
Rochester Institute of Technology Rochester Institute of Technology 

RIT Scholar Works RIT Scholar Works 

Theses 

1999 

Modeling and simulating chemical weapon dispersal patterns in Modeling and simulating chemical weapon dispersal patterns in 

DIRSIG DIRSIG 

Peter Arnold 

Follow this and additional works at: https://scholarworks.rit.edu/theses 

Recommended Citation Recommended Citation 
Arnold, Peter, "Modeling and simulating chemical weapon dispersal patterns in DIRSIG" (1999). Thesis. 
Rochester Institute of Technology. Accessed from 

This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in 
Theses by an authorized administrator of RIT Scholar Works. For more information, please contact 
ritscholarworks@rit.edu. 



�7�K�H�U�H�Q�G�H�U�L�Q�J�R�I�W�K�H�V�H�V�\�Q�W�K�H�W�L�F�V�F�H�Q�H�V�Z�L�O�O�E�H�G�R�Q�H�Z�L�W�K�W�K�H�'�L�J�L�W�D�O�,�P�D�J�L�Q�J�D�Q�G�5�H�P�R�W�H

�6�H�Q�V�L�Q�J�,�P�D�J�H�*�H�Q�H�U�D�W�L�R�Q���'�,�5�6�,�*���F�R�G�H���'�,�5�6�,�*�L�V�D�U�D�\�W�U�D�F�L�Q�J�F�R�G�H�G�H�Y�H�O�R�S�H�G�E�\�W�K�H

�'�L�J�L�W�D�O�,�P�D�J�L�Q�J�D�Q�G�5�H�P�R�W�H�6�H�Q�V�L�Q�J�O�D�E���'�,�5�6���D�W�W�K�H�&�H�Q�W�H�U�I�R�U�,�P�D�J�L�Q�J�6�F�L�H�Q�F�H�D�W�W�K�H

�5�R�F�K�H�V�W�H�U�,�Q�V�W�L�W�X�W�H�R�I�7�H�F�K�Q�R�O�R�J�\�L�Q�5�R�F�K�H�V�W�H�U���1�<�� �,�W�F�U�H�D�W�H�V�U�D�G�L�R�P�H�W�U�L�F�D�O�O�\�D�F�F�X�U�D�W�H

�V�\�Q�W�K�H�W�L�F�L�P�D�J�H�V�I�R�U�Y�D�U�L�R�X�V�V�H�Q�V�R�U�S�O�D�W�I�R�U�P�V�>�%�U�R�Z�Q�����������@�����'�,�5�6�,�*�L�Q�F�R�U�S�R�U�D�W�H�V�W�K�H

�0�R�G�H�U�D�W�H�5�H�V�R�O�X�W�L�R�Q�7�U�D�Q�V�P�L�W�W�D�Q�F�H���0�2�'�7�5�$�1���F�R�G�H�>�%�H�U�N�����������@�W�R�P�R�G�H�O�W�K�H�D�W�P�R�V�S�K�H�U�H��

�7�R�V�X�S�S�R�U�W�W�K�H�K�L�J�K�H�U�V�S�H�F�W�U�D�O�U�H�V�R�O�X�W�L�R�Q�Q�H�H�G�H�G�R�Q�W�K�L�V�H�I�I�R�U�W���W�K�H�)�D�V�W �$�W�P�R�V�S�K�H�U�L�F�6�L�J�Q�D�W�X�U�H

�&�R�G�H���)�$�6�&�2�'�(���>�6�P�L�W�K�����������@�Z�D�V�D�G�G�H�G�D�V�D�V�R�X�U�F�H�R�I�D�W�P�R�V�S�K�H�U�L�F�S�D�U�D�P�H�W�H�U�V���7�K�H�S�R�L�Q�W�V

�R�I�F�R�Q�W�D�F�W���J�H�Q�H�U�D�O�G�H�V�F�U�L�S�W�L�R�Q�V���G�R�F�X�P�H�Q�W�D�W�L�R�Q�U�H�I�H�U�H�Q�F�H�V���D�Q�G�V�R�I�W�Z�D�U�H�G�R�Z�Q�O�R�D�G�V�I�R�U�E�R�W�K

�0�2�'�7�5�$�1�D�Q�G�)�$�6�&�2�'�(�D�U�H�D�Y�D�L�O�D�E�O�H�D�W�K�W�W�S�������Z�Z�Z���Y�V�E�Q���S�O�K���D�I���P�L�O���7�K�H�7�+�(�5�0�>�'�&�6

�&�R�U�S�R�U�D�W�L�R�Q�����������@�W�K�H�U�P�D�O�V�X�E���P�R�G�H�O�L�V�L�Q�F�R�U�S�R�U�D�W�H�G �L�Q�'�,�5�6�,�*�W�R�S�U�H�G�L�F�W�W�L�P�H�G�H�S�H�Q�G�H�Q�W

�W�H�P�S�H�U�D�W�X�U�H�V�R�I�R�E�M�H�F�W�V�Z�L�W�K�L�Q�W�K�H�V�F�H�Q�H�D�V�L�Q�I�O�X�H�Q�F�H�G�E�\�W�K�H�L�U�H�Q�Y�L�U�R�Q�P�H�Q�W��

�7�K�H�V�L�P�X�O�D�W�L�R�Q�R�I�D�W�L�P�H�V�H�T�X�H�Q�F�H�G�H�S�L�F�W�L�Q�J�W�K�H�H�Y�R�O�X�W�L�R�Q�R�I�D�&�: �F�O�R�X�G�L�V�T�X�L�W�H�F�R�P�S�O�H�[�D�Q�G

�U�H�T�X�L�U�H�V�P�R�G�H�O�L�Q�J�F�D�S�D�E�L�O�L�W�L�H�V�W�K�D�W�D�U�H�V�W�L�O�O�H�Y�R�O�Y�L�Q�J���7�K�L�V�W�\�S�H�R�I�V�L�P�X�O�D�W�L�R�Q�L�V�N�Q�R�Z�Q�D�V

�S�K�\�V�L�F�D�O�G�\�Q�D�P�L�F�P�R�G�H�O�L�Q�J���7�K�H�X�V�H�U�G�R�H�V�Q�R�W�V�S�H�F�L�I�\�W�K�H�H�Q�W�L�U�H�S�K�H�Q�R�P�H�Q�R�Q���E�X�W�U�D�W�K�H�U

�S�U�R�Y�L�G�H�V�H�[�W�H�U�Q�D�O�I�R�U�F�H�V�D�Q�G�P�D�W�H�U�L�D�O�S�U�R�S�H�U�W�L�H�V���7�K�H�P�R�G�H�O�W�K�H�Q�S�U�H�G�L�F�W�V�W�K�H�H�Y�R�O�X�W�L�R�Q�R�I�W�K�H

�S�R�V�L�W�L�R�Q�D�Q�G�V�K�D�S�H�R�I�W�K�H�J�D�V�R�Y�H�U�W�L�P�H�E�D�V�H�G�R�Q�S�K�\�V�L�F�V���7�K�H�P�R�G�H�O�S�U�H�V�H�Q�W�H�G�L�Q�W�K�L�V�U�H�V�H�D�U�F�K

�G�U�D�Z�V�I�U�R�P�W�K�H�R�U�\�X�V�H�G�L�Q�W�K�H�P�R�U�S�K�R�O�R�J�\�R�I�V�P�R�N�H�S�O�X�P�H�V�>�%�H�\�F�K�R�N���������� �	 �%�O�D�F�N�D�G�D�U��

���������@���7�K�H�I�R�U�P�V�W�K�D�W�V�P�R�N�H�S�O�X�P�H�V�H�[�K�L�E�L�W�D�U�H�D�U�H�V�X�O�W�R�I�G�L�I�I�X�V�L�R�Q�D�Q�G�D�W�P�R�V�S�K�H�U�L�F�W�X�U�E�X�O�H�Q�F�H

�G�X�H�W�R�K�H�D�W�L�Q�J�F�X�U�U�H�Q�W�V�D�Q�G �Z�L�Q�G�G�H�Y�L�D�W�L�R�Q�V���.�Q�R�Z�O�H�G�J�H�E�D�V�H�G�R�Q�P�H�D�V�X�U�H�P�H�Q�W�V�D�F�T�X�L�U�H�G�R�Y�H�U�D

�O�R�Q�J�S�H�U�L�R�G�K�D�Y�H�E�H�H�Q�X�V�H�G�W�R�V�X�F�F�H�V�V�I�X�O�O�\�S�U�H�G�L�F�W�V�P�R�N�H�S�O�X�P�H�P�R�Y�H�P�H�Q�W���7�U�D�G�L�W�L�R�Q�D�O�O�\�W�K�H�V�H

�V�P�R�N�H�S�O�X�P�H�P�R�G�H�O�V�X�V�H�)�L�F�N�L�D�Q�'�L�I�I�X�V�L�R�Q�W�K�D�W�S�U�H�G�L�F�W�V�D�F�R�Q�F�H�Q�W�U�D�W�L�R�Q�Z�L�W�K�D�*�D�X�V�V�L�D�Q�R�U

�1�R�U�P�D�O�S�U�R�E�D�E�L�O�L�W�\�G�L�V�W�U�L�E�X�W�L�R�Q�I�X�Q�F�W�L�R�Q���3�'�)�����7�K�H�)�L�F�N�H�T�X�D�W�L�R�Q�V�W�D�W�H�V�W�K�D�W�W�K�H�U�D�W�H�R�I�F�K�D�Q�J�H

�R�I�W�K�H�F�R�Q�F�H�Q�W�U�D�W�L�R�Q�R�I�D�S�U�R�S�H�U�W�\�G�H�S�H�Q�G�V�R�Q�W�K�H�G�L�Y�H�U�J�H�Q�F�H�R�I�W�K�H�W�K�U�H�H���G�L�P�H�Q�V�L�R�Q�D�O�I�O�X�[�R�I�W�K�H

�� �'�R�Z�Q�O�R�D�G�D�Y�D�L�O�D�E�O�H�I�U�R�P�K�W�W�S�������Z�Z�Z���F�L�V���U�L�W���H�G�X���a�G�L�U�V�L�J���G�R�F���L�Q�G�H�[���K�W�P�O



property, and that in an inhomogeneous environment the flux is proportional to the gradient of

the mean concentration. The Gaussian shape of predicted plumes and clouds is consistent with

most experimental data if sufficient allowance is given to sampling irregularities [Blackadar,

1997]. This technique describes the macroscopic properties or global shape of the gas cloud. A

fractional Brownian motion (fBm) field is then introduced to add turbulent small-scale detail.

Fractional Brownian motion can be used to describe the irregular thermal motion of the gas

molecules and fits under the concept of fractal geometry [Crownover, 1995].

At this time a blast model is not available. A blast model would help in developing the initial

kinetic theory describing the evolution of the gas until some equilibrium was reached at some

time, t2 > 0. The model presented in this research describes the evolution after reaching

equilibrium, t2.



2 Radiation Propagation

This section discusses the basic physics involved with quantifying the radiance from target to

sensor. This covers the interaction between light and matter and the radiometric equations

involved with the remote sensing of gas clouds.

2.1 Interaction Between Light andMatter

2.1.1 Gas Absorption

Different gasses attenuate light at various wavelengths. These absorption features can be used as

"finger
prints"

which can identify the gas. The field of identifying these "finger
prints"

is known

as spectroscopy. The intensity and shape of these lines are a function of temperature, molecular

weight of the gas concentration, and relative pressure. One important spectral broadening

process is caused by the Doppler effect, in which radiation is shifted in frequency when the

source is moving towards or away from the observer. Doppler theory states that frequency

increases with temperature and decreases with molecular mass according to:

Av oc
- I

MW

Equation 2-1

where Av = width of absorption frequency, T = Temperature [Kelvin],MW = gram

molecular weight [g/mol]



The degree of broadening is also proportional to the relative
pressure [Schott, 1997]. In the

MWIR these absorption lines are due to transitions in the vibrational state of the
molecule.

Above 20 urn rotational transitions are the dominant process. Figure 2-1 illustrates an idealized

absorption spectra. Figure 2- lb demonstrates the effects of broadening caused by temperature,

pressure, and molecular weight. Figure 2-lc represents the net effect of overlap
between the

broadened spectra. Thus, discrete absorption features can be lost due to overlap
caused by

broadening.

(a) Idealized absorption spectra

.a

(b) Effects of broadening isolated for each of the lines shown in (a)

(c) Cumulative absorption spectra

Wavelength

Figure 2-1 Characteristics of absorption spectra [Schott, 1997]
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For a more rigorous treatment of absorption and remote sensing see Goody (1989).

The following is from Schott [1997]:

In simplified form, we can derive the following relationships between the number

and efficiency of absorbers and their effect on the propagating beam. At each

wavelength, we define the absorption cross section Ca to be the effective size of a

molecule relative to the photon flux at that wavelength. Conceptually, this can be

expressed as:

Ca = C^
=
7rr2^[m2]

Equation 2-2

where Cg [m2] is the geometric cross section for a molecule of radius r [m] and ,

is a unitless wavelength-dependent efficiency factor that is proportional to the

molecule's ability to absorb flux. Values of Ca can be derived for particular

temperatures and pressures from experimental data or through molecular energy

theory, then adjusted for the effects of the temperature and pressure. The

molecule is then assumed to be a perfect absorber over that cross-sectional area.

To compute the fractional amount of energy lost per unit length of transit in a

propagating beam, we need to know the number density of the molecules.

Referring to Figure 2-2, we let be the number ofmolecules in a unit volume of

side dimension /[m].

/ [m] length of

each side of the

unit volume ^

-~ Molecule with

%F absorption cross

section Ca

-Q-

(a) A unit volume containing
m'

absorption centers. We assume that the medium

has a large mean free path such that in a small volume, ifwe project the

molecules onto one face, there will be no overlap, i.e.,

11



) Projection of absorbers onto
the face of the volume

Figure 2-2 Computation of the absorption
coefficient [Schott, 1997]

len, the area blocked (Afc) by the molecules is

Ah=m'CJm2]
Equation 2-3

tie area on the face of the volume (A/) onto which the
molecules were projected

Af=l2[m2]

Equation 2-4

he fraction of the face blocked by the absorbing molecules (F)
is

F_m'Ca

I2

\m2~\
[m2\

Equation 2-5

'herefore, the fraction amount of flux absorbed fia per unit length of transit (l) is

a
F

m'

_x

m'

r
-i-.

Equation 2-6

/here V is the unit volume, m
'

is the number density ofmolecules, defined as the

umber of molecules per unit volume and /3a is the absorption coefficient, defined

12



as the fractional amount of flux lost to absorption per unit length of transit in a

propagating beam.

According to Grum (1979), for an element of path length dz[m] in the medium,

the element of fractional flux lost can be expressed as:

d
=
-pa(z)dz

Equation 2-7

where we have made the dependence of /3a on location in the media explicit. For

propagation along a finite path starting at distance zero where we have initial flux

Oq to distance z where we have flux <E>Z, we have

<o o

= \-pa (z)dz = InO - InO0
o 0

= ln

y^oj o

Equation 2-8

Making both sides powers of e to simplify the left-hand side yields

O
-jPa(z)dz

Or
z__e 0

Equation 2-9

Recognizing the left-hand side as a definition of transmission (ratio of flux out to

flux in) and solving for the simplified case of a homogeneous medium, we have

0O

-Pajdz

T =
^ = e = e

-Paz

Equation 2-10
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which is variously known as Lambert's law or Bouguer's law.

The product paz is generally referred to as the optical depth (8), i.e.,

Sa=Paz

Equation 2-11

To this point we have implicitly assumed a media containing a single
constituent.

For a homogeneous media containing many types ofmolecules, we
introduce the

subscript i to denote the particular constituent. If we assume that the molecules

interact independently with the propagating flux, we can express the transmission

as:

T =Y[ %. = e~^8' =
e~^-z

=
c~^m^z

=
e-pz

= e~5

Equation 2-12

where II designates the product of the transmission values for each constituent if

computed separately, the summation (X) is over all constituents, and we redefine

/3a =Zf}cci to be the composite absorption coefficient and Si to be the composite

optical depth due to absorption. [Schott, 1997]

Finally the relationship between absorption and transmission is expressed as:

A =
-ln(x)

Equation 2-13

The spectral absorption "finger
print"

is a function of the absorption coefficient, concentration of

the gas, and the path-length over which the absorption was measured. The raw data was

provided through the Army's Aberdeen Proving Grounds, MD. For published data see Hoffland

(1985). The raw data provided units of absorption coefficients in liters/(gram*cm),

concentration in grams/liter, and path-length in meters. To determine absorption from Bouguer's

Law:

14



A = /3aCz

Equation 2-14

Where /?= absorption coefficient [L/g*cm], C = concentration [g/L], and z = path-length of the

cell [m]

The concentration of gases is often given in parts per million [ppm] and is known as the
volume-

mixing ratio (VMR). The definition of 1 ppm of a gas means there is one part of gas per 1

million parts of air. The VMR can be computed through the following derivation:

concentration [g/L]
molar density [mol/L] =

molecular weight [g/mol]

Equation 2-15

, ,
.
rmol

, _,

.
rmol

, 1000[L]
molar density [ =-]

= molar density [ ]
*

=

m L l[m ]

Equation 2-16

rmoL
. . ., ,

VMR [ppm] = molar density
[

=-]
* 0.0224volume of ideal gas @ STP[ ]

mJ

mol

* 1000000

Equation 2-17

A similar conversion is needed to convert the absorption coefficient to 1/ppm-m:

L
^^.i^r i* Um3]

f5a[ ]
*
molecularwt[-=]

1 g*cni mol 1000[L] *100[cm]

ppm-m

00224, normal gas
volume@STP[i11-]* 1000000

[mJ

mol

Equation 2-18
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STP stands for standard temperature (273.15 K) and pressure (1 ATM). The gas volume can be

adjusted for various temperatures and pressures by using the ideal gas law:

m

Gas Volume [ ]
mol

R[!SL].TIK]
fm,,

mol*K .,.

tm J

P [atm] 1000[L]

Equation 2-19

Where R = Universal gas constant = kNa = Boltzmanns's
constant*Avogadro's number =

8.2057e-2 [L*atm/mol*K], T = temperature [K], and P = pressure [atm].

The following table illustrates lethal dosages of 4 common nerve agents. This
should help the

reader understand the extreme toxicity of these substances. For gases, the toxicity is
expressed

by LC^, where L stands for lethal, C stands for concentration, t stands for time, and 50 means

50% of the exposed population will die due to their injuries. Thus, Tabun vapor at 200 [mg/m3]

for 1 minute has the same toxicity as a 100 [mg/m3] for two minutes. For liquid exposure, the

toxicity is expressed by LD50, where D stands for dosage and all other symbols are the same.

Agent LCjjo

[mg*min/m3] [ppm*min]

LD50 [mg]

Tabun, GA 200 27.64 4000

Sarin, GB 100 15.99 1700

Soman, GD 100 12.29 300

VX 50 4.19 10

Figure 2-3 Toxicity of nerve agents [ICA, 1997]
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By contrast the following table illustrates the toxicity of some primary gases found in fires. The

reader should be aware that for fire toxicity data the exposure period normally used is 30

minutes. If the biological effect is linear (Haber's Law) then these numbers would be multiplied

by 30 to give LC^q [ppm*min]. I.e., The lethal concentration of carbon monoxide for an

exposure of 1 minute would be 3000 [ppm]
* 30 [min] = 90000 [ppm*min]. Almost all gases

show deviations from this simple relationship, but for rough estimating purposes it can be used if

better data is unavailable. [Babrauskas, 1997]

Gas LC^
[ppm*30 min]

Carbon Monoxide 3000

Ammonia 9000

Hydrogen Chloride 3700

Acetic Acid 11000

Figure 2-4 Toxicity of fire gases [Babrauskas, 1997]
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2.1.2 Thermal Self-Emission

The emissivity characterizes the radiating efficiency
of a surface and is material dependent. It is

a unitless number with range 0 -> 1, with 1 being a perfect emitter. According
to the second law

of thermodynamics the rate of emission at a given wavelength
must equal the rate of absorption

at that wavelength. Thus, all of the incident radiation on the
ideal emitter would be absorbed.

Since no radiation is reflected from the surface an ideal emitter is often called a blackbody.

The spectral radiant exitance from a blackbody has the following
three general features:

1. At a given temperature, the Stefan-Boltzmann Equation
gives the total exitance:

w w A

M Hyl = <* [-2^1
* T [K]

nr
mzK4

Equation 2-20

where a = Stefan-Boltzmann constant = 5.67e-8 [W/(nrK4) ] and T = [Kelvin]

2. If the temperature is increased, the spectral radiant exitance increases for every

wavelength.

3. The spectral exitance has a single peak that shifts to smaller wavelengths as

temperature increases:

.

_

A[\im K]
max

-

T[K]

Equation 2-21

Where A =Wien displacement constant = 2898 [|im] and T = temp [K]

18



As a function of wavelength the Planck Equation expresses the spectral radiant exitance from a

blackbody:

M(A)bb = l7^_ [W/(m2Ami)]
ti(eKXT

-1)

Equation 2-22

Where A, = wavelength [Jim], h = Plank's constant 6.6256e-34 [joules sec], c = speed of light 3e8

[m/s], T = temp [K], K = Boltzmann gas constant 1.38e-23[joules/K]

The Planck equation can be expressed in terms of spectral radiance for Lambertian surfaces as:

K m sr fim

Equation 2-23

The emissivity is then defined as:

Mbb(A,T)

Equation 2-24

Where M(A,,T) = radiant exitance of an object at a given wavelength and temperature and

Mbb(A,,T) = radiant exitance of a blackbody at the same wavelength and temperature.

19



For a gas volume the emissivity can be expressed as
a function of the transmission loss due to

absorption as:

e(k)=l-x(X)=
l-e**1

Equation 2-25

Where x(X)= transmittance and e(X) = emissivity

2. 1 .3 Atmospheric Considerations and Simulation

Atmospheric absorption results in the loss of radiant energy to atmospheric components. In the

LWIR the main absorption constituents are H20, Os, and C02. Areas where the atmospheric

transmission is high are known as atmospheric windows. In thermal sensing the atmospheric

windows exist at 3-5|im and 8-14 fim. In the 8-14 ^im region solar photon contribution is lost in

the noise limits and can be ignored. In the 3-5 |j,m region solar photon and thermal photon

contribution are of the same order of magnitude. Therefore, in the 3-5 |im region under dayligl

conditions both solar and thermal photons must be considered.

Figure 2-5 illustrates solar vs. thermal photon contribution with respect to atmospheric

transmission across the visible and infrared spectrum.

20



lE + 4^-

Exoatmospheric solar irradiance

Wavelength [p:m]

Figure 2-5 Atmospheric transmission, solar irradiance, and earth self-emission spectra [Schott,

1997]

Figure 2-5 shows the selection of a sensor must consider the atmospheric window, spectral

sensitivity of the sensor, along with source, magnitude, and spectral composition of the photons

available [Lillesand, 1994]. For the work reported here, solar and self emmisive calculations are

included at all wavelengths, however, scattering effects in the gas plume are not included.

Scattering is typically insignificant in theMWIR and LWIR and should not introduce any

significant errors when the cloud droplets are small compared with the imaging wavelength.

The atmosphere will be modeled using the atmospheric transport code MODTRAN for delta

wave number increments > 2 [cm1]. This program is a computationally rigorous radiation

transfer algorithm that models the spectral absorption, transmission, emission, and scattering

characteristics of the atmosphere. MODTRAN assumes that the atmosphere is a set of

homogeneous layers. The characteristics of these layers are either modeled by several default
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model atmospheres or it can be characterized by radiosonde data collected for a specific

atmosphere. In the regions of interest for this research (8-14(im and 3-5(xm at night) where
solar

photons are ignored, the radiance reaching the sensor can be approximated by:

N N

i=l i=l

N

7=2+1

Equation 2-26

Where xa = transmission through the ith layer along a path length z, at wavelength X, Lm=

blackbody spectral radiance with temperature T, of the /th layer.

High resolution runs, for wave numbers < 2 [cm1], used FASCODE. This model is a line-based

method versus MODTRAN band-based method.

The next two sections cover the thermal governing equations for remote sensing of gaseous

clouds.
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2. 1 .4 Self-emission in the MWIR (night) and LWIR

Thermal sources are the significant contributors in theMWIR (at night) and LWIR. The

radiance reaching the sensor is a function of Planck's Equation, Equation 2-22, modified by the

emissivity as a function ofwavelength, defined as one minus the transmission, Equation 2-25.

The primary sources of interest are: gas cloud self-emission (LSe), upwelled thermal radiance

(LU) , reflected downwelled thermal radiance (LD), reflected background (LBe) and earth thermal

radiance (Lee).

V-<

Figure 2-6 Sources of thermal radiation
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The thermal radiance reaching the sensor without the gas
cloud can be expressed as:

L _ LEe + LD + LBe + LU

eLEE +
(FEDE+(l-F)EB/-

TC
.

T2 + l-Ve

Equation 2-27

Where rd
= diffuse reflectance (constant at all angles), x2 = transmission from target to sensor, F

= shape factor, and E = irradiant [w/m2]

The earth self-emission term (Ee) dominates this expression with significant

contribution from upwelled radiance (Ue). The reflected downwelled radiance

(De) and reflected background radiance (Be) terms are typically much smaller,

though still significant contributors if measurement accuracy's of tenths of a

degree are desired. The relative importance of these reflected terms will decrease

with increasing emissivity (decreasing reflectivity), but in general they will not be

negligible until emissivity values approach 0.99. The relative importance of the

downwelled radiance and the background radiance is controlled by the shape

factor (F). The shape factor represents the fraction of hemisphere above the target

that is sky. For nearly horizontal unobstructed surfaces, the shape factor F

approaches 1.0 and the background term becomes negligible. [Schott, 1997]

The temperature of the gas cloud will determine the blackbody exitance as expressed by Planck's

Equation, Equation 2-22. The blackbody exitance multiplied by the emissivity as a function of X

determines the gas cloud self-emission. In simple form this can be approximated as:

LC=(l-Tg)Lrg

Equation 2-28

Where xg
= effective transmittance of the gas and L, = radiance due to the temperature of the gas

[W/(m2*sr)]
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Equation 2-27 with the gas cloud then becomes:

L =

LE+(FZ<D + (1-F)Z<B)^

K

Equation 2-29

2.1 .5 Self-emission in the MWIR (day)

The MWIR has a significant solar and thermal contribution. Hence both solar and thermal

radiance must be included when solving for total radiance. Figure 2-7 includes the "Big

Equation"

which calculates the solar and thermal radiance reaching the sensor.

Figure 2-7 illustrates the total radiance reaching the sensor from a target on the ground for both

solar and thermal photons. Path A is the exoatmospheric solar radiance, Path B is skylight or

downwelled radiance, Path C is upwelled solar radiance, Path G is background solar radiance,

Path D is thermal self-emission, Path E is downwelled thermal emission, Path F is upwelled

thermal emission, and Path H is background thermal emission.
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%4,

/ftv
LX

= { EsX cos (0) h(k)
-*&+ e(l)Ln + F[ EdsX + EdeX

]-^}

+ (1-F)[ LfaA> +L^ ]r^) } x2(A) + LMAr + LUX

A B C D E F G H

Figure 2-7 Relationship between terms in the "Big
Equation"

and energy paths associated with

the radiance reaching the sensor [Schott, 1997]

All paths in Figure 2-7 are included in the DIRSIG simulations. In addition a gas cloud will

attenuate both thermal and solar photons and emit thermal photons as discussed in section 6.2.1.

Because the focus is on the MWIR and LWIR where scattering is typically low, scattering effects

from the gas cloud are not included. This should not introduce any significant errors when the

cloud is very gaseous, i.e. gas droplets are small relative to imaging wavelength. However, if a

significant number of droplets or large particles are associated with the cloud then scattering

should be considered for future upgrades.

The previous sections lay down the physics (the "Big equation") involved with quantifying the

energy emitted and absorbed by a gas cloud. They also discuss the energy contributions from

background and atmospheric interactions. The sections propose ways to calculate and quantify

various sources in order to model what the sensor will detect as they relate to certain atmospheric
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window constraints. The reader should keep in mind that DIRSIG andMODTRAN or

FASCODE are used as the primary tools to model the physics discussed in the previous
sections.
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3 StochasticModeling

Convective atmospheric transport and diffusion effects on aerosol concentrations in plumes can

be represented with a Gaussian distribution. This Gaussian model visualizes aerosol plumes as

smooth distributions resulting from time-averaged contributions of turbulence to the mean flow.

Any observer of aerosol plumes knows that the distribution is not perfectly Gaussian but has

some random behavior. The behavior of a probabilistic system cannot be predicted exactly but

the probability of certain behaviors is known. Fractals and mathematical chaos lay the

foundation for numerical techniques that can be used to generate spatially correlated random

fields. The fluctuations that occur with chaos sets are only seemingly random. This
pseudo-

randomness spawns from a sensitive dependence on initial conditions. The input parameters

introduce some error or randomness but the overall process follows some deterministic outcome.

Fractal statistics are used to generate superpositions of random fluctuations over different time

scales. This randomness can be used to simulate turbulence. As pointed out by Sakas (1993);

Mandelbrot (1975) and Lovejoy (1985) proposed that static images of turbulent fields can be

regarded as fractals with a Hurst exponent of 0.7. This corresponds closely to experimental

values of actual turbulence measured by Sreenivasan (1991).

The following sections attempt to describe a family of random fractal functions known as

fractional Brownian motion (fBm). FBm has been used in many applications ranging from

physical sciences and engineering to artistic applications. For a more in-depth discussion of

fractals, chaos, and fBm see Tompson (1989), Crownover (1995), and Yaglom (1986). The

following heuristic arguments are taken from Stam (1991 & 1995) and Peitgen (1988).
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3.1 Probability Theory: Random Variables

The set of all possible outcomes for a given observation is called the sample space. A random

variable X or in general the variate X is a variable that can take on any value in the sample space.

The overall behavior of a random variate X can be described by its probability distribution

function (PDF). The PDF is a function P[X=x] meaning "the probability of variate X equal to
x"

defined by:

pdf = j"f(x)dx = l, 0<f(x)<l

Equation 3-1

In practice, the statistics of the random variate X are used to provide useful information. These

statistics include the expectation or mean, standard deviation, variance, and correlation. The

mean is defined as:

jl = E[x]= j"xf(x)dx

Equation 3-2

The variance is a measure of how the values X are distributed around the mean:

cr2

= Var[x]= J(x-/z)2f(x)dx = E[(x-fif] =
E[x2]-^2
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Equation 3-3

The standard deviation a is equal to the positive square root of the variance. It is a linear

measure of how the values X are distributed around the mean. For selected values ofNa the

following probabilities for normally distributed observations are obtained:

Nc

PGu-N(T<X</z + Ncr)

la

0.6826

2a

0.9544

3a

0.9974

Figure 3-1 Probability of observations for a normal distribution

Figure 3-1 indicates that about 68 percent of normally distributed observations are between \i-a

and |X + a; about 95 percent are in the interval given by jll 2a and almost all are within three

standard deviations of the mean (I.

3.2 Probability Theory: Random Fields

A random field is a random process that returns a random variate as a function of some discrete

variable in 2 ormore dimensions. A dynamic (time driven) 3D gas cloud is an example of a

random 4D field. A gas cloud represents a 3D-density map and for each fixed time, t > 0, an

instance of the previous 3D random field is observed. This random field can be denoted by R(t)

with spatial dimensions x, y, z as a function of time, t. This introduces \i = n(t) and a2=a2(t).
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3.3 Probability Theory: Correlation Measures

A random field that for each value of time, t > 0 , returns an independent random variable is

known as white noise. Independence means that a value at tx = 0 has no effect on a value at t2 >

0. This type of random field has no correlation from value to value. The correlation measure

shows how the values of the random field R at two given positions t[ and t2 are related. There are

three common statistical measures of correlation: variance, covariance, and normalized

covariance. The variance is the mean square difference of the random field at time tj and t2:

y(t1,t2) = -E[(R(t1)-R(t2))2]

Equation 3-4

The covariance is:

Cov(t, , t2 ) = E[R(t, )R(t2 )] n(t, )n(t2 )

Equation 3-5

Positive values of the covariance indicate values of the random field tend to be close. Negative

values indicate a large difference in values. The normalized covariance or correlation function is

r\wt t
v Cov(tt2)

Cor(t15t2)=

a(t,)a(t2)

Equation 3-6
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All these basic functions are used to describe the statistics of the random field.

3.4 Random Fractal Theory

3 .4. 1 Fractional BrownianMotion

In one dimension fBm, BH(t), is a single valued function of time, t. Its increments BH(t2)
- BH(ti)

have a Gaussian distribution:

f(x) =
^exp[ ]

aV27t 2a

Equation 3-7

And variance:

Iff

y(t)a\t2-tA

Equation 3-8

The parameter H, known as the Hurst Exponent, has values between 0 -> 1 . A value ofH = 1/2

is known as classical Brownian motion. The derivative of classical Brownian motion

corresponds to uncorrelated Gaussian white noise and has independent increments. For H > 1/2

there is a positive correlation both for the increments and its derivative. For H < 1/2 there is a

negative correlation. H is related to the fractal dimension D, by H = 2 D. This relation states

that the fractal dimension, D, lies somewhere between 1, a line, and 2, a plane. Since the

variance depends only on the difference between t, and tl5 and not the actual values, the

increments are said to be stationary. The random field is also isotropic since all points and
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directions are statistically equivalent. The random field also possesses a statistical scaling

behavior known as self-affinity. That is, if the time scale t is changed by a factor, S, then the

increments of the variance change by a factor, S2H:

Y(St) = S2H[y(t)]

Equation 3-9

Hence, unlike statistically self-similar curves, fBm requires different scaling factors in the two

coordinates.

3.4.2 Spectral Density

A random function, R(t) in time is often characterized by the spectral density, S(v). The spectral

density gives frequency, v, information about the time correlation ofR(t). When S(v) increases

steeply at low v, R(t) varies more slowly. It can be shown (Peitgen, 1988) that the power

spectral density, S(v), of fBm in one dimension has the following relation:

S(v)4-4ir7 ,1<D<2

Equation 3-10

Where (3 = 2H + 1 and fractal dimension, D = 1 + (3 p) / 2 = 2 H, v = sqrt(Ix2), I = 0, 1, 2,

. . . size ofX dimension.

This result agrees with the concepts of spectral density and
Wiener-Khintchine relation to non-

stationary random noises. S(v) is non-zero for all frequencies indicating detail at all scales. As |3
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is decreased (higher D), higher values of S(v) at high v values occur and low values of S(v)

occur at low v values. This results in a curve that is closer to a plane. As p is increased (lower

D), lower values of S(v) at high v values occur and high values of S(v) occur at
low v values.

This results in a curve that is closer to a line.

Extending fBm into 2 and 3 dimensions has the following relations:

SW^r^F ,2<D<3

Where v = sqrt(Ix + L )> 1 = 0, 1,2... size of dimension X and Y

Equation 3-11

S(v)i^r7 ,3<D<4

Where v =
sqrt(Ix2

+ 1
2
+ Iz2), 1 = 0, 1,2... size of dimension X, Y, and Z

Equation 3-12

In general for Euclidean dimension, d, P = 2d 2D +3 and D = d + 1 - H. I.e., d =l-line, 2-

surface, 3-cloud, 4-cloud time series, etc. . .and 0 < H < 1 the Power Spectral Density, S(v) is:

S(V) CC n-r-r a ; :
,
,. ,nj,w.

.,
,d < D < d + 1

v^-1 sqrt(I,2

+
Iy2 +...ld2)2d-2D+3Hd-l)

Equation 3-13

Where v =
sqrt(Ix2

+
Iy2

+. .
.Id2),

I = 0, 1,2... size of dimension and d = Euclidean dimensionality
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3.5 Fractional BrownianMotion Algorithm

There are three common algorithms for creating fBm: midpoint displacement, spectral synthesis,

and turning bands. This section covers only spectral synthesis. For additional methods of

creating fBm see Yin (1996). For a discussion of additional models to add small-scale turbulent

detail see Stam (1991,1995).

3.5.1 Spectral Synthesis

FBm texture maps are used in this research to simulate turbulent motion on the microscale level.

It is this turbulent motion that gives a gas cloud its pseudo-random shape. The following section

discusses the computer algorithm used to create these texture maps. Some examples are

included.

Spectral synthesis or the Fourier filtering method is based on the spectral density property of

fBm. It uses the Fourier transform to create a process that has a spectral density as stated in

Equation 3-13. The disadvantages of this process are possible large memory requirements, the

whole spectrummust be created at one time, redundancy due to Fourier transform symmetries,

and as addressed by Falconer (1990) the fBm approximation is poor when the frequency is very

small. With this in mind the following is a diagram of pseudo code to create 3D fBm texture

maps using the spectral synthesis technique:

1. Create a 3D Hermetian volume of random phases with values: 0 -> 2n (white noise).

Hermetian means a complex-valued function with the real part even and the

imaginary part odd. R(x) = R(-x), I(x)
=
-I(-x)
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2. Create a 3D volume (same size as the volume of random phases) of amplitudes

proportional to Where I = the integer index (0, 1 ,
2 ,...N-1)

2 2
11-2D

WI* +Iy +I* )

of dimension x, y, z, N is the dimension size, and D is the fractal dimension with

range, 3 < D < 4. 1 1-2D represents the fractional Brownian exponent.

3. For efficiency use the inverse Fourier transform (IFT) with dimension N equal to a

power of two and calculate the IFT(amplitudes*phases) = fBm, real valued and

random due to the Hermetian symmetry properties.

The following figures illustrate the application of a fBm texture map to the Gaussian distribution.

The 2D representation is a slice through the 3D distribution along the Z-axis. The 3D fBm has a

fractal dimension ofD = 4, variance = 40. The distributions have been scaled for viewing

purposes.

Figure 3-2 Gaussian 2D & 3D distributions, without texture map
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