An Audio Oscillator Triggering Circuit for the EG\&G 501 High Speed Stroboscope; with Integrated Digital Timing

Boisey Collins

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation

Collins, Boisey, "An Audio Oscillator Triggering Circuit for the EG\&G 501 High Speed Stroboscope; with Integrated Digital Timing" (1971). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact repository@rit.edu.

AT AUDTO OSCILIAATOR TRIGGERTNG CIRCUII
FOR THE EGR:G 501 FIGH SPIETD STROBOSCOPR;
WITYE IJTHGRATET DIGITAL TMITIG

4 thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in the School
of Photographic Science in the College of
Graphic Arts and Photography of the Rochester Institute of Pechnology

June, 1971
Thesis: Advisor: Dr. Schumam

ACMITOWLEDCETENTS

I mould like to ex, woss my deep appreciation to al. 1 the people who have assisted me in the execution of this research project.

I thank Professor John F Carson for informing me of the need for this instrumentation. Also for his assistance during my endeavor.

I thank Dr. Schumann for his patience and comoperation during my endeavor.

TABLE OF CONTENTS

TABLE OF FIGURES iv
ABSTRACT v
ITMPODUCTION 1
IHSTRUMETIATMON 4
RESULTS 17
BIELIOGRAPHY 18
APPENDIX I 20
APPETDIX ? 25

TABLE OF FIGURES

OSCILLATOR POWER SUPPLY 9
IC PACK DIVISION PODJUE FOWER SUPPLY 10
OSCILLATOR CIRCUIT 11
IC PACK DIVISION IKODULE 12
UNIJUNCTION' TRANSISTOR 13
BASIC FLIP FLOP ATD DIVISION: 14
NAND GATE CIRCUITRY 15
COMPLEPE SYSTMPM 16

Abstract

ABSTMACT

A timing generator was designed and built for an EG\&:G 501 Eich Speed Stroboscope. The generator delivers a burst of one, two, four or eichnt pulses at a. selected repetition rate from. 5 HZ to 20KHZ; upon initiation by a start signal. An Unijunction Transistor (UJT) oscillator provides the basic repetition rate and Integrated Circuit (IC) Digital Logic is used to count and gate the output pulses. The circuit diagrams and construction details are given.

High speed photography has been around for quite some time, but new and improved metrods of operational systems are constantly being sought. Presently with the EG\&G 501 Eigh Speed Stroboscope operating times are determined by mechanical switching, an event delay switch is used in conjunction with camera monitoring. The camera monitoring systen util.izes a relay type switch which opens and closes to apply a signal. Which fires the 501 unit. There are those who would say that this is beautiful, because of the synchronizing between picture frame and flash exposure; do to the action of the camera monitoring system. The year is now 1971 and this type of system is obselete. Reloy contact arms float, more often than not, at high spatial frequencies. At any rate, the EGsG 501 system cannot begin to operate with an output of one, two, four or eight pulses at any frequency within the audio region. It has been my objective to add this capability to the system; only solid state components have been used. This
intricate timing has only become feasible with the introduction of digital circuitry; both discrete and intergrated.

The Hich Speed Stroboscope type 501 is designed to produce high-intensity light flashes at rates up to 6000 flashes per second, with a minimum flash duration of 1.2 microseconds. This type of ligiting is admirably suited to applications which demand that motion be virtually stopped on film, as: in the qualitative study of fast moving phenomena as shock waves and the flight of projectiles. High-speed motion.
 apparatus can have greater definition than films of the same events obtained with continuous lighting. In addition, the filming of subjects susceptible to damage by heat is sometimes allowed due to the relative coolness of stroboscopic lighting. ${ }^{1}$

The operation of the system is given in the section entitled " Instrumentation ". Within this section are eight diagrous which explain the basic operation of the system.

The oscillator and j.ts power supply were assemblied first: Then came the IC pack division module power supply along with the division modulc. The final stacge was one of settinc up the required arroy of electrical events.

INSTMUMNTATION

Two seperate power supplies were needed, one for the unijunction oscillator circuit (figure l), the other for the IC pack. The IC pack power supply is shown in, figure 2.

Within the unijunction oscillator power supply resistor RI (carbon) can vary the output voltage, under load, from 34 volts at its minimum resistance of zero, to 15 volts at its maximum value of loK ohms. The oscillator has only a voltage criteria; with the current required for oscillation being quite low (less than 30 milli amperes). This fact allows the value of capacitor Cl to be small (470 microfarads). In contrast, within the IC pack pover supply a value of 6200 microfarads was necessary. The equation for power supply capacitance is allways a function of filtering and output current required for the specific load. Within the IC pack division rodule (figure 4) each IC draws at least 30 milli amperes at its operating point. This sets a minimum power supply output current of 120 milli amperes, which is critical. An IC pack can be destroyed at 8 volts or current on the order of 50 milli
amperes.
The output from the oscillator circuit (point l, figure 3) is fed into point A of the IC pack division module (figure 4). The output from point 1. is a grood first order approximation to a positive Dirac delta function. Point \mathbb{A} is one lead of a computer logic nand gate. The nand gate results from the cascading of the computer not plus and logic. Assuming the IC pack module is receiving its correct power, point A requires a minimum voltage of 3 volts for correct logic operation. This 3 volt requirement must be met for all operating frequencies.
 the voltage at point 1 decreases with increasine frequency. The frequency is increased by decreasing resistor Rl (figure 3, 500k ohms maximun, zero minimun). The nature of the unijunction transistor accounts for the decrease in output voltage with increasing frequency; for any set oscillator supply voltage. Fortunately, with the minimum voltage output from the oscillator power supply and a operating frequency of 5 KHZ , resistor R 2 (figure 3) can be adjusted to meet the minimum criteria of point A
(figure 4). This means that the system can operate properly throughout the entire audio region at an oscillator power supply output voltage less than the maximun obtainable.

The IC pack division module (fisure 4) is the heart of the counting system. There are four seperate IC packs within the division nodule. Fach is of the fourteen pin dual inline type. Within the division module are 3 Texas Instruments ICs and 1 manufactured by Stromberg Carlson (Rochester). Stromberg Carlson list there ICs as SC number. Texas Instmments list there ICs as SN number. IC's used are SC 1046, a quad tro input nand gate; along with 1 SIT74H3 and 2 ST74 778 ICs. All 3 Texas Instrument ICs are Dual J-K lacter-Slave Flip-Flops. The division module is most readily understood on a mathematical plane. When point B (ifgure 4) is at logical 1 (approximately Vcc) and point A is receiving the required positive Dirac delta function, a negative Dirac delta.fuction is present at point C. This is a necessary condition for the operation of the division module. Each division stage altemates it's output from
logical 1 to logical zeroin a binary manner; with the point C criteria being met. Each division output represents a frequency of the reciprocal of 2 to an exponent. The first division output frequency is 1 over 2 to the zero power (1) multiplied by the input frequency at point C, or the oscillator frequency. The next division output equation incorporating 2 to the first power resulting in a division output frequency of one half the oscillator frequency. In this manner 1,2 , 4 and 8 pulses to the EKRG 501 unit may be obtained. The order of an array of electrjcal events becomes
 when momentarily shorted to ground, retums all of the division outputs to logical zero. The clear bus and reset switch are tied together, therefore pushing the reset switch is equivalent to pushing the clear bus. Both actions are accomplished simultaneously. The start button when pushed, intiates the digital timing operation. With the oscillator signal present at point A (figure 4) the operational sequence is as follows: the start button is pushed, point B goes to logical one; point C is producing
a negative Dirac delta function, the EG\&G 501 unit is being fired and dependine on which position switch Sl is in the division output will not change from loçical zero to logical 1 until $1,2,4$ or 8 pulses have reached the ECAG 501 unit. Assume that switch S1 is in position 4. This implies that after 8 pulses of energy have entered the 501 unit, position 4 of switch 51 will suddenly chenge from logical zero to logical 1. This point is connected to the anode gate of a silicon controlled rectifier ($S C R$). Therefore when position 4 of $S 1$ is at logical 1 (approxinatsly Vcc) the SCR will inmediately short to ground. This wili place point B at logical zero. which immediately stops signals 6 and D. To stop the $S C R$ from heavy conduction the reset button is pushed. It is mandatory that this last operation be done inmediately. Remembering that the reset and clear lines are tied together; pushing the reset button places a logical zcro state on the SCR anode gate, due to the clear bus action, and also places point B at logical zero; due to the flipflop action of the set reset system. This flip-flop action, which results from the cross coupling of 2 nand gates, is explained in figure 6.
(Fisure 1)

$$
\frac{V_{1}(t)}{V_{2}(t)}=\frac{N_{1}}{N_{2}}=\frac{i_{2}(t)}{i_{1}(t)}
$$

Tl-Primary 55A, ll7V Secondary 24 V (eff) IA
Bl Notorola Integrated Bridge
Cl 470 micro farads
RI 0-10K ohm (cerbon)

Ti Primarv 117V 60 Hz Secondary 6.3V (efí) 1.2A RI, R2, R3, O-IOK ohm (Carbon)

R3- Quasi load
RI - varies the conduction of TI
R2 - set minimum conduction of Tl
TII - power transistor, CALE CTRO K4-526
(Ficure 3)

R4-. 2200 ohms
RI- 0 - 500K ohms
R5 - 820 ohms
R3 - 0-10K ohms
R6 - 30 ohms
R2 - O- Ik ohms
UJT-2n491 Texas Instruments
cl-.2micro farads (low frequencies)
C2 - 0.1 miicro farads (mïd band)
C3-0.02 micro farads (hiigh audio)

When a positive potentisl at point E forvard biases Dl an output will result. Refer to oscillator circuit (fisure 3): Fach capacitor, C1 thru C3, when comected (seperately) forms a RC time constant which detemines the minimum time to reach the formard bias potentiel needed at point E to obtain an output. In this mamer the audio frequency region is scamed.

Figuro 0)
踶緆 IC PIN NUMBERS
(a)

(b)

Circuit a is a basic flip flop, obtained from the cross coupling of two nand gates.

Circuit b is basically the same circuit as in
a except two leads have been tied together so that binary divison will result when a signal is applied to the common input (open and close the switch) This is commonly seen as the clock imput on many ICs and is sometimes denoted as the toggle lead.
(Ficure 7)

$$
\begin{aligned}
& E=\overline{A \cdot B} \Rightarrow E=\operatorname{Not} A \not B B \\
& F=\overline{G \cdot H} \Rightarrow F=\operatorname{Not} G \& H
\end{aligned}
$$

TRUTH

A	TAS	LE
G	H	E
1	1	0
0	1	1
1	0	1
0	0	1

RESULTS

Positive proof of system operation is not available;for lack of time.
(18)

BIBLIOGRAPHY

BIBLIOGRAPHY
1^{1} "GENERAL HISTRUCTIONS FOR HIGH SPEED STROBOSCOPE TYPE 501" Report 1To. B- 2118, Supersedes Report No. B- 1945; July 1960.
" GENERAL ELENTRIC TRATGISTOR MANGAL $" 1964$ edition.
" SITROMBERG CARLSON TECHICAL TRAITIIG BOOK " Stromberg Carlson Co., Rochester , New York.

Fovard W. Sams \& Co., Inc.
" Stromberg Carlson ti-1 Carrier Sysiam ", Model 965.
Tw 1158 Volume II, Issue 1.
(20)

APPEMDIX 1

functione: hect: diegram (e:s-h flip-flop)

schematic (each flif-flopl

functional block diagran (each fliz. Slop)

schematic (each flip-flop)

elecirical characteristics (over recomemeded operating free-air temperature range unless otherwise noted)

Pardmeter		TEST figure	TEST CONDITIONS \dagger		MIN TYP §max		UNII
Vannt	Input voltoge required to ensure logical 1 at ony input terminal	$\begin{gathered} 57 \\ \text { ond } \\ 58 \end{gathered}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MIN}$		2		v
$V_{\text {infof }}$	Inpu: voltoge required to ensure logical 0 ot ony input terminal	$\begin{gathered} 57 \\ \text { ond } \\ 58 \end{gathered}$	$\mathrm{V}_{\text {ce }}=\mathrm{MIN}$			0.3	V
Vouth	Logicol 1 output voltoge	57	$V_{c c}=M / N$,	$\mathrm{I}_{\text {lood }}=-500 \mu \mathrm{~A}$	2.4		\checkmark
Voutiof	Lagicol 0 output voltoge	58	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MIN}$,	$\mathrm{I}_{\text {inkt }}=20 \mathrm{~mA}$		0.4	V
Inind	logical 0 level input current of J, K, or clock	59	$V_{c c}=M A X$,	$V_{i n}=0.4 \mathrm{~V}$		-2	mA
Infor	Logicol 0 level input current of cleor	59	$V_{c e}=$ MAX .	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$		-4	mA
Inn(1)	Logical 1 level input current of Jor K	60	$\mathrm{Vcc}=\mathrm{MAX}$,	$\mathrm{V}_{\mathrm{in}}=2.4 \mathrm{~V}$		50	$\mu \mathrm{A}$
			$V_{c c}=M A X$,	$V_{\text {in }}=5.5 \mathrm{~V}$		1	mA
1 ln 14	Logical l level input current of clock	60	$V_{c e}=M A X$,	$\mathrm{V}_{\mathrm{is}}=2.4 \mathrm{~V}$		50	$\mu \mathrm{A}$
			$V_{C c}=M A X$,	$\mathrm{V}_{\mathrm{in}}=5.5 \mathrm{~V}$		1	mA
$\ln (14$	Logical 1 level input current of cleor	60	$V_{c e}=M A X$,	$\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$		100	$\mu \mathrm{A}$
			$v_{c c}=M A X$,	$\mathrm{V}_{\mathrm{in}}=5.5 \mathrm{~V}$		1	ma
los	Short-circuil output current \ddagger	61	$V_{c c}=M A X$,	$\mathrm{V}_{\text {in }}=0$	-40	-100	mA
Ice	Supply current	60	$V_{c c}=M A X$		32	50	mA

†For conciitions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
\ddagger Not more than one oufput should be shorted af a time, ond duration ol short.circuit test should nof exceed 1 second.
\S All typical volues ore of $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
swifching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\wedge}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

	PARAMETER	TEST FIGURE	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Pclock	Noximum clock frequency	68	$C_{1}=25 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$	25	30		MHz
${ }^{1}$	Propogotion deloy time to logical 1 level from cleor to output	69	$C_{\text {b }}=25 \mathrm{pF}$	$\mathrm{RL}_{\mathrm{L}}=280 \Omega$		6	13	ns
ipos	Propogotion deloy time to logical 0 level from cleor to output	69	$C_{6}=25 \mathrm{pF}$,	$\mathrm{RL}_{\mathrm{L}}=280 \Omega$		12	24	ns
$\mathrm{t}_{\text {pal }}$	Propanction doloy time to lonizal 1 levelirom clock to output	68	$\mathrm{C}_{6}=25 \mathrm{pF}$,	$R_{1}=280 \Omega$		16	21	n¢
imi	Pr....-:ion delay time ta legical O level from clock to output	08	$\mathrm{C}_{1}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$		22	27	ns

(25)

APPENDIX 2

Industry does sell defective IC packs; the novice should be aware of this fact.

Anyone who plans to work with IC packs should become familiar with negative masking, from which ome can make his own printed circuit boards.

