Intelligent life

Jeff Spoonhower
TITLE OF THESIS: INTELLIGENT LIFE

I, Jeff Spoonhower, hereby grant permission to the Wallace Memorial Library of RIT to reproduce my thesis in whole or in part. Any reproduction will not be for commercial use or profit.

Signature

7/15/02
Date
Thank you:

Mom and Dad.

Thesis Committee: Skip Battaglia (chair), Duane Palyka, Bernie Roddy.

My “Other” Committee: Kevin McNulty, Grant Chang, Jeff Lester, Mike Jiang.

Funding: Timothy Callahan.

Without you there would be no “Intelligent Life.”
CONCEPT

I came up with the idea for “Intelligent Life” during a Luciano Pavarotti concert. On April 1st, 2001 my parents and I attended a concert featuring the renowned Italian tenor at the Blue Cross Arena in Rochester, New York. During or around Chi Gelida Manina from La Boheme, a vision of space aliens rescuing a robot from a comedy club surfaced within the deep recess of my brain. With the help of my thesis committee, I scripted a solid story for my thesis proposal (Appendix A). The idea was accepted. In the following months, however, I lost faith in it. I thought it would be too ambiguous – too bizarre – for audiences to understand. Due to this concern, I rewrote the story several times, and even wrote a few other completely different stories. After several frustrating weeks of rewrites, I decided to stick with my original idea. This decision was made after speaking, at length, with my thesis committee (especially Bernie Roddy in the early stages of development), and my good friends Kevin McNulty and Grant Chang. They enjoyed the open-ended, weird nature of the story, and had faith that I would make something good out of it.

Also, as a result of our discussions, my committee and friends helped me to discover the premise of the film, since it was unclear to me originally. (I had a story, but what did it mean?) The simple premise was the universal attribute of sentient beings (clams included) to engage other beings – to communicate with them.

After the story was locked down, and the premise was made clear, I set several goals for “Intelligent Life.” I wanted to make a funny film – one that would make both the audience laugh while they viewed it, and me laugh while I was making it. Another important goal was to beef up the visuals from my previous film, “Hypertension.” While audiences enjoyed the film’s humor, I wanted to improve my character animation as well as my modeling, lighting and texturing. I wanted to make a funny film that looked professional.

I was worried that I wouldn’t be able to make a funnier film than the one “Hypertension” turned out to be. Would the jokes in “Intelligent Life” work? Would people laugh? This turned out to be the biggest challenge during production – crafting a story, creating real characters with personalities, and sequencing the events of the story in a cohesive enough manner to create humor. I wanted – needed – to best myself. This
challenge excited me initially, and ended up fueling my fire throughout the entire fourteen-month production.

I must also mention the significant impact my undergraduate live-action filmmaking education from Notre Dame had in the conceptualization and production of “Intelligent Life.” Through several film history and aesthetics courses (thank you Professor Jim Collins), I gained an appreciation of the film language. By studying the classics, I learned a great deal about effective story telling – about communicating visually with an audience. This helped enormously during the initial script-writing stages of my production. Through production courses with Professor Ted Mandell, I learned a lot about lighting, shot composition and framing, editing, and acting. The hands-on training I received aided immensely when I was creating my sets, framing my shots, and breathing life into my characters.

While I am at it, I would like to point out other sources of inspiration and influence. In terms of animation, I’ve always enjoyed the craziness, humor and timing of Ren and Stimpy. Some live action works that have had a significant impact on my own filmmaking sensibilities include the movies of the Coen brothers (especially “Raising Arizona”), Stanley Kubrick, and Bruce Conner to name a few. Also influential in the shaping of my thesis were the novels of Kurt Vonnegut and Arthur C. Clarke. I hope you can see a little bit of these artists’ work in my own.

TREATMENT

“Intelligent Life” is about an experiment. Although the nature of the experiment is never clearly explained, we can deduce that it has something to do with the gauging of human response to humor. A group of aliens carry out the experiment – one inside a robot, on stage, performing various comedic routines, and several others inside a ship orbiting earth, monitoring the progress of the one on Earth. The alien operating the robot tries hard to entertain the audience. The robot first attempts a standup comedy act, but his timing is painfully bad, and he fails to elicit laughter from the club audience. He next tries his hand at song and dance, but fails again. In a final act of desperation, he smashes watermelons, jumps through a flaming hoop, and performs a strip-tease routine. He’s
performing for a tough crowd though, and they do not succumb to his antics. As the story progresses, the audience becomes increasingly vocal in their disapproval of the robot’s performance. They eventually destroy the robot by pummeling it with beer bottles. The crowd finally bursts into cheer and applause when the robot self-destructs. The alien in the robot is forced to evacuate. The aliens in space, frustrated, decide that the experiment has failed, and send down a wooden stage hook to rescue him from the belligerent crowd. The alien that has evacuated the robot, ironically, through no actions of his own, has finally won the audience over. He bows triumphantly as the crowd continues to give praise to the fallen robot. The stage hook eventually makes it down inside the club from outer space. The hook tries to snag the little alien away from his adoring audience, but he does not want to go as they are finally clapping for him. The hook does sweep him up though, and a troupe of singing clams enters the empty stage to sing a barbershop song about love.

The story was complex because there were several characters that were all interrelated. A relationship existed between the alien controlling the robot and the robot itself. A relationship existed between the robot and the audience. At the end a relationship developed between the alien and the club audience. There also existed a relationship between the aliens in space and the alien controlling the robot in the club. Furthermore, although somewhat nebulous, there was a relationship between the clams waiting offstage and the “real audience” watching the film. And of course, ALL of these characters had a relationship with the “real audience” watching the movie. As you might imagine, it was a challenge to manage all of the characters, and to make sense of their relationships to one another in such a short amount of time. This took a lot of thought and planning, especially in pre-production. The simplicity of the core story (robot trying to entertain audience) allowed me room to develop the complex inter-relations of the many characters over the course of the film. I received no complaints from people that watched “Intelligent Life” (even Grandma and Grandpa) that they did not understand what was going on. My friend and classmate Mike Jiang commented to me, toward the end of the film’s production, upon viewing a rough cut - “Jeez, Jeff. You’ve got a lot going on here. But it’s working really well.” Knowing and respecting Mike’s keen cinematic eye and economy of words, this comment was both kind and reassuring.
STORYBOARDING

I storyboarded the film twice. The original storyboards – those completed shortly after my proposal – were sufficient for blocking the film out in a rough manner (Appendix B). After working the story more after that, I had to re-storyboard the entire film. Several new sequences were added, and many of the ones I had originally storyboarded were modified significantly. I ended up nearly doubling the number of shots I had planned in the originals.

My storyboards do not look professional. The main purpose of the boards I draw is to assist myself in visually blocking out sequences in the story. Aside from a few of my classmates, I was the only one who viewed and benefited from these drawings on a regular basis. As a result, the drawings (on the final storyboards) were quite crude, but detailed enough for me to understand what was happening in the shot (Appendix D).

The drawings were simple, but I tended to be quite thorough in terms of the attention I gave to framing, composition of characters within the frame, and camera movement. I like to use arrows underneath and within the drawings to indicate camera movements and significant character movements. Since the aliens in my original storyboards looked very similar, I used colored pencils to give detail and to differentiate the aliens from one another. This helped my classmates to better understand what was happening in the story when I first presented it to them. The second version of the storyboards did not have color, since I alone used them during production and knew well enough what was going on in the story.

The storyboards turned out to be absolutely essential to me during both pre-production and while I was animating and editing. Not only did they serve the obvious purpose of guiding me through the shots I needed to create, but they also helped immensely with issues of shot continuity and pacing. I could very quickly glance at the drawings and get a sense of whether or not adjacent shots would work in conjunction with each other. In terms of pacing my sequences, I would simply look across the page of drawings and, depending on how long each shot would be in the film, I would pause my glance on the drawings for whatever necessary amount of time. In essence, the film was
already shot and edited before I created any actual animation. This saved me a lot of time during both the animation and editing phases, as I had already recognized possible visual and temporal problems and eliminated them.

CHARACTER DESIGN

I wanted the characters in “Intelligent Life” to have unique and distinct personalities. They needed to be *real characters* that the audience could identify with. Originally, the robot was designed to look very boxy. (Appendix E) I decided that this design would be far too rigid and would limit the amount of motions the robot could perform. Thus I changed the design to make the robot look more human (Appendix E). Instead of having tank tread legs and one-way rotational arms, I freed up the design and gave the robot human-like legs and arms. This allowed the robot to move much more freely. The newer human-like design also worked out well in the final piece because it allowed me to place the robot in human situations and perform human actions and gestures, while at the same time giving a very clunky, mechanically inhuman characteristic to his motion. This dichotomy of human design and inhuman movement worked out well and got lots of laughs.

The alien creatures were intended to look completely different than robot. While the robot was approximately the size of an average male human being, the aliens were very, very small in stature. In real life they would measure one and a half inches tall. Simply stated, I wanted the aliens to be cute (Appendix E). I thought that bright, cheery colors would help, so I chose to use red, green, blue, purple, and yellow for their skin tones. Also aiding in the “cuteness factor” was a sense of disproportionality to their body shapes. I gave them large heads without necks, short arms and legs, and large eyes. I originally thought they looked like personified miniature bowls of soft-serve ice cream. Many people, after the screening, thought they looked like Hershey’s Kisses with arms and legs. Either way, they ended up being pretty cute!

I went with a fairly photorealistic approach with the design of the clams. I thought that the contrast between the realism of their looks and the absurdity of the song they sang at the end of the film would be really funny. Grant Chang suggested that one of the
clams have a moustache (as many barbershop singers in real life do), so I incorporated that into the design. It was a small detail that added a lot to the clams’ personalities.

ENVIRONMENT DESIGN

There were three main environments in the film (Appendix C). One was the space inside the robot’s head – the “control room” - that the alien inhabited. The second environment was the inside of “Chuck’s”, the club. The third main environment was the inside of the space ship hovering in Earth’s orbit. Other environments included the off-stage area where the clams were waiting, the inside of the robot’s neck and chest, several outer space scenes, and the external shot showing the club. Since there were so many cuts in the film, and the shot durations were rather short, I needed to make each environment visually distinct from one another so that the audience would not get confused about the various characters and where their actions were taking place. At the same time, I wanted to maintain a level of consistency in terms of the look and feel of the lighting as well as the level of modeling complexity.

Since the exterior design of the robot was very complex, with a myriad of small intertwining mechanical parts and wires, I decided that the interior environments of the robot needed to look the same. The basic shape of the head interior was rectangular. On the walls were mechanical gadgets such as switches, wires, meters, and pipes. Some of these objects were highlighted in close-up shots, and others were there to simply fill up space – to give a “complex” feel to the room. I used several spotlights to light the room. Two yellow lights shined on the side walls, illuminating the switches and meters that were shot in close-up towards the end of the film. I chose to make these lights yellow because they contrasted sharply with the blue skin of the alien. The yellow against blue color scheme really made the alien pop out of his background. The alien was lit from above with a strong white spotlight. I added light fog to enhance the feeling of depth in the room. Also helping the alien to stand out from the background was a strong white rim light, which highlighted the edge of his head and body. The same basic design principles regarding modeling and lighting hold true for the robot’s neck and chest interior shots.
I intended the inside of the club to look natural and semi-photorealistic. It needed it to have easily identifiable characteristics that would allow viewers to quickly recognize it as a cheap, hole-in-the-wall comedy club. The brick wall, wooden stage, spotlight, microphone stand, beer bottles, papers, cups, tables, and shady audience members helped to create this mood. The visual focus for the shots inside the club needed to be the robot on the stage. To achieve this, the primary light source was the spotlight illuminating the robot on the stage. Again, I added light fog to this light to add a sense of depth and to simulate cigarette smoke wafting in the air. The audience in the club was illuminated very subtly. I didn’t want them to be the focus of these shots, so I cast them in silhouette.

The inside of the ship felt much different than the other environments in the film, mainly due to its size. The ship interior was much more voluminous than the club and robot interiors. I thought it would be fun to play with scale here – the aliens looked even smaller inside the huge bridge of the ship. In contrast with the dirty, run down look of the club and the disorganized mechanical look of the robot’s interior, the space ship interior appeared quite sterile and organized. The large open floor space, cold blue lighting, stark rows of glowing monitors, and stars in the distant background helped to create this mood. All in all, I think the contrast in lighting and modeling in the three main environments worked well to create distinct spaces that the viewers could quickly and easily identify with.

ANIMATION

It was my intention to greatly improve the character animation in “Intelligent Life” from that of “Hypertension.” Quality animation would be the main factor in bringing the characters to life in the story. They needed to be good actors! Since there were multiple characters in this film, as opposed the single main character in “Hypertension,” I wanted to vary the animation styles between the characters. Since the robot looked like a human, I wanted him to move like one. To get more laughs though, I made his motions a bit clunky and off-kilter. In terms of facial expressions, the robot’s were quite limited. His eyes could move around and blink, and his jaw opened and closed. Since his facial expressions were limited, the robot communicated (acted) mainly
through his physicality – his body movements. I was, however, pleased with the emotion he conveyed with his minimal set of facial expressions.

The aliens were tiny little guys. Contrasting the clunky movement of the robot, I thought they should move more smoothly. In addition to the smoother quality of motion, I wanted them to be quirky and short-tempered, so I made their movements rather quick and sporadic. (A good example is the shot in which flames erupt behind the glowing-eyed alien in the robot.) The aliens also had a much wider range of facial expressions. Each alien could make approximately twelve different face and eyebrow movements. This worked out great, as the aliens needed to show worry, concern, joy, and many other emotions over the course of the film. I think the facial expressions worked out pretty well, although I feel they were, at times, a bit too subtle. In future projects I hope to exaggerate my characters’ facial animations.

There was a lot of animation in this project – much more than in my previous films. In order to complete the project, as originally envisioned, and on-time, I devised and practiced a method for animating my shots. I would first view the storyboards and determine what kind of actions would be occurring and then figure out the timing for the shot. After that, I would bring the character into the scene and get him set up in the general starting position for the shot. Next, I would set up the camera. After these preliminary “setup” steps were complete, I would usually act out the motions of the characters myself, moving the way they would in the story. This helped me to get into their personalities – to feel and express their emotions. This aided tremendously when I needed to keyframe their motions, and ultimately led to much stronger performances than if I had decided to stay seated in front of the computer.

I would then block out the motions of the characters on the computer, keyframing basic translation and rotational movements. The characters were simply moved about the scene in order to get an overall sense of timing for the shot. After refining the basic movements of the characters, and deciding the timing was correct, I would begin animating on a more detailed level. The usual keyframing order went something like this: hip (root) joint, leg inverse kinematics, arm forward kinematics, spine joints, neck and head joints, and then all other secondary motion. I made sure that the main driving elements of the character (root joint and legs) were animated properly before moving on
to the other secondary body parts. This layered approach to animating worked out well, as I infrequently had to retrace my steps and make time-consuming corrections to movements.

All in all I was pleased with the character animation. There is always room for improvement, but I feel as though I met, and in some cases exceeded, my goal of improved character animation. I would have liked to make a few minor modifications to loosen up the movements of the alien in the robot. Also, as I mentioned before, facial expressions needed to be exaggerated in a few spots.

EDITING

I love editing. I enjoy playing with audience expectations, as well as conventions of movie making. “Intelligent Life” turned out to be a highly edited piece – much more so than my previous films “Another Slip-Up” and “Hypertension.” Along with the goofy actions of the robot and the aliens, much of the humor in the film was generated from the quick cuts between the different environments. I thought it would be funny to cut rapidly between extreme close up and wide shots, and environments separated anywhere from inches to thousands of miles. I didn’t necessarily want to cut the film “MTV style” (with the obvious exception of the tongue-in-cheek music video sequence), but I did want there to be a rapidity to the editing style. The idea was to give the actors on-screen enough time to perform their gags, and then to cut to the next sequence with just enough time for the audience to understand what was going on. The old phrase “timing is everything” proved so true!

Often I would cut when it felt natural, when I felt like the audience might have expected me to cut. Other times I would purposefully edit before or after this expected moment. I really enjoyed doing that – throwing the audience off. A few examples:

1) The shot towards the beginning when the robot is walking onto the stage…I cut out of this shot in the middle of his motion. I thought the audience would expect him to enter the stage, walk across it, and then come to a rest, so I cut away in the middle of his walk.
2) The shot towards the end where the hook is jostled by the jet plane...after the hook is shaken up there is a long pause, and then it turns around to look at the plane. I thought the timing here worked well because there was a long pause, a motion, and then a quick cut out of the shot.

This technique was used in “Hypertension” during transitions from the 3d to the 2d anime sequences, but I feel as thought it was utilized on a broader scale with “Intelligent Life.”

I enjoyed creating and cutting between exaggerated worlds in my first two films. With “Another Slip-Up” there occurred a tear in space and time between the cold, harsh “real” world of 3d, and the more sympathetic 1930’s-style hand-drawn world of 2d. In “Hypertension,” there was a certain exaggeration of space due to the coexistence of the “real” 3d world and the strange, internal 2d-anime world triggered by the main character’s rage. I wanted to continue this sense of exaggeration in “Intelligent Life.” Since the film was created entirely in 3d, unlike the previous two films, I needed to find other ways of exaggerating the space of the story. The rapid cuts between far-removed environments became the means of achieving this desired exaggeration. While being different than my earlier techniques, I feel that the approach I took with “Intelligent Life” worked out nicely.

It was also important to me that the viewers become swept up into the absurdity and craziness of the film. There was definitely a “method to the madness” though, as a significant amount of thought went into the planning of the shot sequencing before production even began. To be honest, that was the biggest initial challenge of the film – planning out the sequences and deciding how and when I would cut between them. As I started animating, however, things started to make more sense. The shots fell into place and the timing of the gags and cuts became very natural.

I found that having the editing program open at all times alongside the animation program was very helpful. More than helpful, actually. It was essential. After I animated a shot in Maya and playblasted a rough rendered version, I would simply import the shot into the editing program (in this case, Premiere), and drop it into sequence. In this manner I could quickly judge whether or not the shot would work in conjunction with adjacent shots. If the timing looked good, then the shot was done. If things didn’t jive, I would go back into Maya, fix the animation, and then drop the new shot back into the sequence in
Premiere. Working simultaneously on the animation and editing worked out extremely well. I couldn’t have imagined piecing the movie together in any other way after doing it this way. This procedure also saved me a lot of time towards the end of production, during “crunch time”, as the film was already completely edited.

There is very little camera movement in “Intelligent Life.” The environments in the film are delivered via straight cuts. I chose this sort of “no bells and whistles” approach for a few reasons. Most importantly, I believed that the camera should move only when absolutely necessary – when information in the shot needed to be revealed. This no-frills approach to camera movement also assisted my editing. Since there were a lot of characters and several different spaces being intercut, I needed the story to be delivered as efficiently as possible. Minimal camera movements, coupled with the centralized framing of characters within the shots, helped to keep things moving along. This “tunnel vision,” as Skip Battaglia called it, greatly assisted the timing of the film.

SOUND DESIGN

Sound, in animated films, is equally as important as the visual elements. Student film soundtracks are often times poorly done, because the filmmaker leaves little time at the end of production for the gathering and editing of sound. I did not want this to happen, so I began thinking about what sounds and music I would need early on in pre-production. I ended up using several pre-existing pieces of music, two original songs that I wrote and performed, as well as a wide variety of sound effects.

The pre-existing music was taken from the RIT Film & Animation royalty-free record collection. After listening to a majority of the collection, I ended up selecting five works for the final film. Three of these can be heard in the shots inside the spaceship. The opening spaceship shot (craning down to reveal the aliens) contains a mix of three of the “sci-fi” sounding works. One of these pieces had a very strong 1950’s B-movie science fiction feel to it, and I ended up using this clip whenever I cut to a shot of the outside or inside of the spaceship. This sound clip also reemerged in the ending credits. The two other pieces were used during the scenes where the robot is smashing watermelons, and also the shot where he is performing the strip-tease act. I ended up
speeding up the “watermelon music” considerably, as the original piece was too slow to match the wild actions occurring in that particular scene.

The song that accompanied the music video scene was original. I used several royalty-free sound clips and music loops from the Internet and mixed them together in a program called Acid. The song at the end of the film, performed by the clams, was also original. I wrote the lyrics to the song and sang and recorded each part of the quartet individually. I then mixed the four-part harmony in Sound Forge and raised the pitch on the entire song, so it would not sound like me singing. The robot voice that was used in the standup comedy act and also in the music video sequence was computer generated. I downloaded a free program off of the Internet called “ShadiSoft Speak” which translated typed text into computer generated speech. Most of the complete sentences and phrases in the standup act and music video were recorded in small segments and assembled in Premiere.

Approximately ninety percent of the sound effects were original. I used my Sharp MD-MT722 Minidisc recorder and Shure MX100 mini stereo microphones to record them. This is the second film I have used this equipment on to record audio, and I have been extremely pleased with the results. Most of the robot sounds were small household appliances, such as kitchen appliances, washing machines, dryers, sump pumps, VCRs, still cameras and video camcorders, a vacuum cleaner, etc – anything that had a motor, spring, or gears. The other sounds came from a wide variety of sources. The aliens’ vocal noises were my own voice, sped up. The other ten percent of the sound effects used in the film were taken from the royalty-free CD collection in the RIT 4th Floor Film & Video cage.

The challenge I faced when creating the soundtrack was - what sounds do I put where, and when? I decided that the sounds in the comedy club would be natural, other than the montage of music that occurs at the end while the robot is smashing fruit and stripping. The soundscape I created for the inside of the robot’s head, neck and chest were also diegetic (such sounds like footsteps, vocal sounds, the beeping of the control panel, etc.) The robot movements required a lot of mixing and editing. Approximately fifteen individually recorded sound effects were blended to create the sound of the robot’s movements. I thought it would be fun to completely abandon this realism of
sound during the spaceship shots. Since most of the sounds coming from the robot and both inside and outside of the club are motivated by someone or something, I chose to contrast this with non-diegetic science-fiction music during the space shots. Just as I was cutting between extreme visual spaces, I was also cutting between fairly extreme audio spaces. The end effect was quite humorous.

THE SCREENING

“Intelligent Life” premiered on May 2, 2002 in RIT’s Webb Auditorium. Also screening were Rodrigo Gomez’s “Three Stories Toward Creation” and Joshua Gramse’s “The Marsh.” The show went extraordinarily well. Considering the fact that only three films screened that night, there was a surprisingly large crowd in attendance. It was great to see all my classmates, friends, family members and even my fiancée Marie (who flew in from Indiana) in attendance. “Intelligent Life” was received with lots of laughter and much applause. Everyone really liked it! So much so, that they wanted to see it again after the first screening! So after I was through entertaining questions and comments from the crowd, it was played again. And, much to my satisfaction, everyone laughed the second time around too.

After the screening (and subsequently during the writing of this paper), Skip Battaglia offered an interesting insight into the film. He made a connection between myself, doing my creative work through a machine (my computer) and the alien in the film, who was likewise working through his machine, the robot. I believe that a film somehow reflects the personality of the person who crafted it. At the screening, I must admit, I didn’t think much of Skip’s comment. After he brought it up again several weeks later, I began to think about it, and I now believe it does have some credence. Maybe the desperate actions of the alien to “break out” of his claustrophobic, highly focused environment by means of performance mirrored the feelings I was harboring inside of myself as I worked in front of my PC every day. My family regards me as an entertainer. My younger brother, Paul, simply refers to me as a “wise-ass”. I think the alien inside the robot became an extension of my own need to “break out” and be a wisecracking entertainer.
Regardless, the film did really well – it was an exhilarating night for me. All the comedic moments worked, they got the laughs, and everyone in attendance really seemed to get into the story. I hope “Intelligent Life” will screen many more times in the future, and will be received as well as it was on opening night.

CONCLUSION

“Intelligent Life” took approximately 3000 hours to complete. I had a wonderful time making it. From the early stages of story conception to the final rendering and sound touch-ups, the entire production lasted fourteen months. How many hours? Who knows. Too many. I’d rather not know! I am very pleased with the final product, and I hope for it to live a long life at film festivals, conferences, and the like. “Intelligent Life” owes its success in no small part my thesis committee, classmates, and the support love and encouragement offered to me from my parents, Barb and John Spoonhower. Thank you all.
Appendix A
STAND-UP
by
Jeff Spoonhower

MFA Imaging Arts/ Computer Animation
SCHOOL OF FILM AND ANIMATION
ROCHESTER INSTITUTE OF TECHNOLOGY
ROCHESTER, NEW YORK
April 16, 2001

Skip Battaglia, Chair
Professor
School of Film and Animation

Duane Palyka
Professor
School of Film and Animation

Bernie Roddy
Adjunct Professor
School of Film and Animation
"Intelligent Life"

Cut to a 1st person POV shot of stars zooming past the camera (loud roaring noise) and then to the inside of a club (relative silence). We see a darkened stage and the edges of a few tables near the stage. A large "Vaudeville!" neon sign glows above the stage. We hear the MC introducing the upcoming act. Cut back to shot of zooming stars, which have increased in speed, and then back into the club. A robot clumsily walks out onto the stage. Cut back to the zooming stars, the roaring noise grows louder. Cut back to the robot on the stage, standing silently. Cut in to a CU of the robot's face - the eyeball flips up and a small alien creature peers out from behind it. Cut to the inside of the robot's head, which is actually a small control room full of levers, buttons, and wires. The alien looks impatiently at a monitor on his console.

Cut back to space, the stars are zooming past at a maddening pace, and the roaring is deafeningly loud. Suddenly, Earth comes into view and grows rapidly in size. Cut to a shot of a spaceship coming to a screeching halt in Earth's orbit. Cut to the interior of the ship. Awe-inspiring science-fiction music plays in the background.

Several alien creatures crowd around a monitor. One steps forward to the monitor. The monitor reads "Begin data transfer link." The screen momentarily becomes fuzzy, and then we see the robot on-stage via a live video feed within the club. The aliens turn their heads and look at each other. The alien at the monitor presses a button.

On the monitor inside the robot's head, the word "BEGIN" appears. The creature begins pressing buttons and pulling levers inside the control room. The robot does not respond. The creature inside looks confused because the robot is not functioning correctly. He pulls another lever but the robot still does nothing.

Someone in the audience coughs.

Cut to the alien in the spaceship, concerned with his comrade in the club.

The creature in the robot is upset now. He gives the controls a heaving kick. To the alien's surprise, the robot lurches forward and makes unintelligible mechanical noises. It quickly regains its composure though, and performs a stand-up comedy act, complete with mandolin accompaniment.

Cut to a shot of a squirrel, off stage, looking into a compact mirror and applying make-up to his face.

In a wide shot of the club, the audience does not react.

Inside the robot, the alien activates several more buttons and levers. The robot lights a cigar and begins tap-dancing to big band show music.

After the routine comes to an end, the audience still does not applaud.

Cut to off-stage character's reaction
Cut to spaceship alien's reaction - he is feverishly taking notes.

The alien in the robot is now even more troubled than before. This time he runs around the control room activating all available buttons, levers, and switches. Panic stricken, he pulls wires out of their sockets and punches several control panels.

In a wide shot of the stage, we now see short segments of the robot performing different acts, cut together in rapid succession. (Smashing fruit with giant hammer - polka music in BG, jumping through flaming hoop - rock music, strip tease - sultry jazz.)

Cut to alien in robot. He is sweaty, panicked, and desperately awaiting a favorable audience reaction. Cut back to a wide shot of the club, the audience boos violently and waves of beer bottles fly at the robot from the crowd. The bottles strike the robot hard, and it begins to fall apart.

Cut to off-stage character. He paces back and forth, looking at his watch impatiently.

Cut back to the interior of the space ship orbiting earth. Cut to a close-up of the monitor. We see live video feed of the robot self-destructing on the stage - beer bottles flying everywhere. The creature slaps himself in the forehead in disappointment. Cut to an external shot of the spaceship. A large red and white striped hook emerges from the ship's belly and races towards earth.

The creature opens an emergency hatch and leaps out of the back of the robot. He stands on the stage now, completely exposed, facing the audience. When they see him, they burst out in hysterics. The creature suddenly realizes that, despite the fact that his robot is in shambles, he has successfully elicited laughter from the audience. Smiling victoriously, he takes several bows.

Cut to a wide shot of an airplane flying in the sky. The hook zooms down and bumps the aircraft off-course. The passengers inside scream hysterically.

Cut to the inside of the club. The alien continues to take bows. The audience cheers wildly.

Cut to an external shot of the club. The hook zooms towards the ground and then quickly bends ninety degrees and enters the club through a backstage door.

On stage, inside the club, the hook chases the alien around, trying to nab him. Despite the alien's frantic attempts to avoid being captured, the hook eventually tugs him away from his adoring audience.

After a short pause on the stage, which is littered with broken robot parts, the squirrel walks out and begins to tap-dance.

Cut to black.

The End.
Thesis Budget

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>In Kind</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research</td>
<td>$200</td>
<td>$200</td>
<td>$0</td>
</tr>
<tr>
<td>Script</td>
<td>$1200</td>
<td>$1200</td>
<td>$0</td>
</tr>
<tr>
<td>Storyboard</td>
<td>$1200</td>
<td>$1200</td>
<td>$0</td>
</tr>
<tr>
<td>Animatic</td>
<td>$1200</td>
<td>$1200</td>
<td>$0</td>
</tr>
<tr>
<td>3D Character Design</td>
<td>$3000</td>
<td>$3000</td>
<td>$0</td>
</tr>
<tr>
<td>3D Character Animation</td>
<td>$7000</td>
<td>$7000</td>
<td>$0</td>
</tr>
<tr>
<td>3D Modeling</td>
<td>$3000</td>
<td>$3000</td>
<td>$0</td>
</tr>
<tr>
<td>Image Retouching</td>
<td>$2000</td>
<td>$2000</td>
<td>$0</td>
</tr>
<tr>
<td>Image Compositing</td>
<td>$5000</td>
<td>$5000</td>
<td>$0</td>
</tr>
<tr>
<td>Soundtrack Composition</td>
<td>$500</td>
<td>$400</td>
<td>$100</td>
</tr>
<tr>
<td>Soundtrack Recording</td>
<td>$2000</td>
<td>$2000</td>
<td>$0</td>
</tr>
<tr>
<td>Musicians</td>
<td>$100</td>
<td>$100</td>
<td>$0</td>
</tr>
<tr>
<td>Hardware</td>
<td>$8000</td>
<td>$5000</td>
<td>$3000</td>
</tr>
<tr>
<td>Software</td>
<td>$20,000</td>
<td>$20,000</td>
<td>$0</td>
</tr>
<tr>
<td>Video Tapes</td>
<td>$200</td>
<td>$0</td>
<td>$200</td>
</tr>
<tr>
<td>Blank CDs</td>
<td>$50</td>
<td>$0</td>
<td>$50</td>
</tr>
<tr>
<td>Total</td>
<td>$54,650</td>
<td>$51,300</td>
<td>$3,350</td>
</tr>
</tbody>
</table>

Thesis Timeline

Production Schedule

April - May: Storyboarding
June - August: Character Modeling/Setup, Background Modeling
September - November: Animation
December: Rendering, Editing, Sound, Duplication, Screening

Credits Schedule

Summer, 2001: 1 credit
Fall, 2001: 5 credits
Winter, 2001: 6 credits
Thesis Marketing Strategy

Local Festivals: Movies on a Shoestring, ASIFA East, New York Independent Film & Video Festival

Regional Festivals: Athens Film Festival, Aspen ShortFest, Ann Arbor Film Festival, Chicago Film Festival

International Festivals: Ottawa Animation Festival, Cork Film Festival, Amiens Film Festival

Internet Film Sites: lfilm.com, FilmFilm.com
Appendix B
"Stand-Up"
Storyboards
(sheet 1)
"Stand-Up"
Storyboards
(sheet 3)
"Stand-Up"
Storyboards
(sheet 4)
Appendix C
Robot delivering standup act

Inside of the shapeship

Close-up of robot during music video

External shot of shapeship
External shot of "Chuck's"

Alien inside the spaceship

Alien inside the robot's chest

Robot dancing in music video
The robot smashes watermelons

The clam barber shop quartet

Alien inside the robot’s head

The little guy gets angry
Appendix D
Camera pans and rotates up, centers monitor on screen.

Closeup of face of robot.

Robot wakes up quickly.

Hand enters frame and grabs mic.

"I will now tell jokes."

Mic enters, CU of face, robot begins to stand up act.
(Hot off the stage) final curtain area

(Stand up) routine, finishing

(reaction, more coughing)

(alien in robot)

routine begins

routine ends, robot goes quietly lifetime

Here's our first page.

(bunny) jumps, flips mudpie

(on stage) mudpieモス・クロップ

(to camera)

(to camera)
Appendix E