n$ ($n > 1$).

COND 2 $n^{r-1} \neq 1 \pmod{r}$.

COND 3 $q | o_r(n)$.

Useful Prime [14] r is a useful prime when it satisfies COND 1 and COND 2 (or COND 1 and COND 3 *) for a given integer (> n).

* NOTE : COND 1 and COND 2 \iff COND 1 and COND 3.

Proof. Assume COND 1. Then we show COND 3 \iff COND 2.
(a) \(q|o_r(n) \Rightarrow n^{r-1} \not\equiv 1 \pmod{r} \) (COND 3 \(\Rightarrow \) COND 2) By COND 1

\[
q > \sqrt{r-1} \\
\Rightarrow q^2 > r - 1 \\
\Rightarrow q > \frac{r - 1}{q} \\
\Rightarrow o_r(n) > \frac{r - 1}{q} \quad \text{[By } q|o_r(n)\text{]} \\
\Rightarrow n^{r-1} \not\equiv 1 \pmod{r} \quad (2.73)
\]

(b) \(n^{r-1} \not\equiv 1 \pmod{r} \Rightarrow q|o_r(n) \) (COND 2 \(\Rightarrow \) COND 3) We prove the contraposition, \(q \not| o_r(n) \Rightarrow n^{r-1} \equiv 1 \pmod{r} \). Since \(q \not| o_r(n) \) and \(o_r(n)|r - 1 \),

\[
o_r(n)|\frac{r - 1}{q} \quad (2.74)
\]

\[
\Rightarrow n^{r-1} \equiv 1 \pmod{r}. \quad (2.75)
\]

2.4 An Overview of the AKS Algorithm

If we consider the AKS algorithm as a filter for composite numbers, it is easy to understand how the algorithm works. Only prime numbers can reach the last line 13. Composite numbers are detected by filters at line 1, line 4, or line 12.

The Role of the While-loop The role of the while-loop is to find the smallest useful prime \(r \) for a given number \(n \). If \(n \) is large enough (\(n > n_0, n_0 \) is a constant.), Lemma 4.2. assures that a useful prime \(r \) exists in the interval \([c_1(\log_2 n)^6, c_2(\log_2 n)^6]\). \(c_1 \) and \(c_2 \) are constants.) This means that the while-loop does not repeat until the upper bound \(r = n - 1 \), and breaks at line 8 in no more than \(c_2(\log_2 n)^6 \) iterations. Thus even if a primitive algorithm like the Brute Force Method is applied for the GCD check at line 4 or the prime check at line 5, the algorithm can work in polynomial time.

The Filter at Line 1 It detects special form composite numbers such that \(a^b, b > 1 \).

The Filter at Line 4 It detects composite numbers that have a smaller prime factor than their useful primes. A composite \(n \) that is not detected here satisfies the next condition.

COND 6: “Every prime factor of \(n \)” \(> r \)
The Filter at Line 12 This is the “main” filter. All other composites not detected at line 1 or line 4 are detected here.

The Behavior of the AKS Algorithm for Different Kind of Numbers

1. n is composite of the form $a^b, b > 1$.
 It returns COMPOSITE at line 1.

2. n is prime, or composite not of the form $a^b, b > 1$.
 (a) A useful prime ($< n$) does not exist.
 i. n is composite.
 It returns COMPOSITE at line 4. (It works like the Brute Force Method.)
 ii. n is prime.
 The while-loop iterates until $r = n - 1$.
 The for-loop iterates until $a = 2\sqrt{r}\log_2 n$.
 It returns PRIME at line 13.
 (b) A useful prime ($< n$) exists.
 i. n is composite.
 A. n has a prime factor ($<$ the smallest useful prime for n.)
 It returns COMPOSITE at line 4.
 B. n does not have a prime factor ($<$ the smallest useful prime for n.)
 The while-loop finds a useful prime r ($< n$) and breaks at line 8.
 It returns COMPOSITE at line 12 in the for-loop.
 ii. n is prime. The while-loop finds a useful prime r ($< n$) and breaks at line 8.
 The for-loop iterates until $a = 2\sqrt{r}\log_2 n$.
 It returns PRIME at line 13.

2.5 A Proof of Correctness of the AKS Algorithm

[**Theorem 4.1.** (page 4)] The algorithm above returns PRIME if and only if n is prime.

This theorem claims that the AKS algorithm always returns the correct answer. Whether the algorithm can work in polynomial time or not is not mentioned here. That is showed in the section 5 in “PRIMES is in P”.

Proof. This is proved through Lemma 4.2. to Lemma 4.7. □

2.5.1 Existence of Useful Primes

[**Lemma 4.2.** (page 4)] There exist positive constants c_1 and c_2 for which there is a prime r in the interval $[c_1(\log_2 n)^6, c_2(\log_2 n)^6]$ such that $r - 1$ has a prime factor $q \geq 4\sqrt{r}\log_2 n$ and $q | o_r(n)$.
This lemma means that the while-loop does not iterate until its upper bound $n - 1$, and before that a useful prime r that is at most the size of about $(\log_2 n)^6$ can be found, and then breaks at line 8.

NOTE This lemma assumes that $n > n_0$ (n_0 is a constant). Otherwise a useful prime r for the given n could not be found, even though composite numbers can be detected by the check on line 4 of the algorithm. In this case the algorithm works like the Brute Force Method not in polynomial time but in exponential time. Thus, formally, Lemma 4.2. is not needed for a proof of Theorem 4.1. However this lemma is necessary for assuring the algorithm working in polynomial time.

Proof. Lemma 4.2.
The lemma says r meets COND 1 and COND 3 (or COND 2).

Now consider following sets. Let

$$S = \{ p \mid p \text{ is prime, } P(p - 1) > p^2, p \leq c_2(\log_2 n)^6 \}$$

(2.76)

$$R = \{ p \mid p \text{ is prime, } P(p - 1) > p^2, c_1(\log_2 n)^6 \leq p \leq c_2(\log_2 n)^6 \}$$

(2.77)

$$T = \{ p \mid p \text{ is prime, } p \leq c_1(\log_2 n)^6 \}.$$

(2.78)

Let $c_1 \geq 4^6$. For $r \in R$,

$$r \geq c_1(\log_2 n)^6$$

(2.79)

$$\geq 4^6(\log_2 n)^6$$

(2.80)

$$\Rightarrow r^\frac{1}{6} \geq 4\log_2 n$$

(2.81)

While

$$P(r - 1) \geq r^\frac{2}{3}$$

(2.82)

$$= r^{\left(\frac{1}{3} + \frac{1}{3}\right)}$$

(2.83)

$$= \sqrt{r \cdot r^\frac{1}{3}}$$

(2.84)

$$\geq 4\sqrt{r \log_2 n} \quad \text{[By (2.81)].}$$

(2.85)

Thereby $r \in R$ satisfies COND 1. Consider the bound.

$$|R| \geq |S| - |Q|$$

(2.86)

We get the minimum number of $|S|$ by substituting $c_2(\log_2 n)^6$ for x of Lemma 3.2.

$$|S| \geq c_2(\log_2 n)^6$$

(2.87)

$$= \frac{c_2(\log_2 n)^6}{\log_2 c_2 + 6\log_2 \log_2 n}.$$
Since \(c_2 \leq \log_2 n \), where \(n \) is large enough, then by substituting \(\log_2 n \) for \(c_2 \) in the denominator, we get

\[
|S| \geq \frac{cc_2 (\log_2 n)^6}{\log_2 \log_2 n + 6 \log_2 \log_2 n} \quad (2.89)
\]

\[
= \frac{cc_2 (\log_2 n)^6}{7 \log_2 \log_2 n} \quad (2.90)
\]

While the maximum of \(|Q| \) is obtained by Lemma 3.3.

\[
|Q| \leq \frac{8c_1 (\log_2 n)^6}{\log_2 c_1 (\log_2 n)^6} \quad (2.91)
\]

\[
= \frac{8c_1 (\log_2 n)^6}{\log_2 c_1 + 6 \log_2 \log_2 n} \quad (2.92)
\]

\[
< \frac{8c_1 (\log_2 n)^6}{6 \log_2 \log_2 n} \quad (2.93)
\]

From (2.86), (2.90) and (2.93),

\[
|R| > \frac{cc_2 (\log_2 n)^6}{7 \log_2 \log_2 n} - \frac{8c_1 (\log_2 n)^6}{6 \log_2 \log_2 n} \quad (2.94)
\]

\[
= \frac{(\log_2 n)^6}{\log_2 \log_2 n} \left(\frac{cc_2}{7} - \frac{8c_1}{6} \right) \quad (2.95)
\]

Choose constants \(c_2 \) so that the quantity in braces is a positive constant, say \(c_3 \).

\[
|R| > \frac{c_3 (\log_2 n)^6}{\log_2 \log_2 n} \quad (2.96)
\]

The remaining part needs to show that at least one prime satisfying COND 3 (or COND 2) exists in \(R \). Consider a prime \(t \) such that

\[
t \in T = \{ t \mid t \in R, \ t \text{ does not satisfy COND 2} \} \subseteq R \quad (2.97)
\]

Since \(t \) does not satisfy COND 2,

\[
n^{\frac{t-1}{t-1}} \equiv 1 \pmod{t}. \quad (2.98)
\]

Since \(t \in R \),

\[
P(t - 1) \geq t^2. \quad (2.99)
\]

By this

\[
\frac{t - 1}{P(t - 1)} \leq \frac{t}{t^2} \leq \frac{t}{t} \leq x^{\frac{1}{3}} \quad (2.100)
\]

\[
= t^{\frac{1}{3}} \quad (2.101)
\]

\[
\leq x^{\frac{1}{3}} \quad [\text{Here } x = c_2 (\log_2 n)^6] \quad (2.102)
\]
Thus, from (2.98), at least one of the following congruence holds.

\[n^1 \equiv 1 \pmod{t}, n^2 \equiv 1 \pmod{t}, \ldots, n^{x \frac{1}{3}} \equiv 1 \pmod{t} \] \quad (2.103)

In other words, \(t \) is a divisor of one of the following.

\[n^1 - 1, n^2 - 1, \ldots, n^{x \frac{1}{3}} - 1 \] \quad (2.104)

Hence \(|T|\) can be bounded by the number of factors of the following product.

\[\prod = (n - 1)(n^2 - 1) \cdots (n^{x \frac{1}{3}} - 1). \] \quad (2.105)

Thus

\[|T| \leq \log_2 \prod \] \quad (2.106)

\[= \sum_{i=1}^{x^{\frac{1}{3}}} \log_2 (n^i - 1) \] \quad (2.107)

\[< \sum_{i=1}^{x^{\frac{1}{3}}} \log_2 n^i \] \quad (2.108)

\[= \log_2 n \sum_{i=1}^{x^{\frac{1}{3}}} i \] \quad (2.109)

\[= \frac{x^{\frac{1}{3}}(x^{\frac{1}{3}} + 1)}{2} \log_2 n \] \quad (2.110)

\[< x^{\frac{2}{3}} \log_2 n \] \quad (2.111)

\[= c_2(\log_2 n)^5 \quad [\text{By } x = c_2(\log_2 n)^6]. \] \quad (2.112)

To complete the proof, we need to show \(|R| - |T| \geq 1\). From (2.95) and (2.112)

\[|R| - |T| \] \quad (2.113)

\[\geq \frac{(\log_2 n)^6}{\log_2 \log_2 n} \left(\frac{cc_2}{7} - \frac{8c_1}{6} \right) - c_2(\log_2 n)^5 \] \quad (2.114)

\[= \frac{(\log_2 n)^6}{\log_2 \log_2 n} \left\{ c_2 \left(\frac{c}{7} - \frac{\log_2 \log_2 n}{\log_2 n} \right) - \frac{8c_1}{6} \right\} \] \quad (2.115)

For \(n \), which is large enough

\[\frac{c}{7} - \frac{\log_2 \log_2 n}{\log_2 n} > 0. \] \quad (2.117)

Thus we can make \(|R| - |T|\) greater than or equal to 1 by choosing a \(c_2 \), that is large enough. \(\square \)
2.5.2 If n is Prime

[Lemma 4.3.] (page 5) If n is prime, the algorithm returns PRIME.

Proof. Lemma 4.3.

Let n be a prime. The while-loop cannot return COMPOSITE since $\gcd(n, r) = 1$ for all $r < n$.

Concerning the for-loop: By Lemma 3.1. (fact 2) for all a's $(1 \leq a \leq 2\sqrt{r} \log_2 n)$

\[
(x - a)^n \equiv (x^n - a) \pmod{n} \quad \text{(2.118)}
\]

\[
\Rightarrow (x - a)^n \equiv (x^n - a) \pmod{x^r - 1, n}. \quad \text{(2.119)}
\]

Thus the for-loop also cannot return COMPOSITE. Thereby, the algorithm returns PRIME.

\[\square\]

2.5.3 If n is Composite

Now we consider the case that the given number n is composite. If n is a type of number that can be detected at line 1 or line 4, it is obvious that the algorithm works correctly. Then what we need to prove here is another type of composite number that can be detected as composite by the check at line 12 in the for-loop. For the reminder of the argument, we reconfirm the conditions about the useful prime r and the given number n in such case.

As for r:

COND 1: $q \geq 4\sqrt{r} \log_2 n$ (or $q \geq 2\ell, \ell = 2\sqrt{r} \log_2 n$) [By the check at line 7]

COND 2: $n^{r^{-1}} \not\equiv 1 \pmod{r}$ [By the check at line 7]

COND 3 : $q | o_r(n)$ [By the check at line 7]

(NOTE: COND 1 and COND 2 \iff COND 1 and COND 3)

As for n:

COND 4: n is composite [assumption]

COND 5: n is not of the form $a^b, (b > 1)$ [By the check at line 1]

COND 6: “Every prime factor of $n” > r$ [By the check at line 4]

[Statement after Lemma 4.3.] (page 5)

Now let us turn our attention to the case where a composite n is input to our algorithm. The significance of the r found by the while-loop arises when n is composite with say $p_i, 1 \leq i \leq k$, as its prime factors. In this case $o_r(n) | \lcm\{o_r(p_i)\}$.
Let $\lambda = \lcm\{o_r(p_i)\}$. We can write $\lambda = o_r(p_i)m_i$ by choosing the appropriate m_i for each $o_r(p_i)$, and $n = \prod p_i^{j_i} (1 \leq i \leq k)$. By using them

$$n^\lambda = (\prod_{i=1}^k p_i^{j_i})^\lambda$$

(2.120)

$$= \prod_{i=1}^k p_i^{\lambda j_i}$$

(2.121)

$$= \prod_{i=1}^k (p_i^{o_r(p_i)})^{m_i j_i}$$

(2.122)

$$= \prod_{i=1}^k 1^{m_i j_i}$$

(2.123)

$$= 1$$

(2.124)

Thus $o_r(n) \mid \lcm\{o_r(p_i)\}$.

And hence there exists a prime factor p of n such that $q \mid o_r(p)$, where q is the largest prime factor of $r - 1$.

From $o_r(n) \mid \lcm\{o_r(p_i)\}$ and $q \mid o_r(n)$ (COND 3), we get $q \mid \lcm\{o_r(p_i)\}$. Since every prime factor of $\lcm\{o_r(p_i)\}$ is a prime factor of at least one of the $o_r(p_i)$, we can say “there exists a prime factor p of n such that $q \mid o_r(p)$” mentioned above.

For the remainder of the argument, let p be such a prime factor of n.

COND 3A : $q \mid o_r(p)$

The second loop of the algorithm uses the value of r obtained to do polynomial computations on $\ell = 2\sqrt{r} \log_2 n$ binomials: $(x - a)$ for $1 \leq a \leq \ell$. By Lemma 3.1 (fact 4), we have a polynomial $h(x)$ (factor of $x^r - 1$) of degree $d = o_r(p)$ irreducible in F_p. Note that

$$(x - a)^n \equiv (x^n - a) \pmod{x^r - 1, n}$$

(2.125)

implies that

$$(x - a)^n \equiv (x^n - a) \pmod{h(x), p}$$

(2.126)

So the identities on each binomial hold in the field $F_p[x]/(h(x))$. The set of ℓ binomials form a large cyclic group in this field:

For a polynomial $f(x)$

$$(x - a)^n \equiv (x^n - a) \pmod{x^r - 1, n}$$

(2.127)

$$\Rightarrow (x - a)^n - (x^n - a) \equiv (x^r - 1)f(x) \pmod{n}$$

(2.128)

$$\Rightarrow (x - a)^n - (x^n - a) \equiv (x^r - 1)f(x) \pmod{p} \ [\text{By } p \mid n]$$

(2.129)
By Lemma 3.1 (fact 4), for a polynomial \(g(x) \)

\[
\Rightarrow (x - a)^n - (x^n - a) \equiv h(x)g(x)f(x) \pmod{p}
\]

(2.130)

Thus

\[
\Rightarrow (x - a)^n \equiv (x^n - a) \pmod{h(x), p}
\]

(2.131)

[Lemma 4.4.] (page 5) In the field \(F_p[x]/(h(x)) \), the group generated by the \(\ell \) binomials: \((x - a), 1 \leq a \leq \ell \) i.e.,

\[
G = \{ \prod_{1 \leq a \leq \ell} (x - a)^{\alpha_a} | \alpha_a \geq 0, \forall 1 \leq a \leq \ell \}.
\]

(2.132)

is cyclic and of size \(\left(\frac{d}{\ell} \right)^\ell \).

\textbf{Proof. Lemma 4.4.}

G is closed under multiplication in \(F_p[x]/(h(x)) \) since

\[
\prod_{1 \leq a \leq \ell} (x - a)^{\alpha_a} \times \prod_{1 \leq a \leq \ell} (x - a)^{\beta_a} = \prod_{1 \leq a \leq \ell} (x - a)^{\alpha_a + \beta_a} \in G
\]

(2.133)

\[
\Rightarrow \prod_{1 \leq a \leq \ell} (x - a)^{\alpha_a} \times \prod_{1 \leq a \leq \ell} (x - a)^{\beta_a} \equiv \prod_{1 \leq a \leq \ell} (x - a)^{\alpha_a + \beta_a} \in G \pmod{h(x), p}.
\]

(2.134)

Thereby \(G \) is a cyclic group since it is a subgroup of the cyclic group \((F_p[x]/(h(x)))^* \).

Now consider the set

\[
S = \{ \prod_{1 \leq a \leq \ell} (x - a)^{\alpha_a} | \sum_{1 \leq a \leq \ell} \alpha_a \leq d - 1, \alpha_a \geq 0, \forall 1 \leq a \leq \ell \},
\]

(2.135)

which is a subset of \(G \). The following argument shows that all the elements of \(S \) are distinct in \(F_p[x]/(h(x)) \).

\(r > q \) since \(q \) is a prime factor of \(r - 1 \), and \(q \geq 2\ell \) by COND 1. Hence

\[
r > \ell.
\]

(2.136)

While \(p > r \) by COND 6, thus

\[
p > \ell.
\]

(2.137)

Since \(1 \leq a \leq \ell \), none of the \(a \)'s are congruent modulo \(p \).

For two elements of \(S \), \(\prod (x - a)^{\alpha_a} \) and \(\prod (x - a)^{\beta_a} \), suppose

\[
\prod_{1 \leq a \leq \ell} (x - a)^{\alpha_a} \equiv \prod_{1 \leq a \leq \ell} (x - a)^{\beta_a} \pmod{h(x), p}.
\]

(2.138)

Since the degree of any element of \(S \) is less than \(d \), which is the degree of \(h(x) \), mod \(h(x) \) can be taken away.

\[
(2.138) \Rightarrow \prod_{1 \leq a \leq \ell} (x - a)^{\alpha_a} \equiv \prod_{1 \leq a \leq \ell} (x - a)^{\beta_a} \pmod{p}
\]

(2.139)
Suppose \(\alpha_k > \beta_k \) for a \(k \) (\(1 \leq k \leq \ell \)). Divide the congruence (2.139) by \((x - k)^{\beta_k}\). If \(k \) is substituted for \(x \), LHS \(\equiv 0 \pmod{p} \) because LHS has \((x - k)^{\alpha_k - \beta_k} \) and \(\alpha_k - \beta_k > 0 \). While RHS \(\not\equiv 0 \pmod{p} \) because RHS does not have the term of \((x - k)\) and \(k - a \not\equiv 0 \pmod{p} \) for all \(a \neq k \). Contradiction. Thus

\[
\alpha_a = \beta_a \quad \text{(for all } 1 \leq a \leq \ell) \tag{2.140}
\]

This implies that all elements of \(S \) are distinct in \(F_p[x]/(h(x)) \).

The cardinality of \(S \) corresponds to the number of different combinations of \(\alpha_a \)'s such that \(\sum_{1 \leq a \leq \ell} \alpha_a \leq d - 1 \), \(\alpha_a \geq 0 \). That can be obtained as follows.

Number of @: \(d - 1 \)
Number of \(| \) (partition): \(\ell \)

e.g. @@@@@ | @@@@@@@ | @@@ | ... | @@@@@@@@@@ | @@@@@@@@@

Let the number of @’s in the left segment of \(k \)-th | be \(\alpha_k \). Then the cardinality of \(S \) is equal to the number of ways of such partitioning. That is

\[
\binom{\ell + d - 1}{\ell} = \frac{(\ell + d - 1)(\ell + d - 2) \ldots (d)}{\ell!} \quad (2.141)
\]

\[
> \left(\frac{d}{\ell} \right)^\ell \tag{2.142}
\]

Since \(S \) is just a subset of \(G \) we get the result. \(\square \)

[**Statement after the proof of Lemma 4.4.**] (page 5)

Since \(d \geq 2\ell \), size of \(G \) is \(> 2^\ell = n^{2\sqrt{\ell}} \).

Comment for the statement above:

\[
d = o_r(p) \geq q \quad | \text{By } q| o_r(p) \text{ (COND 3A)} \tag{2.143}
\]

\[
\geq 4\sqrt{\ell}\log_2 n = 2\ell \quad | \text{By COND 1} \tag{2.144}
\]

\[
\Rightarrow \frac{d}{\ell} \geq 2. \tag{2.145}
\]

Hence,

\[
|G| \geq |S| \geq \left(\frac{d}{\ell} \right)^\ell \geq 2^\ell = 2^{2\sqrt{\ell}\log_2 n} = n^{2\sqrt{\ell}} \tag{2.146}
\]

\[
\Rightarrow |G| \geq n^{2\sqrt{\ell}}. \tag{2.147}
\]
Let \(g(x) \) be a generator of \(G \). Clearly, the order of \(g(x) \) in \(F_p[x]/(h(x)) \) is \(> n^{2 \sqrt{r}} \).

We now define a set related to \(g(x) \) which will play an important role in the remaining arguments. Let

\[
I_{g(x)} = \{ m | g(x)^m \equiv g(x^m) \pmod{x^r - 1, p} \}.
\]

(2.148)

Here is a nice property of \(I_{g(x)} \):

Lemma 4.5. (Page 6) The set \(I_{g(x)} \) is closed under multiplication.

Proof. Let \(m_1, m_2 \in I_{g(x)} \). Then

\[
g(x)^{m_1} \equiv g(x^{m_1}) \pmod{x^r - 1, p},
\]

(2.149)

and

\[
g(x)^{m_2} \equiv g(x^{m_2}) \pmod{x^r - 1, p}.
\]

(2.150)

Also we have, by substituting \(x^{m_1} \) in place of \(x \) in the second congruence:

\[
g(x^{m_1})^{m_2} \equiv g(x^{m_1 m_2}) \pmod{x^{m_1 r} - 1, p}
\]

(2.151)

\[
\Rightarrow g(x^{m_1})^{m_2} \equiv g(x^{m_1 m_2}) \pmod{x^r - 1, p}
\]

(2.152)

\[
\text{[By } x^{m_1 r} - 1 = (x^r - 1)(x^{(m_1 - 1)r} + x^{(m_1 - 2)r} + \cdots + x + 1)]
\]

(2.153)

From these, we get

\[
g(x)^{m_1 m_2} \equiv (g(x)^{m_1})^{m_2} \pmod{x^r - 1, p}
\]

(2.154)

\[
\equiv g(x^{m_1 m_2}) \pmod{x^r - 1, p} \quad \text{[By (2.149)]}
\]

(2.155)

\[
\equiv g(x^{m_1 m_2}) \pmod{x^r - 1, p} \quad \text{[By (2.152)]}
\]

(2.156)

\[
(2.157)
\]

Hence \(m_1 m_2 \in I_{g(x)} \).

\[\square\]

Now we prove a property of \(I_{g(x)} \) that plays a crucial role in our proof.

Lemma 4.6. (Page 6) Let the order of \(g(x) \) in \(F_p[x]/(h(x)) \) be \(o_g \). Let \(m_1, m_2 \in I_{g(x)} \). Then \(m_1 \equiv m_2 \pmod{r} \) implies that \(m_1 \equiv m_2 \pmod{o_g} \).

Proof. Since \(m_1 \equiv m_2 \pmod{r} \), \(m_2 = m_1 + kr \) for some \(k \geq 0 \). Since \(m_2 \in I_{g(x)} \): (in what follows, the congruence are in the field \(F_p[x]/(h(x)) \) unless indicated otherwise.)

\[
g(x)^{m_2} \equiv g(x^{m_2}) \pmod{x^r - 1, p}
\]

(2.158)

\[
\Rightarrow g(x)^{m_2} \equiv g(x^{m_2}) \pmod{h(x), p}
\]

(2.159)

\[
\Rightarrow g(x)^{m_1 + kr} \equiv g(x^{m_2}) \pmod{h(x), p}
\]

(2.160)
By Lemma 3.1 (fact 3),

\[m_1 \equiv m_2 \pmod{r} \quad (2.161) \]
\[\Rightarrow x^{m_1} \equiv x^{m_2} \pmod{h(x)} \quad (2.162) \]

By this,

\[(2.160) \Rightarrow g(x)^{m_1+kr} \equiv g(x^{m_1}) \pmod{h(x), p} \quad (2.163) \]
\[\Rightarrow g(x)^{m_1}g(x)^{kr} \equiv g(x^{m_1}) \pmod{h(x), p} \quad (2.164) \]
\[\Rightarrow g(x)^{m_1}g(x)^{kr} \equiv g(x)^{m_1} \pmod{h(x), p} \quad [\text{By } m_1 \in I_g(x)] \quad (2.165) \]

Now \(g(x) \neq 0 \) implies \(g(x)^{m_1} \neq 0 \) and hence we can cancel \(g(x)^{m_1} \) from both sides leaving us with

\[g(x)^{kr} \equiv 1 \pmod{h(x), p}. \quad (2.166) \]

Since \(g(x) \) is a generator of \(G \), \(o_g | kr \). Therefore,

\[kr \equiv 0 \pmod{o_g} \quad (2.167) \]
\[\Rightarrow m_2 \equiv m_1 \pmod{o_g} \quad (2.168) \]

\[\square \]

[Statement after the proof of Lemma 4.6.] (page 6)

The above property implies that there are “very few” \((\leq r)\) numbers in \(I_g(x) \) that are less than \(o_g \). Now we are ready to prove the most important property of our algorithm.

Comment for the statement above: The contraposition of Lemma 4.6. is:

Let \(m_1, m_2 \in I_g(x) \). Then \(m_1 \not\equiv m_2 \pmod{o_g} \) implies that \(m_1 \not\equiv m_2 \pmod{r} \).

Consider the positive integers less than \(o_g \) in \(I_g \). Since they are distinct from each other by modulo \(o_g \), they must be also distinct by modulo \(r \) from the contraposition above. Then the number of such integers is at most \(r \). This means there are only at most \(r \) elements of \(I_g(x) \) in the range of less than \(o_g \). The next proof of Lemma 4.7. is based on this idea.

[Lemma 4.7.] (page 6) If \(n \) is composite, the algorithm returns COMPOSITE.

Proof. Suppose that the algorithm returns PRIME instead. Thus, the for-loop ensures that for all \(1 \leq a \leq 2\sqrt{r} \log_2 n \),

\[(x - a)^n \equiv (x^n - a) \pmod{x^r - 1, p}. \quad (2.169) \]
Notice that $g(x)$ is just a product of powers of ℓ binomials $(x - a), (1 \leq a \leq \ell)$ all of which satisfy congruence (2.169). Let
\[g(x) = \prod_{1 \leq a \leq \ell} (x - a)^{a_a}. \] (2.170)

Then
\[g(x)^n = \prod_{1 \leq a \leq \ell} (x - a)^{a_an} \] (2.171)
\[\equiv \prod_{1 \leq a \leq \ell} (x^n - a)^{a_a} \pmod{x^r - 1, p} \quad [\text{By (2.169)}] \] (2.172)
\[\equiv g(x^n) \pmod{x^r - 1, p} \] (2.173)

Therefore, $n \in I_{g(x)}$. On the other hand, by Lemma 3.1. (fact 2)
\[g(x)^p = g(x^n) \pmod{p} \] (2.174)
\[\Rightarrow g(x)^p = g(x^n) \pmod{x^r - 1, p} \] (2.175)
\[\Rightarrow p \in I_{g(x)}. \] (2.176)

Trivially $1 \in I_{g(x)}$. We will now show that the set $I_{g(x)}$ has “many” numbers less than o_g contradicting Lemma 4.6.
Consider the set
\[E = \{ n^i p^j | 0 \leq i, j \leq \lfloor \sqrt{r} \rfloor \}. \] (2.177)

Since “$|E| = (1 + \lfloor \sqrt{r} \rfloor)^2 > r$” in the original paper is not precise, we change the proof a little.

By Lemma 4.5, $E \subseteq I_{g(x)}$. Since, for all $0 \leq i, j \leq \lfloor \sqrt{r} \rfloor$,
\[1 \leq n^i p^j < n^{\sqrt{r}} n^{\sqrt{r}} < o_g. \] (2.178)

Thus all the elements of E are distinct modulo o_g. By the contraposition of Lemma 4.6, they are also distinct modulo r. Hence $|E| \leq r$. Since “the number of pairs (i, j)” $= (1 + \lfloor \sqrt{r} \rfloor)^2 > r$, there are two elements $n^i p^j$ and $n^{i_2} p^{j_2}$ in E with $i_1 \neq i_2$ or $j_1 \neq j_2$, $i_1 \geq i_2$ such that $n^{i_1} p^{j_1} = n^{i_2} p^{j_2}$ by pigeon-hole principle.
\[\Rightarrow n^{i_1 - i_2} p^{j_1} = p^{j_2}. \] (2.179)

If $i_1 = i_2$, $p^{j_1} = p^{j_2}$, then $j_1 = j_2$: a contradiction. Thus $i_1 > i_2$ ($i_1 - i_2 > 0$). Since p is prime, this equality implies $n = p^k$ for some $k \geq 1$. However, in step 1 of the algorithm, composite numbers of the form p^k for $k \geq 2$ are already detected. Therefore, $n = p$: a contradiction.

This completes the proof of theorem.
2.6 Time Complexity Analysis

[5 Time Complexity Analysis] (pages 7-8)

It is straightforward to calculate the time complexity of the algorithm.

[Theorem 5.1.] (page 7) The asymptotic time complexity of the algorithm is $\tilde{O}((\log_2 n)^2)$.

Proof. Hereafter, we check the algorithm line by line to estimate the time complexity. We use the symbol $\tilde{O}(t(n))$ for $O((t(n)\text{poly} \log_2 t(n)))$, where $t(n)$ is some function of n.

Line 1: if (n is of the form $a^b, b > 1$) output COMPOSITE;
Suppose

$$n = a^b$$
$$\Rightarrow \log_a n = b$$
$$\Rightarrow \log_2 n \geq b$$

Since b is integer, b is $2, 3, \ldots, \lfloor \log_2 n \rfloor$. And $a = n^{\frac{1}{b}}$ is also integer. Thus line 1 is achieved by checking if there is an integer in the following sequence.

$$n^{\frac{1}{2}}, n^{\frac{1}{3}}, \ldots, n^{\frac{1}{\lfloor \log_2 n \rfloor}},$$

(2.183)

Thereby line 1 takes asymptotic time: $O((\log_2 n)^3)$.

Line 2: $r = 2$ constant time

Line 3 to 10: while($r < n$) { ... }

By Lemma 4.2. r can be found in $[c_1(\log_2 n)^6, c_2(\log_2 n)^6]$. Hence the number of iterations of the while-loop is

$$O((\log_2 n)^6).$$

Let us now measure the work done in one iteration of the while-loop.

Line 4: if (gcd($n, r) \neq 1$) output COMPOSITE;

$$\text{poly}(\log_2 n)$$

(2.185)

Line 5: if (r is prime)

Line 6: let q be the largest prime factor of $r - 1$;

Line 5 and 6 would take at most

$$r^{\frac{1}{2}}\text{poly}(\log_2 n)$$

(2.186)
time in the brute-force implementation.

Line 7: \(\text{if } (q \geq 4\sqrt{r \log_2 n}) \text{ and } (n^{\frac{r-1}{2}} \not\equiv 1 \pmod{r})\)

Line 8: break;

Line 9: \(r \leftarrow r + 1;\)

Line 7,8 and 9 take at most

\[
\text{poly}(\log_2 n).
\]

From (2.184), (2.185), (2.186), and (2.187), total asymptotic time taken by the while-loop is

\[
O((\log_2 n)^{6r^2}) = O((\log_2 n)^{9}) \quad [\text{By } r = O((\log_2 n)^6)]
\]

Line 11: for \(a = 1\) to \(2\sqrt{r \log_2 n}\)

Line 12: \(\text{if } (x - a)^n \not\equiv (x^n - a) \pmod{x^r - 1, n} \) output COMPOSITE;

The for-loop does modular computation over polynomials. If repeated-squaring and Fast-Fourier Multiplication is used then one iteration of this for-loop takes

\[
\tilde{O}(r \log_2 n \cdot r \log_2 n) = O(r (\log_2 n)^2 \log_2(r (\log_2 n)^2))
\]

steps. Thus, the for-loop takes asymptotic time

\[
O(r (\log_2 n)^2 \log_2(r (\log_2 n)^2) \times r^\frac{1}{2} \log_2 n)
\]

\[
= O((\log_2 n)^{12} \log_2(r (\log_2 n)^2)) \quad [\text{By } r = O((\log_2 n)^6)]
\]

\[
= O((\log_2 n)^{12} \log_2(8 \log_2 \log_2 n))
\]

\[
= O((\log_2 n)^{12} \log_2(12 \log_2 \log_2 n))
\]

\[
= O((\log_2 n)^{12} \log_2(\log_2(\log_2 n)^{12}))
\]

\[
= \tilde{O}((\log_2 n)^{12})
\]

\[\Box\]

[Statement after the proof of Theorem 5.1.] (page 7)

In practice, however, our algorithm is likely to work much faster. The reason is that even though we only know that there are “many” primes \(r\) such that \(P(r - 1) > r^\frac{1}{2}\), a stronger property is believed to be true. In fact it is believed that for many primes \(r\), \(P(r - 1) = \frac{r-1}{2}\). (Such primes are called Sophie Germain primes.)
[Definition 5.2.] (page 7) If both \(r \) and \(\frac{r-1}{2} \) are primes, then \(\frac{r-1}{2} \) is a Sophie Germain prime. We will call such \(r \)'s as co-Sophie Germain primes.

The following conjecture gives the density of Sophie Germain primes. This conjecture has been verified for \(r \leq 10^{10} \):

Conjecture 5. (page 7) [HL22] The number of co-Sophie Germain primes is asymptotic to \(\frac{Dx}{(\log_x)^2} \), where \(D \) is the twin prime constant (estimated by Wrench and others to be approximately 0.6601618...).

If this conjecture is true, then the while-loop exits with a “suitable” \(r \) of size \(O((\log_2 n)^2) \):

Lemma 5.3. Assuming the conjecture 5, there exists “suitable” \(r \) in the range \(64(\log_2 n)^2 \) to \(c_2(\log_2 n)^2 \) for all \(n > n_0 \), where \(n_0 \) and \(c_2 \) are positive constants.

Proof. Note: “suitable” \(r \)'s are the prime numbers that meet COND 1 and COND 3.

COND 1: \(q \geq 4\sqrt{r} \log_2 n \) \hspace{1cm} (2.200)
COND 3: \(q|o_r(n) \) \hspace{1cm} (2.201)

Let \(r \) is a co-Sophie Germain prime and \(q = \frac{r-1}{2} \) that is a Sophie Germain prime. The minimum value of \(q \) is 2 when \(r \) is 5. Since \(o_r(n) \mid r-1 \) and \(r-1 = 2q, o_r(n)\mid 2q \). That is

\[o_r(n) \in \{1, 2, q, 2q\}. \] \hspace{1cm} (2.202)

Note that \(o_r(n) = 1 \) or 2 can not meet COND 1 and COND 3.

Now consider the number of \(r \)'s such that \(o_r(n) = 1 \) or 2. In this case,

\[n \equiv 1 \pmod{r} \] or \[n^2 \equiv 1 \pmod{r} \] \hspace{1cm} (2.203)
\[\Rightarrow n-1 \equiv 0 \pmod{r} \] or \[n^2 - 1 = (n - 1)(n + 1) \equiv 0 \pmod{r} \] \hspace{1cm} (2.204)

Hence \(r \) must be a prime factor of \(n^2 - 1 \). Thus the number of such \(r \)'s is at most

\[\log_2(n^2 - 1) \] \hspace{1cm} (2.205)
\[\leq \log_2 n^2 \] \hspace{1cm} (2.206)
\[= \log_2 n \] \hspace{1cm} (2.207)

Let us leave aside these prime factors of \(n^2 - 1 \) and consider the other co-Sophie Germain primes \(r \) for which \(o_r(n) = q = \frac{r-1}{2} \) or \(o_r(n) = 2q = r - 1 \). They meet COND 3. And in
order to meet COND 1, the sufficient condition is

\[
\frac{r - 1}{2} \geq 4\sqrt{r}\log_2 n \tag{2.208}
\]
\[
\Rightarrow r - 1 \geq 8\sqrt{r}\log_2 n \tag{2.209}
\]
\[
\Rightarrow r \geq 8\sqrt{r}\log_2 n \tag{2.210}
\]
\[
\Rightarrow \sqrt{r} \geq 8 \log_2 n \tag{2.211}
\]
\[
\Rightarrow r \geq 64(\log_2 n)^2 \tag{2.212}
\]
\[
\Rightarrow r \geq 64(\log_2 n)^2 \tag{2.213}
\]

Hence we consider the range \(64(\log_2 n)^2 \) to \(c_2(\log_2 n)^2 \) and we show that by making \(c_2 \) large enough, we find at least one desired \(r \) in this range.

By the conjecture 5, The number of co-Sophie Germain primes:

\[
\text{less than } c_2(\log_2 n)^2 = \frac{Dc_2(\log_2 n)^2}{(\log c_2(\log_2 n)^2)^2} \tag{2.214}
\]
\[
\text{less than } 64(\log_2 n)^2 = \frac{D64(\log_2 n)^2}{(\log 64(\log_2 n)^2)^2} \tag{2.215}
\]

By (2.207), the number of co-Sophie Germain primes such that \(o_r(n) = 1 \) or 2:

\[
\leq 2\log_2 n \tag{2.217}
\]

Thus we will choose \(c_2 \) such that

\[
(2.214) - (2.215) - (2.217) \geq 1 \tag{2.218}
\]

\[
\Leftrightarrow f(x) = \frac{Dc_2(\log_2 n)^2}{(\log c_2(\log_2 n)^2)^2} - \frac{D64(\log_2 n)^2}{(\log 64(\log_2 n)^2)^2} - 2\log_2 n \geq 1 \tag{2.219}
\]

The graph of \(f(x) \) with \(c_2 = 100 \) is shown next.
Thus, if \(c_2 \geq 100 \), there exists "suitable" \(r \) in \([64(\log_2 n)^2, c_2(\log_2 n)^2]\) for all \(n \) that is large enough. \(\square \)

The time complexity under the conjecture 5

The while-loop makes \(O(\log_2 n) \) iterations. Hence total time of while-loop, (2.188), is changed to

\[
\begin{align*}
O((\log_2 n)^2 r^\frac{1}{2} \text{poly}(\log_2 \log_2 n)) & \quad (2.221) \\
= O((\log_2 n)^3 \text{poly}(\log_2 \log_2 n)) & \quad (2.222) \\
= O((\log_2 n)^3 \text{poly}(3 \log_2 \log_2 n)) & \quad (2.223) \\
= O((\log_2 n)^3 \text{poly}(\log_2(\log_2 n)^3)) & \quad (2.224) \\
= \tilde{O}((\log_2 n)^3) & \quad (2.225)
\end{align*}
\]

In the same way, the time complexity of the for-loop, (2.194), is changed to

\[
\begin{align*}
O(r^\frac{3}{2}(\log_2 n)^3 \text{poly}(\log_2(r(\log_2 n)^2))) & \quad (2.226) \\
= O((\log_2 n)^6 \text{poly}(\log_2(\log_2 n)^4)) & \quad (2.227) \\
= O((\log_2 n)^6 \text{poly}(\log_2(\log_2 n)^6)) & \quad (2.228) \\
= \tilde{O}((\log_2 n)^6) & \quad (2.229)
\end{align*}
\]

Therefore the total time complexity for the algorithm is \(\tilde{O}((\log_2 n)^6) \).
2.7 Future Work and Improvements

[6 Future Work and Improvements] (page 8)

In our algorithm, the for-loop needs to run for \(1 \leq a \leq 2\sqrt{\log_2 n}\) in order to ensure that the size of the group \(G\) referred to in Lemma 4.4 is large enough (> \(n^{2\sqrt{r}}\)). The upper limit for \(a\) could be improved if we can show that a still smaller set of \((x - a)\)'s generates a group of the required size. This seems very likely.

In later section 3.3, we see that some results of experiments support this claim.

We can further improve the complexity to \(\tilde{O}(\log_2 n)^3\) if we can prove the following conjecture given in [4] and verified for \(r \leq 100\) and \(n \leq 10^{10}\) in [11]:

Conjecture 6. (page 8) If \(r\) does not divide \(n\) and if

\[(x - 1)^n \equiv (x^n - 1) \pmod{x^r - 1, n}, \quad (2.230)\]

then either \(n\) is prime or \(n^2 \equiv 1 \pmod{r}\).

If this conjecture is true, we can modify the algorithm slightly to first search for an \(r\) which does not divide \(n^2 - 1\). Such an \(r\) can assuredly be found in the range \([2, 4\log_2 n]\). This is because the product of prime numbers less than \(x\) is at least \(e^x\) (see [2]).(\(\star\)) Thereafter we can test whether the congruence (2.230) holds or not. Verifying congruence (2.230) takes time \(\tilde{O}(r \log_2 n)^2\) using FFT for multiplication. This would give us a time complexity of \(\tilde{O}(\log_2 n)^3\).

(\(\star\)) This claim of the original paper is incorrect. The fact is that the product of prime numbers less than \(x\) is at most \(e^x\). This product is called primorial. (See the pertinent section in [21].)

<table>
<thead>
<tr>
<th>prime</th>
<th>primorial (p_k# = p_{k-1}# \times p_k)</th>
<th>(e^x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_1 = 2)</td>
<td>(p_1# = 2)</td>
<td>7</td>
</tr>
<tr>
<td>(p_2 = 3)</td>
<td>(p_2# = 6)</td>
<td>20</td>
</tr>
<tr>
<td>(p_3 = 5)</td>
<td>(p_3# = 30)</td>
<td>148</td>
</tr>
<tr>
<td>(p_4 = 7)</td>
<td>(p_4# = 210)</td>
<td>1097</td>
</tr>
<tr>
<td>(p_5 = 11)</td>
<td>(p_5# = 2310)</td>
<td>59874</td>
</tr>
<tr>
<td>(p_6 = 13)</td>
<td>(p_6# = 30030)</td>
<td>442413</td>
</tr>
<tr>
<td>(p_7 = 17)</td>
<td>(p_7# = 510510)</td>
<td>24154953</td>
</tr>
<tr>
<td>(p_8 = 19)</td>
<td>(p_8# = 9699690)</td>
<td>178482301</td>
</tr>
<tr>
<td>(p_9 = 23)</td>
<td>(p_9# = 223092870)</td>
<td>9744803446</td>
</tr>
<tr>
<td>(p_{10} = 29)</td>
<td>(p_{10}# = 6469693230)</td>
<td>3931334297144</td>
</tr>
<tr>
<td>(p_{11} = 31)</td>
<td>(p_{11}# = 200560490130)</td>
<td>29048849665247</td>
</tr>
</tbody>
</table>

29
Chapter 3

Analyzing the AKS algorithm

3.1 Finding Useful Primes

In this part of the project we actually try to find the (smallest) useful prime r for each given positive integer n. Some simple programs are made and run for this purpose.

If n is large enough, presence of a useful prime r for the n is certified by Lemma 4.2. In other words, if n is small, such a useful prime r may not be found. The real lower bound of n to have a useful prime is experimentally examined.

And then if n is large enough, Lemma 4.2 also assures that r exists in the range of less than $c_2(\log_2 n)^6$ (c_2 is a constant). However a useful prime may exist for every n in a much smaller range than this theoretically assured range. How small of a range can be expected? Consider COND 1 to see this.

COND 1: $q \geq 4\sqrt{r} \log_2 n$ \hspace{1cm} (3.1)

\[\Rightarrow \frac{q}{4\sqrt{r}} \geq \log_2 n \] \hspace{1cm} (3.2)

This implies a larger q, which is the largest prime factor of $r - 1 (= P(r - 1))$, has more of an advantage. A possible maximum value of q is $(r - 1)/2$ when $(r - 1)/2$ is a Sophie Germain prime (or r is a co-Sophie Germain prime). When r is large, $(r - 1)/2 \simeq r/2$. By substituting this for (3.2)

\[\frac{r/2}{4\sqrt{r}} \geq \log_2 n \] \hspace{1cm} (3.3)

\[\Rightarrow r \geq 64(\log_2 n)^2 \] \hspace{1cm} (3.4)

Thus $64(\log_2 n)^2$ is the smallest size of the useful prime that can be expected. More generally when $q = O(r)$ and the q also satisfies COND 2, by (3.2), the expected size of r is:

\[q \simeq c(\log_2 n)^2 \text{ [}c \text{ is a constant]} \]. \hspace{1cm} (3.5)
3.1.1 The Algorithm

Direct implementation of some parts of original AKS algorithm is not an efficient way to calculate useful primes for a sequence of many n. To handle this situation, we consider the following inequality modified COND 1.

$$\text{COND 1: } q \geq 4\sqrt{r} \log_2 n$$

(3.6)

$$\Rightarrow \frac{q}{4\sqrt{r}} \geq \log_2 n$$

(3.7)

$$\Rightarrow 2^{q/4\sqrt{r}} \geq n$$

(3.8)

By denoting $e = q/4\sqrt{r}$, $\max_\infty n = 2^e$

$$\max_\infty n \geq n$$

(3.9)

Thereby $\max_\infty n$ represents the upper bound of n which r can apply to. Hence we only need to check r’s such that $\max_\infty n \geq n$ in order to find a useful prime for the given n. By using this we can improve the performance of our process to find useful primes. The specific algorithm is outlined below.

1. **Create a Table**
 Starting from 2 (the smallest prime) consecutively calculate $\max_\infty n$ of each prime r and create the table of the following format. However, if $\max_\infty n \leq r$, it is not output to the table, because it is not appropriate for a useful prime. (NOTE: The table is in increasing order of r.)

 | r | $\max_\infty n$ |

2. **Find Useful Primes**
 While incrementing n from an initial value to an upper bound, try to find the smallest useful prime r for each n.

 (a) Skip lines of the table until $\max_\infty n \geq n$. (Label the line number of the table at this point as k.)

 (b) Read the table from k until satisfying the following condition.

 if $\max_\infty n \geq n$ and COND 2 ($n^{r^{-1}} \not\equiv 1 \pmod{r}$)

 then output r as the smallest useful prime for n

 (If no one satisfies the conditions until end of the table, output “Not Found”.)

 (c) Increment n and go back (a). (Restart reading the table from the line k.)

3.1.2 Experiments and Results

Lower bound of n Firstly, see the result from relatively small n (Table 3.1). For $n \leq 11700$ and $11702 \leq n \leq 11808$, useful primes were not found. Useful primes were found for n greater than 11808. In later experiments useful primes were always found in the range of greater than 11808. This implies the lower bound of n is 11809 so that every n over it has a useful prime constantly.

31
<table>
<thead>
<tr>
<th>n (Range)</th>
<th>Useful Prime for Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>From ∼ To</td>
<td></td>
</tr>
<tr>
<td>0 ∼ 11700</td>
<td>not exist</td>
</tr>
<tr>
<td>11701 ∼ 11701</td>
<td>11699</td>
</tr>
<tr>
<td>11702 ∼ 11808</td>
<td>not exist</td>
</tr>
<tr>
<td>11809 ∼ 12256</td>
<td>11807</td>
</tr>
<tr>
<td>12257 ∼ 13803</td>
<td>12107</td>
</tr>
<tr>
<td>13804 ∼ 14334</td>
<td>12203</td>
</tr>
<tr>
<td>14335 ∼ 14469</td>
<td>12227</td>
</tr>
<tr>
<td>14470 ∼ 14675</td>
<td>12263</td>
</tr>
<tr>
<td>14676 ∼ 15164</td>
<td>12347</td>
</tr>
<tr>
<td>15165 ∼ 16262</td>
<td>12527</td>
</tr>
</tbody>
</table>

Table 3.1: Useful Primes for Small n

11809 < n ≤ 570700000000 Secondly, we calculate useful primes for all n of 11809 < n < 570700000000. \(\log_2 570700000000 \approx 35.73 \) Since we are interested in the size of useful primes relative to n, we compute and observe the value of \(r/(\log_2 n)^2 \). The following result was obtained.

\[
64.0015 \leq \frac{r}{(\log_2 n)^2} \leq 64.0109 \quad (3.10)
\]

The maximum size 64.0109 was obtained for \(n = 11809 \). Then the size of \(r/(\log_2 n)^2 \) tends to close in on 64 according to the increase in the size of n. This result means these useful primes are the smallest ones indicated by the formula (3.4). In fact it was also ascertained that all of them were co-Sophie Germain primes.

For Larger n It is difficult to find useful primes for n’s larger than 57070000000 since it takes too much processing time. Accordingly we pick up just some n’s by the rule below and find useful primes for them.

\[
n_0 = 57070000000 \\
n_{k+1} = \lfloor n_k \times 1.001 \rfloor \quad (\text{while } n_k < 2^{63}) \quad (3.12)
\]

The following result was obtained for \(0 \leq k \leq 18910 \). \(n_{18910} = 9221742743576376320 \), \(\log_2 n_{18910} \approx 63 \)

\[
64.0005 \leq \frac{r}{(\log_2 n)^2} \leq 64.0016 \quad (3.13)
\]

Again all useful primes were co-Sophie Germain primes.

32
Graphs of Useful Primes Some of the results we have obtained so far are shown in the following graphs. Each graph corresponds to a different size of \(n \) and plots values of useful primes for some sequential \(n \)'s. The curves of \(64 (\log_2 n)^2 \) and \(65 (\log_2 n)^2 \) are also drawn in each graph to measure the size of useful primes.
The next table shows the detail of each value as it pertains to one of the graphs. What is the shape of the graph in the previous figure? What does it mean?
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>To-From</th>
<th>r</th>
<th>n (mod 65543)</th>
<th>(n^{65543-1} - 1) (mod 65543)</th>
<th>(n^{65543} - 1) (mod 65543)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1290062992</td>
<td>12900629931</td>
<td>65539</td>
<td>65539</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1290062932</td>
<td>12900629323</td>
<td>0</td>
<td>65579</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1290062933</td>
<td>12900629333</td>
<td>0</td>
<td>65543</td>
<td>-1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1290062934</td>
<td>12900629343</td>
<td>0</td>
<td>65579</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1290062935</td>
<td>12900629377</td>
<td>65539</td>
<td>65543</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1290062975</td>
<td>12900629752</td>
<td>0</td>
<td>65579</td>
<td>-1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1290062976</td>
<td>12900629756</td>
<td>0</td>
<td>65543</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1290062977</td>
<td>12900629775</td>
<td>0</td>
<td>65579</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1290062985</td>
<td>12900629841</td>
<td>65539</td>
<td>65543</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1290062991</td>
<td>12900629902</td>
<td>0</td>
<td>65543</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

The rows with \(\perp \) indicate the values of \(n \), when \(\perp \) appears in the graph. In those rows \(n = 65543k \pm 1 \), then \(n^{65543-1} = n^2 \equiv 1 \) (mod 65543). Thus co-Sophie Germain prime 65543 is not adopted as a useful prime. Then the co-Sophie Germain prime next to it, 65579, is adopted. From this observation we can expect that \(n = k \times 65543 \times 65579 \pm 1 = k4298244397 \pm 1 \) have neither 65543 nor 65579 as a useful prime. The result of the experiment when \(k = 1 \) is the following:

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>To-From</th>
<th>r</th>
<th>n (mod 65543)</th>
<th>n (mod 65579)</th>
<th>(n^{65543-1} - 1) (mod 65543)</th>
<th>(n^{65579-1} - 1) (mod 65579)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12908178847</td>
<td>12908178882</td>
<td>0</td>
<td>65543</td>
<td>65539</td>
<td>34</td>
<td>(\perp)</td>
<td></td>
</tr>
<tr>
<td>12908178853</td>
<td>12908178853</td>
<td>0</td>
<td>65579</td>
<td>-1</td>
<td>34</td>
<td>(\perp)</td>
<td></td>
</tr>
<tr>
<td>12908178854</td>
<td>12908178854</td>
<td>0</td>
<td>65579</td>
<td>0</td>
<td>34</td>
<td>(\perp)</td>
<td></td>
</tr>
<tr>
<td>12908178855</td>
<td>12908178855</td>
<td>0</td>
<td>65579</td>
<td>0</td>
<td>34</td>
<td>(\perp)</td>
<td></td>
</tr>
<tr>
<td>12908178856</td>
<td>12908178856</td>
<td>0</td>
<td>65579</td>
<td>0</td>
<td>34</td>
<td>(\perp)</td>
<td></td>
</tr>
<tr>
<td>12908178857</td>
<td>12908178897</td>
<td>65539</td>
<td>65543</td>
<td>2</td>
<td>65577</td>
<td>65577</td>
<td>65577</td>
</tr>
<tr>
<td>12908244396</td>
<td>12908244396</td>
<td>0</td>
<td>65543</td>
<td>-1</td>
<td>65577</td>
<td>65577</td>
<td>65577</td>
</tr>
<tr>
<td>12908244397</td>
<td>12908244397</td>
<td>0</td>
<td>65543</td>
<td>0</td>
<td>65577</td>
<td>65577</td>
<td>65577</td>
</tr>
<tr>
<td>12908244398</td>
<td>12908244398</td>
<td>0</td>
<td>65543</td>
<td>0</td>
<td>65577</td>
<td>65577</td>
<td>65577</td>
</tr>
<tr>
<td>12908244599</td>
<td>12908244599</td>
<td>65539</td>
<td>65543</td>
<td>2</td>
<td>65541</td>
<td>65541</td>
<td>65541</td>
</tr>
</tbody>
</table>

When \(n = 65543 \times 65579 \pm 1 \), the third co-Sophie Germain prime 65687 is chosen as a useful prime other than 65543 and 65579. The next graph plots the data of the table above.

38
If co-Sophie Germain primes are not used All useful primes we have found in previous experiments were co-Sophie Germain primes. Next we observe what kind of useful primes are found when co-Sophie Germain primes are not adopted as useful primes. The next condition is added to the program.

\[r \neq 2q + 1 \] \hspace{1cm} (3.14)

We searched useful primes for some different order of \(n \). \((n \approx 2^{16}, 2^{20}, 2^{26}, 2^{32}, 2^{38}, 2^{44}, 2^{50}, 2^{56}, 2^{62}) \) Firstly, the lower bound of \(n \) to have a useful prime was changed by the additional condition. The revised lower bound is \(n = 65791 \) with \(r = 65789 \). Here \(r - 1 = 65788 = 4 \times 16447 \) (16447 is prime), then \(r \) is not co-Sophie Germain prime. Secondly the following property about size of useful primes was observed for all cases.

\[r \simeq 256(\log_2 n)^2 \] \hspace{1cm} (3.15)

This indicates \(r = 4q + 1 \), because, by replacing \(r/2 \) in formula (3.3) with \(r/4 \), we got:

\[\frac{r/4}{4\sqrt{r}} \geq \log_2 n \] \hspace{1cm} (3.16)

\[\Rightarrow \frac{\sqrt{r}}{16} \geq \log_2 n \] \hspace{1cm} (3.17)

\[\Rightarrow r > 256(\log_2 n)^2. \] \hspace{1cm} (3.18)

Why is it not \(r = 3q + 1 \)? Since \(r - 1 \) is even, it must have 2 as a factor. Thus \(r = 4q + 1 \) is the second-best type other than co-Sophie Germain prime. The results are shown in the following graphs:
Useful non co-Sophie Germain Primes: $2^{16} < n$

Useful non co-Sophie Germain Primes: $2^{20} < n$
Useful non co-Sophie Germain Primes: $2^{26} < n$

Useful non co-Sophie Germain Primes: $2^{32} < n$

Useful prime

useful prime

256 $lg^2 n$

257 $lg^2 n$

4.2945e+009

4.295e+009

4.2955e+009

4.296e+009

4.2965e+009

4.297e+009

4.2975e+009

4.298e+009

4.2985e+009

262000

262200

262400

262600

262800

263000

263200

263000

263200

262000

262200

262400

262600

262800

263000

263200

263000

6.7e+007

6.75e+007

6.8e+007

6.85e+007

6.9e+007

6.95e+007

6.7e+007

6.75e+007

6.8e+007

6.85e+007

6.9e+007

6.95e+007

145x600
Useful non co-Sophie Germain Primes: $2^{50} < n$

Useful non co-Sophie Germain Primes: $2^{56} < n$

43
The Lower Bound on Composite n Detected with a Useful Prime From former experiments, the lower bound of n to have a useful prime always is 11809 with the useful prime 11807. (See Table 3.1.) 11809 ($= 7 \times 7 \times 241$) is incidentally composite. However, 11807 is not actually used to detect 11809 as composite in the running of the AKS algorithm, because there is the check of $\gcd(n, r) \neq 1$ in the while-loop of the AKS algorithm. 11809 is detected by this check before the useful prime 11807 is found, since 11809 has a factor of $7 (< 11807)$. Thus, if 11807 is applied for a composite n, the n must be greater than $139405249 (= 11807^2)$, since all prime factors of such n must be greater than 11807. Then, we try to find the lower bound of composite n in this context. The algorithm, a little changed (adding the GCD check etc.) from the previous one, is used for this purpose. It is reasonable to expect that the composite number that gives such lower bound is of the form p^2 (p is prime). Then, we checked about this type of composite numbers and obtained the following result.

<table>
<thead>
<tr>
<th>$n (= \text{prime}^2)$</th>
<th>r (Useful Prime)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4296933601 (= 655512)</td>
<td>65543</td>
</tr>
<tr>
<td>4300867561 (= 655812)</td>
<td>65579</td>
</tr>
<tr>
<td>4326613729 (= 657772)</td>
<td>65687</td>
</tr>
<tr>
<td>4405375129 (= 663732)</td>
<td>65867</td>
</tr>
<tr>
<td>4541546881 (= 673792)</td>
<td>66047</td>
</tr>
</tbody>
</table>
From the table above, the lower bound is 4296933601. This is 65551 squared and 65551 is the smallest prime factor of 4296933601. 65551 is the smallest prime larger than 65543 that is a useful prime of 4296933601.

But again, is this really lower bound of n that is detected by a useful prime? We must recall the a^b check at Line 1 of the AKS algorithm. p^2 type numbers are detected by this check. Thus we had to check the $n = p_1p_2$ type instead of p^2. (p_1 and p_2 are successive prime numbers.) The revised result is shown in the table below.

<table>
<thead>
<tr>
<th>n</th>
<th>r (Useful Prime)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120337528573</td>
<td>346891 \times 346903</td>
</tr>
<tr>
<td>120488128771</td>
<td>347099 \times 347129</td>
</tr>
<tr>
<td>121339362019</td>
<td>348323 \times 348353</td>
</tr>
<tr>
<td>124268235253</td>
<td>352511 \times 352523</td>
</tr>
<tr>
<td>125808542989</td>
<td>354689 \times 354701</td>
</tr>
<tr>
<td>126256666251</td>
<td>355321 \times 355331</td>
</tr>
<tr>
<td>1307849591</td>
<td>361637 \times 361643</td>
</tr>
<tr>
<td>133687490653</td>
<td>365627 \times 365639</td>
</tr>
<tr>
<td>135580076719</td>
<td>368197 \times 368227</td>
</tr>
<tr>
<td>136174284299</td>
<td>369013 \times 369023</td>
</tr>
</tbody>
</table>

Finally we obtained the lower composite number 120337528573 (37 bits) with the useful prime 346877 that is smaller than 346898 that is the smallest prime factor of 120337528573.

3.2 Finding Useful Primes with Multiple Precision Integers

For Much Larger n The size of n we have dealt with so far was at most 2^{63}. Regular data types of C or Java cannot deal with sizes larger than this. Java has a BigInteger class that can handle arbitrary-precision integers. We once tried to use that class, but its performance was too bad. Then we decided to implement some C functions to be able to handle integers larger than 2^{63}.

The Expression of multi-precision integers A multi-precision integer is expressed with an array of k integers. Suppose the size of integer is 32 bits. The format of a multi-precision integer in case of $k = 5$ is shown below:
\[
\begin{array}{c|cccccccccccc}
\text{int}[4] & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\downarrow \text{sign bit} & & & & & & & & & & & & 125 \\
\end{array}
\]

\[
\begin{array}{c|cccccccccccc}
\text{int}[3] & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\downarrow \text{work area} & & & & & & & & & & & & 94 \\
\end{array}
\]

\[
\begin{array}{c|cccccccccccc}
\text{int}[2] & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\downarrow \text{work area} & & & & & & & & & & & & 63 \\
\end{array}
\]

\[
\begin{array}{c|cccccccccccc}
\text{int}[1] & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\downarrow \text{work area} & & & & & & & & & & & & 32 \\
\end{array}
\]

\[
\begin{array}{c|cccccccccccc}
\text{int}[0] & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\downarrow \text{work area} & & & & & & & & & & & & 1 \\
\end{array}
\]

Negative integers are expressed by two’s complement notation. It can hold integers between \(-2^{155}\) to \(2^{155} - 1\).

Basic Functions The following basic functions are implemented to deal with multiple precision integers.

MPI (multiple precision integer): X, Y

<table>
<thead>
<tr>
<th>Function</th>
<th>Input</th>
<th>Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>set: integer → MPI</td>
<td>int[0]~int[4], sign(-+/+)</td>
<td>X set from integers</td>
</tr>
<tr>
<td>left shift</td>
<td>X</td>
<td>X: left shifted with 1 bit</td>
</tr>
<tr>
<td>right shift</td>
<td>X</td>
<td>X: right shifted with 1 bit</td>
</tr>
<tr>
<td>count #bits of MPI</td>
<td>X</td>
<td>number of bits of X</td>
</tr>
<tr>
<td>addition</td>
<td>X, Y</td>
<td>X+Y</td>
</tr>
<tr>
<td>multiplication</td>
<td>X, Y</td>
<td>X \times Y</td>
</tr>
<tr>
<td>minus</td>
<td>X</td>
<td>-X</td>
</tr>
<tr>
<td>compare X to Y</td>
<td>X, Y</td>
<td>if X < Y : -1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if X = Y : 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if X > Y : 1</td>
</tr>
<tr>
<td>modulo</td>
<td>X, Y</td>
<td>X (mod Y)</td>
</tr>
<tr>
<td>power</td>
<td>X, n (integer)</td>
<td>X^n</td>
</tr>
<tr>
<td>display MPI with binary system</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>display MPI with decimal system</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

The Program to Find Useful Primes The program to find useful primes is implemented by combining the basic functions above. Multi-precision integer is used for \(n\) in the program.
On the other hand, regular integer type is used for useful primes, since its expected size is much smaller than \(n \). \((\simeq (\log_2 n)^2)\) To avoid an implementation of logarithm calculation, the program adopts condition (3.20) instead of the original condition (3.19) of the AKS algorithm.

\[
q \geq 4\sqrt{\tau \log_2 n} \quad \quad (3.19)
\]

\[
q \geq 4\sqrt{\tau [\log_2 n + 1]} \quad \quad (3.20)
\]

Although condition (3.20) is a little more strict than condition (3.19), it is easy to implement since \([\log_2 n + 1]\) is just the same as the number of bits of \(n \).

Useful Primes for Large \(n \) Useful primes were searched for \(n = 2^k \) \((63 \leq k \leq 154)\) by the program described above. The \(d^b \) check and the GCD check are excluded in this experiment. The results are shown in the following graph. The data table is shown in Appendix A.

![Graph showing useful primes for large n](image)

Again, all of useful primes in this result are co-Sophie Germain prime and they are close to \(64(\log_2 n)^2 \). The graph whose x axis is \(\log_2 n \) with same data is shown below:

47
Useful primes for much larger $n = 2^k$ ($100 \leq k \leq 1100$) are shown in the next graph. Its data is also shown in Appendix A.
3.3 Implementation of the Congruence in the for-loop

We implement the congruence in the for-loop and conduct the primality test for some integers by using this program in order to check the correctness of the AKS algorithm. Relatively simple ways are used for the implementation instead of some sophisticated methods such as Fast Fourier Transform.

3.3.1 The Algorithm

- Congruence: \((x - a)^n \not\equiv (x^n - a) \pmod{x^r - 1, n}\)
- Input Parameters: \(n, a, r\)
- \(\ell = \lfloor \log_2 n \rfloor, n = \sum_{i=0}^{\ell} b_i 2^i\)
- LHS\([r + 1]\): coefficients of the left hand side of the congruence
- LxL\([2r - 1]\): coefficients of LHS \(\times\) LHS
- xa\([2]\): coefficients of \(x - a\)
 - \(xa[0] \leftarrow -a\)
 - \(xa[1] \leftarrow 1\)
- degLHS: degree of the left hand side of the congruence
- degLxL: degree of LxL
- degRHS: degree of the right hand side of the congruence

The algorithm consists of three parts.

1. Calculate LHS
2. Calculate RHS
3. Compare LHS and RHS
 - if \(LHS \not\equiv RHS\) return COMPOSITE
 - otherwise return UNDETERMINED

The details of the algorithm are as follows:
1. Calculate LHS by the square-and-multiply method.

LHS[j] ← 0 (for all j)
degLHS ← 0

for i = 0 to ℓ {

LxL[j] ← 0 (for all j)

/* LxL ← LHS × LHS */
for k = 0 to degLHS
 for j = 0 to degLHS
 LxL[k+j] ← (LxL[k+j] + LHS[k] × LHS[j]) (mod n)
degLxL ← degLHS × 2

/* LxL (mod x^r - 1) */
if (degLxL ≥ r)
 for k = degLxL to r by -1
 LxL[k - r] ← (LxL[k - r] + LxL[k]) (mod n)
 LxL[k] ← 0
 degLxL ← r - 1;

LHS[k] ← 0 (for all k)

if (bi = 1)
 /* LHS ← LxL ×(x - a) */
 for k = 0 to degLxL
 for int j = 0 to 1
 LHS[k+j] ← (LHS[k+j] + LxL[k] * xa[j]) (mod n)
 degLHS ← degLxL + 1;
else
 /* LHS ← LxL */
 for k = 0 to degLxL
 LHS[k] ← LxL[k]
degLHS ← degLxL;

/* LHS (mod x^r - 1) */
if (degLHS ≥ r)
 for k = degLHS to r by -1
 LHS[k - r] ← (LHS[k - r] + LHS[k]) (mod n)
 LHS[k] ← 0
 degLHS ← r - 1
}
2. Calculate degRHS

See

\[
\text{RHS} = x^n - a \\
= (x^r - 1)(x^{n-r} + x^{n-2r} + \ldots + x^{n-kr}) + x^{n-kr} - a \\
\equiv x^{n-kr} - a \pmod{x^r - 1, n}.
\]

Here \(k \) is the smallest integer such that \(n - kr < r \). Let \(\text{degRHS} = n - kr \). Knowing \(\text{degRHS} \) is enough to decide what RHS is. The algorithm to calculate \(\text{degRHS} \) is specified below.

```plaintext
if (r > n) 
    k ← 0 
else 
    k ← \left\lfloor \frac{n}{r} \right\rfloor 
degRHS ← n - kr 
```

3. Compare LHS and RHS

The coefficients of RHS are:

- If \(\text{degRHS} = 0 \)
 - zeroth degree: \(1 - a \)
 - otherwise: 0
- If \(\text{degRHS} \neq 0 \)
 - zeroth degree: \(-a \)
 - \(\text{degRHS-} \)th degree: 1
 - otherwise: 0

Check whether LHS is equal above or not. The specific algorithm is following.

```plaintext
if (degRHS = 0) 
    if (LHS[0] \neq 1 - a \pmod{n}) 
        return COMPOSITE 
else 
    if (LHS[0] \neq -a \pmod{n}) 
        return COMPOSITE 
for i = 1 to r - 1 
    if (i = degRHS and LHS[i] \neq 1) return COMPOSITE 
    else if (LHS[i] \neq 0) return COMPOSITE 
return UNDECIDED
```
3.3.2 Experiments and Results

Firstly, in order to verify that the program performs correctly, we run the program with basic parameter values. In particular, $r = n + 1$. By doing this $(mod \ x^r - 1)$ can be taken away from the congruence.

\[
(x - a)^n \equiv (x^n - a) \pmod{x^{n+1}, n} \quad \text{(3.24)}
\]

\[
\iff (x - a)^n \equiv (x^n - a) \pmod{n} \quad \text{(3.25)}
\]

Suppose that a is coprime to n, then we know that the congruence holds true if and only if n is prime from Identity. Our program returns UNDECIDED when the congruence holds true otherwise it returns COMPOSITE. Thus if n is prime, the program must return UNDECIDED otherwise COMPOSITE.

1),2),3),4) We run the program with $2 \leq n \leq 2549$, $r = n + 1$, and four different values of a. In all cases the program returned correctly the expected value. (It is UNDECIDED for prime numbers and COMPOSITES for composite numbers.

<table>
<thead>
<tr>
<th>parameters</th>
<th>n</th>
<th>r</th>
<th>a</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>2 ~ 2549</td>
<td>$n + 1$</td>
<td>1</td>
<td>Right</td>
</tr>
<tr>
<td>2)</td>
<td>2 ~ 2549</td>
<td>$n + 1$</td>
<td>2</td>
<td>Right</td>
</tr>
<tr>
<td>3)</td>
<td>2 ~ 2549</td>
<td>$n + 1$</td>
<td>3</td>
<td>Right</td>
</tr>
<tr>
<td>4)</td>
<td>2 ~ 2549</td>
<td>$n + 1$</td>
<td>$n - 1$</td>
<td>Right</td>
</tr>
</tbody>
</table>

When does the program misjudge a number? In the experiments above the program always judged numbers correctly. Although if n is not coprime to a $(gcd(n, a) \neq 1)$ the program can make a mistake. We consider this point more specifically.

1. If n is prime:
 \[gcd(n, a) \neq 1\] can happen only when $n | a$. In this case the congruence (3.25) holds true because $a \equiv 0 \pmod{n}$. Thus if n is prime, it is judged correctly even though \[gcd(n, a) \neq 1\].

2. If n is composite:
 Consider conditions when the congruence (3.25) holds despite n being composite. Let
 \[
n = \prod_{i}^{m} q_i^{k_i},
 \]
 \[
 nC_{q_i} (-a)^{q_i}
 \]
 Here $n C_{q_i} \neq 0 \pmod{n}$, since it does not have q_i as a factor. (Recall the proof of [Identity].) In order that the all coefficients of x^{q_i} are equivalent to 0 mod n,
 \[
a = w \prod_{i}^{m} q_i^{k_i} \ (\ell_i \times q_i \geq k_i, \ q_i \not| w, \ w > 0)
 \]

52
Then execute the program with some sample parameters based on (3.28).

A. If \(a \geq n \):

<table>
<thead>
<tr>
<th>parameters</th>
<th>(n)</th>
<th>(r)</th>
<th>(a)</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>5)</td>
<td>2 \sim 2549</td>
<td>(n + 1)</td>
<td>(n)</td>
<td>UNDECIDED for all</td>
</tr>
<tr>
<td>6)</td>
<td>2 \sim 2549</td>
<td>(n + 1)</td>
<td>(3n)</td>
<td>UNDECIDED for all</td>
</tr>
<tr>
<td>7)</td>
<td>2 \sim 2549</td>
<td>(n + 1)</td>
<td>(n^2)</td>
<td>UNDECIDED for all</td>
</tr>
</tbody>
</table>

We ran the program with \(a = n, 3n, n^2 \). Then the program returned UNDECIDED for all numbers. That is all composite numbers were misjudged. This result is logical since the coefficients of the both sides of the congruence other than those of \(x^n \) must be zero modulo \(n \).

B. If \(a < n \): We make a sample parameters based on (3.28) and ran the program with the parameters.

<table>
<thead>
<tr>
<th>parameters</th>
<th>(n)</th>
<th>(r)</th>
<th>(a)</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>8)</td>
<td>(2^5 \cdot 3^4)</td>
<td>(n + 1)</td>
<td>(2^5 \cdot 3^4)</td>
<td>COMPOSITE (right judge)</td>
</tr>
</tbody>
</table>

This time the program correctly judged \(n = 2^5 \cdot 3^4 \) as composite. This means at least one pair of the coefficients of both sides is different. We checked that and found that the constant terms were different. In fact if \(a \) is such that (3.28),

\[
\begin{align*}
a^n & \equiv 0 \pmod{n} \\
\Rightarrow a^n & \not\equiv a \pmod{n}.
\end{align*}
\]

Consequently we obtained a variant of [Identity].

[Identity'] If \(a < n \),

\[
(x-a)^n \equiv (x^n-a) \pmod{n} \tag{3.31}
\]

if \(n \) is prime: TRUE

if \(n \) is composite: FALSE

Consider prime numbers with \((\mod x^r - 1)\) From [Identity'] above, if \(n \) is prime,

\[
(x-a)^n \equiv (x^n-a) \pmod{x^r-1} \tag{1 \leq r \leq n}.
\]

By using this, we checked the correctness of the program logic to calculate modulo \(x^r - 1 \). The program correctly returned UNDECIDED for all prime numbers in the following three cases.

<table>
<thead>
<tr>
<th>parameters</th>
<th>(n)</th>
<th>(r)</th>
<th>(a)</th>
<th>Judge</th>
</tr>
</thead>
<tbody>
<tr>
<td>9)</td>
<td>2 \sim 99973</td>
<td>only prime</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>10)</td>
<td>2 \sim 3253</td>
<td>only prime</td>
<td>(</td>
<td>n/2</td>
</tr>
<tr>
<td>11)</td>
<td>2 \sim 2741</td>
<td>only prime</td>
<td>(n)</td>
<td>4</td>
</tr>
</tbody>
</table>
Consider composite numbers with \((\mod x^r - 1) \) The experiments we have done so far were somewhat trivial or logically obvious cases. They rather intended to check the correctness of the program logic itself. The more important case is when the program tests composite numbers with relatively small \(r \).

Then we test composite numbers by the following program with relatively small \(r \)'s, and find the smallest number that is not detected as composite.

\[
\text{for } n = 4 \text{ to large enough number} \\
\text{if (} n \text{ is composite)} \\
\quad \text{flag} \leftarrow 1; \\
\quad \text{for } a = 1 \text{ to } 2 \sqrt[r]{\log_2 n} \\
\quad \quad \text{if (} (x - a)^n \neq (x^n - a) \mod x^r - 1, n \text{)} \\
\quad \quad \quad \text{flag} \leftarrow 0; \\
\quad \quad \text{break}; \\
\quad \text{if (flag = 1) output } n \text{ and stop; } \\
\quad n \leftarrow n + 1;
\]

Result:

<table>
<thead>
<tr>
<th>(r)</th>
<th>output</th>
<th>(\log_2 (\text{output}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>561</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>561</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>1729</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>252601</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>1152271</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>1615681</td>
<td>21</td>
</tr>
<tr>
<td>13</td>
<td>2508013</td>
<td>21</td>
</tr>
</tbody>
</table>

This result shows that the program can work correctly with small \(r \)'s until it reaches a comparatively big composite number. In other words it is difficult to find a “bad composite number” that cannot be detected as composite, if \(r \) is just larger than 13 or so. Since it was difficult to conduct further various experiments for consecutive \(n \), we tested some random generated composite numbers. However we did not find such a “bad composite number” with \(r \) that is larger than 13.

\(p^k \) type composite The original paper claims that the only case that the for-loop in the AKS algorithm can not detect \(n \) as composite with a useful prime \(r \) is that \(n \) is of the form \(p^k \) \((k > 1, \ p \text{ is prime}) \). We accordingly test this type of numbers in order to find the “bad composite number.”
\[n = p^k \]

<table>
<thead>
<tr>
<th>(p \text{ (prime)})</th>
<th>(2 \leq k \leq 62 \log_p 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2 \approx 62</td>
</tr>
<tr>
<td>3</td>
<td>2 \approx 39</td>
</tr>
<tr>
<td>5</td>
<td>2 \approx 22</td>
</tr>
<tr>
<td>11</td>
<td>2 \approx 23</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>4225457</td>
<td>2</td>
</tr>
</tbody>
</table>

All numbers in the table above were tested with \(r = 1, 2, 13 \). Again no “bad composite number” was found. These results suggest the possibility that the necessary size of useful primes can be smaller than the theoretically assured size, \(\approx (\log n)^6 \) or \(\approx (\log n)^2 \) (when it is co-Sophie Germain prime).

Upper bound of for-loop The upper bound of the for-loop of the AKS algorithm is \(2\sqrt{r} \log_2 n \). Then we experimentally observe how many iterations the program actually needs to detect composite numbers. The following algorithm is used.

```plaintext
for n = 4 to large enough number
    if (n is composite)
        flag \leftarrow 1;
        for a = 1 to \( 2\sqrt{r} \log_2 n \)
            if \((x - a)^n \not\equiv (x^n - a) \pmod{x^r - 1, n}\)
                output n and a
                flag \leftarrow 0;
                break;
        if (flag = 1) output n and ‘‘error’’;
        n \leftarrow n + 1;
```

The value of \(a \) in an output indicates the number of repetition used to detect a given composite number.

Case: \(n = 4 \sim 500003 \) (sequential)

\[r = 17 \]
\[n = 4 \sim 500003 \ (\text{sequential}) \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>289 = 17^2</td>
<td>3</td>
</tr>
<tr>
<td>4913 = 17^3</td>
<td>3</td>
</tr>
<tr>
<td>83521 = 17^4</td>
<td>3</td>
</tr>
<tr>
<td>otherwise</td>
<td>1</td>
</tr>
</tbody>
</table>

\[r = 19 \]
\[n = 4 \sim 500003 \ (\text{sequential}) \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>361 = 19^2</td>
<td>3</td>
</tr>
<tr>
<td>6859 = 19^3</td>
<td>3</td>
</tr>
<tr>
<td>130321 = 19^4</td>
<td>3</td>
</tr>
<tr>
<td>otherwise</td>
<td>1</td>
</tr>
</tbody>
</table>

55
Case: $n = p^k, 2 \leq k \leq \lceil 62 \log_2 2 \rceil$

<table>
<thead>
<tr>
<th>$r = 13$</th>
<th>$r = 17$</th>
<th>$r = 41$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p = 2 \sim 218131$</td>
<td>$p = 2 \sim 287117$</td>
<td>$p = 2 \sim 59359$</td>
</tr>
<tr>
<td>p</td>
<td>k</td>
<td>a</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>otherwise</td>
<td>1</td>
<td>otherwise</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$r = 101$</th>
<th>$r = 211$</th>
<th>$r = 3001$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p = 101 \sim 1669$</td>
<td>$p = 211 \sim 463$</td>
<td>$p = 3001 \sim 3119$</td>
</tr>
<tr>
<td>p</td>
<td>k</td>
<td>a</td>
</tr>
<tr>
<td>101</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>101</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>101</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>otherwise</td>
<td>1</td>
<td>otherwise</td>
</tr>
</tbody>
</table>

As far as the results we obtained, the only case that $a \neq 1$ was when n was of the form r^k, and then a took only the value of 3. This implies that less iterations of the for-loop might be sufficient to detect composite numbers than the theoretically required $2\sqrt{r} \log_2 n$.

56
3.4 Full Implementation and Measurement of CPU time

In this section, the AKS algorithm is implemented by combining previous programs. Some simple program components are also added for missing parts. Then CPU time of the program is measured for several types of numbers.

3.4.1 Implementation

The line numbers below indicate the line number of the AKS algorithm in Section 2.2.

Line 1 if (\(n \) is of the form \(a^b, b > 1 \))

Pseudo-code

\[
\begin{align*}
\text{for } b = 2 \text{ to } \lfloor \log_2 n \rfloor \\
\quad a = n^{\frac{1}{b}}; \\
\quad \text{if}(a^b = n) \text{ return TRUE;} \\
\text{return FALSE;}
\end{align*}
\]

Line 4 if (gcd(\(n, r \)) \(\neq 1 \))

Pseudo-code

\[
\begin{align*}
\text{if}(r|n) \\
\quad \text{return TRUE;} \\
\text{else} \\
\quad \text{return FALSE;}
\end{align*}
\]

Line 5 if (\(r \) is prime)

Pseudo-code

\[
\begin{align*}
\text{for } i = 2 \text{ to } \lfloor \sqrt{n} \rfloor \\
\quad \text{if}(i|n) \text{ return FALSE;} \\
\text{return TRUE;}
\end{align*}
\]

Line 6 \(q \leftarrow \) the largest factor of \(r - 1 \)

Pseudo-code

\[
\begin{align*}
i & \leftarrow 2; \\
k & \leftarrow \lfloor \sqrt{n} \rfloor; \\
\text{while}(i \leq k) \\
\quad \text{if}(i|n) \\
\quad \quad n = \lfloor n/i \rfloor; \\
\quad \quad k = \lfloor \sqrt{n} \rfloor; \\
\quad \text{else} \\
\quad \quad i \leftarrow i + 1;
\end{align*}
\]
Line 7 calculate \(n^{\frac{r-1}{q}} \) (mod \(r \))

Pseudo-code

\[
\begin{align*}
e & \leftarrow \frac{r-1}{q}; \\
\hat{n} & \leftarrow n \text{ (mod } r)\}; \\
m & \leftarrow 1; \\
\text{for } i = 1 \text{ to } e \\
\quad & m \leftarrow m\hat{n} \text{ (mod } r); \\
\text{return } m;
\end{align*}
\]

Line 12 congruence

Use the algorithm in Section 3.3

3.4.2 Measurement of CPU time

The running time of the AKS algorithm is expected to be very different between when it deals with a prime number or a composite number. When the algorithm checks a prime number, it always iterates the for-loop until the upper bound \(a = 2\sqrt{r}\log_2 n \). On the other hand, a composite number is detected far before the for-loop reaches \(a = 2\sqrt{r}\log_2 n \) or even it can be detected by the \(a^b \) check at Line 1 or the GCD check at Line 4. Thus prime numbers are expected to be much more costly on processing time than composite numbers.

The processing CPU time for some prime numbers are shown in the following table.
<table>
<thead>
<tr>
<th>n (prime)</th>
<th>bits of n</th>
<th>CPU time (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>5</td>
<td>0.00</td>
</tr>
<tr>
<td>29</td>
<td>5</td>
<td>0.00</td>
</tr>
<tr>
<td>37</td>
<td>6</td>
<td>0.01</td>
</tr>
<tr>
<td>53</td>
<td>6</td>
<td>0.02</td>
</tr>
<tr>
<td>73</td>
<td>7</td>
<td>0.04</td>
</tr>
<tr>
<td>107</td>
<td>7</td>
<td>0.11</td>
</tr>
<tr>
<td>149</td>
<td>8</td>
<td>0.23</td>
</tr>
<tr>
<td>211</td>
<td>8</td>
<td>0.55</td>
</tr>
<tr>
<td>307</td>
<td>9</td>
<td>1.39</td>
</tr>
<tr>
<td>421</td>
<td>9</td>
<td>3.09</td>
</tr>
<tr>
<td>599</td>
<td>10</td>
<td>7.28</td>
</tr>
<tr>
<td>853</td>
<td>10</td>
<td>16.77</td>
</tr>
<tr>
<td>1193</td>
<td>11</td>
<td>36.90</td>
</tr>
<tr>
<td>1693</td>
<td>11</td>
<td>79.92</td>
</tr>
<tr>
<td>2389</td>
<td>12</td>
<td>169.10</td>
</tr>
<tr>
<td>3389</td>
<td>12</td>
<td>357.36</td>
</tr>
<tr>
<td>4783</td>
<td>13</td>
<td>743.19</td>
</tr>
<tr>
<td>6761</td>
<td>13</td>
<td>1555.16</td>
</tr>
<tr>
<td>9587</td>
<td>14</td>
<td>3243.78</td>
</tr>
<tr>
<td>13523</td>
<td>14</td>
<td>6433.08</td>
</tr>
<tr>
<td>19121</td>
<td>15</td>
<td>9172.17</td>
</tr>
<tr>
<td>27043</td>
<td>15</td>
<td>13088.34</td>
</tr>
</tbody>
</table>

The for-loop makes up most part of the CPU time in the whole process. The CPU time of the while-loop is very small and it can be ignored. The number of steps of the for-loop in our implementation is estimated as follows.

- the number of iteration of the for-loop: $O(r^{\frac{3}{2}} \log_2 n)$

- one iteration
 - the number of the inside iteration for $(x - a)^n$: $O(\log_2 n)$ (By using the square and multiply algorithm)
 - the number of multiplications of coefficients in one inside iteration: $O(r^2)$ (For LHS \times LHS)
 - each multiplication of coefficients: $O(\log_2 n \log_2 \log_2 n)$ (Suppose using FFT for multiplication of integers)

- thus the whole step is: $O(r^{\frac{3}{2}} (\log_2 n)^3 \log_2 \log_2 n)$

If r is co-Sophie Germain prime, $r^{\frac{1}{2}} = \log_2 n$. Hence the whole step is $O((\log_2 n)^8 \log_2 \log_2 n)$. The next graph plots the data of the previous table. It also shows the curve of $O((\log_2 n)^8 \log_2 \log_2 n)/6000000$ for comparison.
The following table shows the predicted CPU time when we suppose the CPU time can be approximated by $O((\log_2 n)^8 \log_2 \log_2 n)/600000$.

<table>
<thead>
<tr>
<th>bits of n</th>
<th>CPU time (sec)</th>
<th>years</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>110730936496</td>
<td>3511</td>
</tr>
<tr>
<td>500</td>
<td>58370991436602100</td>
<td>1850931996</td>
</tr>
<tr>
<td>1000</td>
<td>1660964047443680000</td>
<td>526688244370</td>
</tr>
<tr>
<td>2000</td>
<td>4678734628122249000000</td>
<td>148361701805000</td>
</tr>
</tbody>
</table>

As already mentioned in section 3.1 any composite numbers in this range is detected by the a^b check or the GCD check. We measured CPU time for some composite numbers and observed those processing times were less than 0.01 sec. In most cases, CPU time for composite numbers is expected much shorter than that for prime numbers, because the for-loop terminates after smaller number of iterations.
Chapter 4

Conclusions

We found the following facts from the experiments we have conducted.

- All the smallest useful primes for each given number \(n \) we found are co-Sophie Germain primes.
- When co-Sophie Germain primes are excluded for useful primes, the useful primes we have found in the experiments are of the form \(4q + 1 \) (\(q \) is prime).
- The lower bound of \(n \) in order to have a useful prime constantly is 11809 with \(r = 11807 \).
- The smallest composite number that is actually detected by using a useful prime in the AKS algorithm is 120337528573=346891×346903. Here 346891 and 346903 are successive primes. And the useful prime is 346877.
- All composite numbers less than 63 bits were detected when \(r \geq 17 \) in our experiments. This implies smaller size of \(r \) of \((\text{mod} \ x^r - 1, n) \) might be sufficient to detect composite numbers rather than its theoretically required size \(\simeq O((\log_2 n)^6) \) or \(O((\log_2 n)^2) \) (when \(r \) is co-Sophie Germain prime).
- When we have checked composite numbers less than 63 bits, the needed number of iterations of the for-loop was at most 3. That happened several times when \(n \) is a multiple of its useful prime \(r \). In all other cases, composite numbers are detected by just one iteration. This implies the necessary number of iteration of the for-loop might be much smaller than theoretically required \(2\sqrt{r}\log_2 n \).
Appendix A

Tables of Useful Primes

<table>
<thead>
<tr>
<th>k</th>
<th>$n=2^k$</th>
<th>r</th>
<th>$64(\log_2 n)^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>922372036854775808</td>
<td>262643</td>
<td>254016</td>
</tr>
<tr>
<td>64</td>
<td>184467407370951616</td>
<td>270443</td>
<td>262144</td>
</tr>
<tr>
<td>65</td>
<td>3689348814741903232</td>
<td>278819</td>
<td>270400</td>
</tr>
<tr>
<td>66</td>
<td>7378697629488206464</td>
<td>287747</td>
<td>278784</td>
</tr>
<tr>
<td>67</td>
<td>147573952589676412928</td>
<td>296027</td>
<td>287296</td>
</tr>
<tr>
<td>68</td>
<td>295147905179352825856</td>
<td>304763</td>
<td>295936</td>
</tr>
<tr>
<td>69</td>
<td>590295810358705651712</td>
<td>313883</td>
<td>304704</td>
</tr>
<tr>
<td>70</td>
<td>1180591620717411303424</td>
<td>322727</td>
<td>313600</td>
</tr>
<tr>
<td>71</td>
<td>23611832414382606848</td>
<td>331883</td>
<td>322624</td>
</tr>
<tr>
<td>72</td>
<td>4722366482869645213696</td>
<td>341219</td>
<td>331776</td>
</tr>
<tr>
<td>73</td>
<td>9444732965739290427392</td>
<td>350699</td>
<td>341056</td>
</tr>
<tr>
<td>74</td>
<td>1888946593147858054784</td>
<td>360323</td>
<td>350464</td>
</tr>
<tr>
<td>75</td>
<td>37778931862957161709568</td>
<td>369827</td>
<td>360000</td>
</tr>
<tr>
<td>76</td>
<td>75557863725914323419136</td>
<td>379703</td>
<td>369664</td>
</tr>
<tr>
<td>77</td>
<td>151115727451828646838272</td>
<td>389447</td>
<td>379456</td>
</tr>
<tr>
<td>78</td>
<td>302231454903657293676544</td>
<td>400067</td>
<td>389376</td>
</tr>
<tr>
<td>79</td>
<td>604462909807314587353088</td>
<td>409967</td>
<td>399424</td>
</tr>
<tr>
<td>80</td>
<td>1208925819614629174706176</td>
<td>420263</td>
<td>409600</td>
</tr>
<tr>
<td>81</td>
<td>2417851639229258349412352</td>
<td>430499</td>
<td>419904</td>
</tr>
<tr>
<td>82</td>
<td>4835703278458516698824704</td>
<td>440939</td>
<td>430336</td>
</tr>
<tr>
<td>83</td>
<td>9671406556917033397649408</td>
<td>451679</td>
<td>440896</td>
</tr>
<tr>
<td>84</td>
<td>19342813113834066795298816</td>
<td>462719</td>
<td>451584</td>
</tr>
<tr>
<td>85</td>
<td>3868562627668133590597632</td>
<td>473987</td>
<td>462400</td>
</tr>
<tr>
<td>86</td>
<td>77371252455336267181195264</td>
<td>484847</td>
<td>473344</td>
</tr>
<tr>
<td>87</td>
<td>154742504910672534362390528</td>
<td>495707</td>
<td>484416</td>
</tr>
<tr>
<td>88</td>
<td>309485009821345068724781056</td>
<td>506963</td>
<td>495616</td>
</tr>
</tbody>
</table>

Table A.1: Useful Primes for $n = 2^k$ ($63 \leq k \leq 88$)
<table>
<thead>
<tr>
<th>k</th>
<th>$n = 2^k$</th>
<th>r</th>
<th>$64(\log_2 n)^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>618970019642690137449562112</td>
<td>518543</td>
<td>506944</td>
</tr>
<tr>
<td>90</td>
<td>1237940039285380274899124224</td>
<td>530183</td>
<td>518400</td>
</tr>
<tr>
<td>91</td>
<td>2475880078570760549798248448</td>
<td>541799</td>
<td>529984</td>
</tr>
<tr>
<td>92</td>
<td>4951760157141521099559496896</td>
<td>553643</td>
<td>541696</td>
</tr>
<tr>
<td>93</td>
<td>9903520314283042199192993792</td>
<td>565667</td>
<td>553536</td>
</tr>
<tr>
<td>94</td>
<td>19807040628566084398385987584</td>
<td>577667</td>
<td>565504</td>
</tr>
<tr>
<td>95</td>
<td>3961408125713216876771975168</td>
<td>589847</td>
<td>577600</td>
</tr>
<tr>
<td>96</td>
<td>79228162514264337593543950336</td>
<td>602539</td>
<td>589824</td>
</tr>
<tr>
<td>97</td>
<td>15845632502852867518708790672</td>
<td>614963</td>
<td>602176</td>
</tr>
<tr>
<td>98</td>
<td>316912650057057350374175801344</td>
<td>627479</td>
<td>614656</td>
</tr>
<tr>
<td>99</td>
<td>633825300114114700748351602688</td>
<td>640019</td>
<td>627624</td>
</tr>
<tr>
<td>100</td>
<td>1267650600228229401496703205376</td>
<td>653267</td>
<td>640000</td>
</tr>
<tr>
<td>101</td>
<td>2535301200456458802993406410752</td>
<td>666143</td>
<td>652864</td>
</tr>
<tr>
<td>102</td>
<td>5070602400912917605986812821504</td>
<td>679319</td>
<td>665856</td>
</tr>
<tr>
<td>103</td>
<td>10141204801825835211973625643008</td>
<td>692663</td>
<td>678976</td>
</tr>
<tr>
<td>104</td>
<td>20282409603651670423947251286016</td>
<td>705863</td>
<td>692224</td>
</tr>
<tr>
<td>105</td>
<td>40564819207303340847894502572032</td>
<td>719267</td>
<td>705600</td>
</tr>
<tr>
<td>106</td>
<td>81129638414606681695789005144064</td>
<td>732923</td>
<td>719104</td>
</tr>
<tr>
<td>107</td>
<td>1622592768292213363391578010288128</td>
<td>746723</td>
<td>732736</td>
</tr>
<tr>
<td>108</td>
<td>324518553658426726783156020576256</td>
<td>760619</td>
<td>746496</td>
</tr>
<tr>
<td>109</td>
<td>649037107316853453656312041152512</td>
<td>775007</td>
<td>760384</td>
</tr>
<tr>
<td>110</td>
<td>129807421463370690713262408230524</td>
<td>788819</td>
<td>774400</td>
</tr>
<tr>
<td>111</td>
<td>2596148429267413814265248164610048</td>
<td>803819</td>
<td>788544</td>
</tr>
<tr>
<td>112</td>
<td>5192296858534827628530496329220096</td>
<td>817319</td>
<td>802816</td>
</tr>
<tr>
<td>113</td>
<td>1038459371706965525706992658440192</td>
<td>831863</td>
<td>817216</td>
</tr>
<tr>
<td>114</td>
<td>2076918743413930154121985316880384</td>
<td>846563</td>
<td>831744</td>
</tr>
<tr>
<td>115</td>
<td>41538374868278621028243970633760768</td>
<td>861299</td>
<td>846400</td>
</tr>
<tr>
<td>116</td>
<td>83076749736557242056487941267521536</td>
<td>876263</td>
<td>861184</td>
</tr>
<tr>
<td>117</td>
<td>1661534994731114484112975882535043072</td>
<td>891179</td>
<td>876096</td>
</tr>
<tr>
<td>118</td>
<td>3323069989462289682259517650700861444</td>
<td>906339</td>
<td>891136</td>
</tr>
<tr>
<td>119</td>
<td>66461399782457936451903530140172288</td>
<td>921743</td>
<td>906304</td>
</tr>
<tr>
<td>120</td>
<td>1329227995784915872903807060280344576</td>
<td>937187</td>
<td>921600</td>
</tr>
<tr>
<td>121</td>
<td>2658455991569831745807614120560689152</td>
<td>952739</td>
<td>937024</td>
</tr>
<tr>
<td>122</td>
<td>531691198313966349161522824112378304</td>
<td>968459</td>
<td>952576</td>
</tr>
</tbody>
</table>

Table A.2: Useful Primes for $n = 2^k$ ($89 \leq k \leq 122$)
<table>
<thead>
<tr>
<th>k</th>
<th>$n = 2^k$</th>
<th>r</th>
<th>$64(\log_2 n)^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>10633823966279326983230456482242756608</td>
<td>984119</td>
<td>968256</td>
</tr>
<tr>
<td>124</td>
<td>2126764793255865366460912964485513216</td>
<td>1000667</td>
<td>984064</td>
</tr>
<tr>
<td>125</td>
<td>42535295856117307932921825928971026432</td>
<td>1016663</td>
<td>1000000</td>
</tr>
<tr>
<td>126</td>
<td>85070591730234615865843651857942052864</td>
<td>1032419</td>
<td>1016064</td>
</tr>
<tr>
<td>127</td>
<td>170141183406469231731687303715884105728</td>
<td>1048703</td>
<td>1032256</td>
</tr>
<tr>
<td>128</td>
<td>3402823669209384634633746074317682114562</td>
<td>1065047</td>
<td>1048576</td>
</tr>
<tr>
<td>129</td>
<td>680564733841876926927492148635364229126</td>
<td>1081979</td>
<td>1065024</td>
</tr>
<tr>
<td>130</td>
<td>1361129467683753853853498429727072845824</td>
<td>1098443</td>
<td>1081600</td>
</tr>
<tr>
<td>131</td>
<td>2722258935367507707706965859454145691684</td>
<td>1112567</td>
<td>1098304</td>
</tr>
<tr>
<td>132</td>
<td>54445178707350154154139371890829138396</td>
<td>1132403</td>
<td>1115136</td>
</tr>
<tr>
<td>133</td>
<td>1088903574147003083082797847816582766592</td>
<td>1150739</td>
<td>1132096</td>
</tr>
<tr>
<td>134</td>
<td>21778071482940061661659748756316553184</td>
<td>1166003</td>
<td>1149184</td>
</tr>
<tr>
<td>135</td>
<td>4355614296588012323311949751266331066368</td>
<td>1184123</td>
<td>1166400</td>
</tr>
<tr>
<td>136</td>
<td>87112285931760246646623889502532662132736</td>
<td>1201247</td>
<td>1183744</td>
</tr>
<tr>
<td>137</td>
<td>1742245178163520493293247799005065324265472</td>
<td>1218923</td>
<td>1201216</td>
</tr>
<tr>
<td>138</td>
<td>348449143727040986386495598010130648530944</td>
<td>1236623</td>
<td>1218816</td>
</tr>
<tr>
<td>139</td>
<td>69689828745408197317299196020261297061888</td>
<td>1254503</td>
<td>1236544</td>
</tr>
<tr>
<td>140</td>
<td>1393796574908163946345982392040522594123776</td>
<td>1273127</td>
<td>1254400</td>
</tr>
<tr>
<td>141</td>
<td>2787593149816327892691964784081045188247552</td>
<td>1290659</td>
<td>1272384</td>
</tr>
<tr>
<td>142</td>
<td>557518629963265578383929568162090376495104</td>
<td>1309079</td>
<td>1290496</td>
</tr>
<tr>
<td>143</td>
<td>111503725992653111570767859136324180752990208</td>
<td>1327199</td>
<td>1308736</td>
</tr>
<tr>
<td>144</td>
<td>22300745198530623141535718272648361505980416</td>
<td>1346039</td>
<td>1327104</td>
</tr>
<tr>
<td>145</td>
<td>44601490397061246283071436545296723011960832</td>
<td>1364303</td>
<td>1345600</td>
</tr>
<tr>
<td>146</td>
<td>89202980794122492566142873090593446023921664</td>
<td>1382999</td>
<td>1364224</td>
</tr>
<tr>
<td>147</td>
<td>178405961588244985132285746181186892047843328</td>
<td>1402019</td>
<td>1382976</td>
</tr>
<tr>
<td>148</td>
<td>356811923176489970264571492362373784095686656</td>
<td>1420883</td>
<td>1401856</td>
</tr>
<tr>
<td>149</td>
<td>71362384635297994052911429847247475681913733122</td>
<td>1440107</td>
<td>1420864</td>
</tr>
<tr>
<td>150</td>
<td>14272476927059598810582859694495136382746624</td>
<td>1459427</td>
<td>1440000</td>
</tr>
<tr>
<td>151</td>
<td>2854495358411919762116571938898990272765493248</td>
<td>1478663</td>
<td>1459264</td>
</tr>
<tr>
<td>152</td>
<td>570899077823839524233143877797980545530986496</td>
<td>1498439</td>
<td>1478656</td>
</tr>
<tr>
<td>153</td>
<td>11417981514647679048466287755559596109161972992</td>
<td>1517927</td>
<td>1498176</td>
</tr>
<tr>
<td>154</td>
<td>22835963083295358096932575511191922182123945984</td>
<td>1537847</td>
<td>1517824</td>
</tr>
</tbody>
</table>

Table A.3: Useful Primes for $n = 2^k$ (123 ≤ k ≤ 154)
\[n = 2^k \]

<table>
<thead>
<tr>
<th>(k)</th>
<th>(r)</th>
<th>(64(\log_2 n)^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>653267</td>
<td>640000</td>
</tr>
<tr>
<td>200</td>
<td>2560367</td>
<td>2560000</td>
</tr>
<tr>
<td>300</td>
<td>5760659</td>
<td>5760000</td>
</tr>
<tr>
<td>400</td>
<td>10240067</td>
<td>10240000</td>
</tr>
<tr>
<td>500</td>
<td>16000463</td>
<td>16000000</td>
</tr>
<tr>
<td>600</td>
<td>23040167</td>
<td>23040000</td>
</tr>
<tr>
<td>700</td>
<td>31360067</td>
<td>31360000</td>
</tr>
<tr>
<td>800</td>
<td>40962683</td>
<td>40960000</td>
</tr>
<tr>
<td>900</td>
<td>51840407</td>
<td>51840000</td>
</tr>
<tr>
<td>1000</td>
<td>64001303</td>
<td>64000000</td>
</tr>
<tr>
<td>1100</td>
<td>77440043</td>
<td>77440000</td>
</tr>
</tbody>
</table>

Table A.4: Useful Primes for \(n = 2^k \) (100 \leq k \leq 1100)
Appendix B

Source Code

Java

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BigBinomial.java</td>
<td>An implementation of the for-loop of the AKS algorithm with BigInteger</td>
</tr>
<tr>
<td>Binomial.java</td>
<td>An implementation of the for-loop of the AKS algorithm</td>
</tr>
<tr>
<td>CoSophie.java</td>
<td>Output co-Sophie Germain primes</td>
</tr>
<tr>
<td>FileTool.java</td>
<td>Tools about files</td>
</tr>
<tr>
<td>nrTableGen.java</td>
<td>Find useful primes for sequential numbers</td>
</tr>
<tr>
<td>PascalTriangle.java</td>
<td>Output Pascal's triangle</td>
</tr>
<tr>
<td>Poly.java</td>
<td>Functions for polynomial calculation</td>
</tr>
<tr>
<td>pTable.java</td>
<td>Output prime numbers</td>
</tr>
<tr>
<td>rTable.java</td>
<td>Create $r - n$ table to find useful primes for sequential numbers</td>
</tr>
<tr>
<td>Tool.java</td>
<td>Basic functions and mathematical tools used for the AKS algorithm</td>
</tr>
<tr>
<td>UsefulPrime.java</td>
<td>Find a useful prime (a direct implementation)</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mp.h</td>
<td>The definition of the multi-precision integer</td>
</tr>
<tr>
<td>mp_func.h</td>
<td>The definition of the multi-precision functions</td>
</tr>
<tr>
<td>tool_func.h</td>
<td>The definition of basic tool functions</td>
</tr>
<tr>
<td>AKS.c</td>
<td>A full implementation of the AKS algorithm</td>
</tr>
<tr>
<td>Binomial.c</td>
<td>An implementation of the for-loop of the AKS algorithm</td>
</tr>
<tr>
<td>cpu1.c</td>
<td>Measure CPU time</td>
</tr>
<tr>
<td>cpu2.c</td>
<td>Measure CPU time</td>
</tr>
<tr>
<td>mp.c</td>
<td>Basic multi-precision functions</td>
</tr>
<tr>
<td>mp_prime.c</td>
<td>Find useful primes with multi-precision integers</td>
</tr>
<tr>
<td>Tool.c</td>
<td>Basic functions and mathematical tools used for the AKS algorithm</td>
</tr>
<tr>
<td>UsefulPrime.c</td>
<td>Find a useful prime</td>
</tr>
</tbody>
</table>
Bibliography

[23] Shoto suuron. Aozora Gakuen Sugakuka
http://www80.sakura.ne.jp/~aozora/suuron/suuron.html

http://www.faireal.net/articles/5/24/#d20519

http://markun.cs.shinshu-u.ac.jp/learn/integer/index.html

http://www.nara-edu.ac.jp/~asait/
