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ABSTRACT

When illuminated by a coherent light beam, a periodic object will be imaged

in near-field space at predictable intervals. This phenomenon is termed

self imaging. Recordings of the intensity distribution of sine-wave gratings

were made at several positions behind the gratings. The modulation of the

images was calculated and used as a predictor of distance from the grating.

Positional accuracies of one part in one-hundred fifty-eight were obtained.



I . INTRODUCTION

If a beam of coherent, monochromatic radiation strikes a periodic ob

ject, a series of identical images of the object will be formed at predict

able distances from the object. Some experimenters have termed this phen

omenon self imaging because an image-forming device is not needed to produce

the images. The self- imaging effect has been known for many years (1) and

the formula which predicted the position of the images was first developed

by Lord Rayleigh in 1881(1). Many people have addressed themselves to the

mathematical prediction of diffraction patterns in the near field or Fresnel

region. Hopkins (2) in 1953 produced a classic paper described the

properties of image-forming systems. In 1957: Cowley and Moodie produced

a series of papers (3) which treated the general case of self imaging and

determined the specific mathematical relationship of wavelength and the

period of an object to an imaging point. They called the points of actual

reproduction Fourier image points and the intermediate points Fresnel image

points. Recently Winthrop and Worthington(4) examined the Fresnel image

points both experimentally and theoretically, and Montgomery(5) has done

theoretical work examining self imaging in various types of objects. Rogers

(6) has produced a computer program which predicts and plots the two dimen

sional intensity pattern of a line grating and also a hexagonal array of

points. An examination of the available literature has produced no evidence

of experiments relating to a determination of a quantity which is useful in

discriminating the Fourier image point.

The objective of this experiment is to examine the field behind a sin

usoidal grating illuminated by a monochromatic plane wave. The intensity

of the images which are formed will be recorded at specific distances from

the grating and the modulation will be computed. Modulation will be eval

uated as a quantity useful in predicting the distance from the original

grating. In order to experimentally verify the theoretical considerations,

it is necessary to generate gratings free from secondary harmonics.



II. THEORETICAL CONSIDERATIONS

The description of the self-imaging phenomena can be approached from

two mathematical viewpoints. The first is the Fresnel-Kirchoff integral,

or the Rayleigh-Sommerfeld modification of the Fresnel-Kirchoff integral,

which treats a light wave as a scalar. This method assumes that the aper

ture is large compared to the wavelength and that the diffracted fields

are not interpreted close to the aperture (7). The second approach, which

also assumes that a light wave can be described by scalar equations, de

fines a so-called angular spectrum of plane waves which arise from the

Fourier analysis of a complex field function interacting with a plane or

set of planes (7). The calculation of the field amplitude can be obtained

by a Fourier analysis of the complex wave function across the plane(s).

The following presentation treats these two approaches in some detail.

Raleigh-Sommerfeld Diffraction Integral

(X1,Y1 )

Source Plane Object Plane Image Plane

Figure 1. A Coherently Illuminated Periodic Plane



Using the coordinate system established in Figure 1, the formal ap

proach to the theoretical treatment of the problem can be stated. The

coherent source lies on a plane at a distance z
,
parallel to the object

plane, and is defined by the coordinates of (x
,y ). rX is the vector

from (x0yo) to a point (x^y..) on the object plane. The observation

plane lies a distance Z- from the object plane and (x,y2) is a point

on the observation plane where the vector from (x^yj intersects the ob

servation plane.

If it is assumed that the source is the point (x
,y ) and that the

object plane has an aperture S.., then the wave function at (x~,y2) can

be written in the form of the Rayleigh-Sommerfeld integral (16) ,

u(x2,y2) =

[iX]~

g (rQ1 exp[ik(rQ1+r21)] cos (n,r21)ds1,

where n is the unit normal, ds, is a surface element in the aperture, cos

(n,r) is an obliquity factor defined as the cosine of the angle between the

normal n and the vector r, and k is 211/ A The aperture is replaced by a

periodic object (3) with amplitude transmission characteristics defined by

t(x y ) = IE Thkcos[2l- +

211^
+

^
1
,

hk h k

where T, , is the amplitude transmission, and a, and b, are the periods of

the component waves. In addition, if the source is described by a function

u(x
,y ) bounded by S

,
the wave function becomes

v
o o o

u(x2,y2)
=

[ixX1

s

' t(x
,y ) u(xo,yQ) (r r

)_1

o 1

exp[ik(rQ1+r21)] cos(n,rQ1) cos (n,r21) dsQds1

where ds is a surface element on the source. To simplify this equation

for integration, it is assumed that the distance z, from the object plane

to the image plane will be much larger than the maximum values of (x
,y );

it is also assumed that the aperture is much smaller than z. . From these



two premises the obliquity factor approaches 1, or cos(n,rX )-l (7). Simi

lar reasoning can be applied to the cos(n,7m) term(8). If the integration

is limited to one dimension along the x, axis, and u(x
,y ) is assumed to

be a point source on the z axis, the integral becomes

u(x2)
=

[iX]"

[rQ1 u(xq)
g tfx^ exp[ik(rQ1+r12)]dx1.

The distances r~- and
r21

can be approximated by a power series because the

linear dimensions of the aperture were assumed to be small in comparison (8) .

If all constant terms (K) are grouped, and the integration is performed,
*

the equation for the amplitude transmission is

2
u(x) = KE exp[iv. ] T.cosiJj.,

i

where

ir A ,- o 1 .

,
2ir, o,

vi
=

-T ( ) ,
1|/ = ( )x

1
a z +z,

1
ah z +z,

2

hoi o 1

The intensity transmission, I(x2), is found from u(xXu*(x2), and therefore

I(x2) = K [E T, cos ^h
+ EE T. T. exp[i(v? -

v.)] cosip.cosi^.] .

h ij
* J i J

2 2
If cos (v. -

v.)
= 1, the intensity represents an amplitude distribution

u = KET, cosik which is equal to the original amplitude distribution with

h

the exception of a magnification term included in K,

z z,

M= 2[ -2-J- j.

VZ1

If from the previous considerations a set of image planes can be defined by
2

allowing v to equal 2n, the original object will be imaged at periodic in

tervals defined by

z z m

2IIXroln ij, _ .

,.,,, ,

v = -s- [ ] =

9 4 ( a set ^ integers (n)), and
2

L
z +zX , 2, 2

a o 1 h.-h.
i J

finally-

2a2n

=

Zo

+

Zl



If z is allowed to become very large as in the case of a plane wave, the

magnification term no longer has an effect, and the expression for the

self-imaging positions is described as

2
2a n

Zl
=

'

If n =

n+J_, the intensity distribution is

2
I(x_) = K [E T.cosik - EE cosi(j.cos^.] ,

h ij
^

the amplitude distribution due to the grating is

u(xp
= \l (-)

lhl
ThcosiPh,

h

the original shifted in spatial phase by ir.

It has been shown that if a sinusoid grating is illuminated by a co

herent light beam, an equation can be formed which will predict points of

imaging which contain identical images of the original. If the value of n

is not assumed to be an integer value, the original cosine distribution will

be imaged along the z-axis but modified by a cosine term which is dependent

on the distance from the original grating, the wavelength of the source,

and the period (s) of the original grating.

The Angular Spectrum of Plane Waves

The disturbance caused by the interaction between a coherent, plane wave

and a periodic grating can be described as a series of plane waves which are

mathematically represented by a Fourier series expansion(7) . If the grating in

Figure 2 is illuminated by coherent, plane wave fronts traveling to the right

parallel to the z-axis, the transmittance of the grating can be described by a

Fourier series (1) ,

t(x) = E a exp[2ninfx]
n=-

where t(x) is the grating transmittance, f is the grating frequency, and

a is the wavefront amplitude.



Direction of Wavefront

Travel +

Direction of Diffracted

Wavefront Travel

Figure 2. Diffraction at a Screen

The grating transmittance can also be expressed as an angular spectrum

Lane wavi

in Figure 3.

of plane waves having the amplitude a and propagation angles of 6 as shown

nA
sin 9 =

n p

= nAf

Figure 3. Angular Spectrum

The grating period is p, and A is the wavelength of the illumination. The

amplitude in a plane parallel to the x-y plane at a distance z can be ob

tained by summing the individual plane wave fronts which were modified by

the complex amplitude transmission of the grating to form

i oo 2 2
t(x,z) =

z) E a exp(-7rin Af z) -

n=-



The intensity transmission is the amplitude times its complex conjugate.

Assuming that the grating is amplitude modulated and symmetrical about

the x-axis, an expression for the intensity pattern at any point on the

z-axis can be obtained as follows (1),

Tm(z) = E
am+n
ancos(7rA(m2

+ 2mn)f2z);
n=-

m denotes the mth coefficient of the Fourier series.

If a grating with similar amplitude transmission characteristics as

in the previous section is substituted into T (z) , the intensity at any

point along the z-axis can be found. If the grating transmission t(x) is

represented by

t(x) =

cos2irfx,

2
and the intensity transmission is cos (2irfx), the coefficients a..

,
a ,

will equal H, all others being zero, and from T (z) the transmission is

= i*T (z) =

Tx(z) = T^fz) = 0

T2(z) = T_2(z) =

T (z) = 0 n >2.
n

' '

Thus the intensity distribution at any distance from the grating is

T(x,z) = h + h cos 2(2irfx) =

cos2(2irfx),

which is the same as the original intensity pattern.

10



Because a grating with zero bias is not a realistic model for the

experiment, it is more useful to use a grating with transmission char

acteristics similar to

t(x) = %(1 + cos2frfx),

whose Fourier coefficients are a = *_, a = a = %. Substitution of

these values into T (z) gives coefficients of
m

TQ(z) = 3/8,

T1(z) = h COSTTAf2Z,

T2(z) = 1/16,

and the intensity distribution along the z-axis becomes

T(x,z) = 3/8 + J_ cos(fTAf z) cos(2Trfx) + 1/8 cos2(2irfx).

If the z-axis cosine value is 1, the resulting function will follow the

curve shown in Figure 4. The implication of the equation for the inten

sity transmission of this grating is that the image modulation will vary

2

along the z-axis as the cosine of TrAf z if the term 1/8 cos2(2irfx) is

neglected.

T(x)

Components

Resultant

Figure 4. Intensity Distribution
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If 1/8 cos(4iTfx) can indeed be assumed to be very small that is, <<1,

the modulation in the image will be identical to the modulation in the

2
grating times a cosine term which is dependent on z,A, and f . There

will be points at which the modulation approaches zero, and there will

be points at which a duplicate of the original appears possibly shifted

in spatial phase. The frequency of appearance of this duplicate image,

or self image, is defined by setting the cosine argument equal to 2ir;
2

the self-imaging period is now defined by 2/Af The frequency of the

grating and the wavelength of the illumination thus determine the dis

tance along the z-axis at which self images occur. It will be shown

that the assumption that the righthand cosine term is negligible is

valid. From the preceding considerations the question regarding the

objective of this thesis remains; can the modulation of the image be

measured with sufficient accuracy to determine the z-axis position?

12



III. EXPERIMENTAL

Production of Sinusoidal Gratings

Sensitometry

The gratings for this experiment must be sinusoidal in amplitude

transmission in order to satisfy the original conditions defined by the

theory. Photographic film records the intensity of a light wave which is

proportional to the square of the amplitude (9). Classically, the

reaction of film to light is described by the Hurter and Driffield

(H and D) curve (10) . The density (D) of the developed image is defined

as the log of the reciprocal of the transmission (T) , that is,

D = log (1/T) ; the transmission is the ratio of the transmitted light

flux to the incident flux. The equation most commonly used is D =

-log T.

The H and D curve of photographic materials follows the characteristic

shape shown below:

Density

(D)

'

E Log Exposure (E)

In this case E is the exposure which is equal to the intensity of the

illumination multiplied by the time of the exposure; E is the point

where the tangent to the straight portion of the H and D curve (when it

exists) intercepts the log E axis. From the diagram, an expression can

be written for the tangent line: D =

y(log E -

log E ), where gamma (y

is the slope of the curve defined as AD/A log E. Because D =

-log T,

the curve equation can be rewritten as: -log T =

y(lg E - log E ) or:

Te 1"Y

T = -

lI E

13



This expression is the intensity transmission (T ) of the transparency.

If phase effects introduced by the film are neglected, the amplitude

transmission (T) can be obtained by taking the square root of T-, that is,

T. = =

. It is apparent that in order to maintain amplitude

transmission proportional to exposure, y must equal -2.

Ordinarily to obtain a y of -2, it is necessary to reversal process

the film or to use a negative-positive process (9) . In this case the

sinusoid nature of the image could be exploited. If the slope of the

characteristic curve is linear over a sufficient portion, the sinusoid

grating does not have to be reversal or negative-positive processed.

This is best illustrated by the sketch below:

Amplitude Transmission

Output

If the characteristic curve of T. versus exposure is linear, the output

wave will be identical in shape to the input, but the phase will be shifted

by 180 degrees in space; that is to say the light portion of the input

14



will be the dark portion of the output and vice versa. This is equivalent

to the expression: cos(x)
= cos(x+tt). Therefore, because the grating

remains a sinusoid, there is no need to reversal process. This rationale

was used in the production of the gratings.

Although the distribution of exposure within the emulsion can be a

function of spatial frequency, under certain conditions (9), it was

assumed that over the range of frequencies used, the film response would

be uniform. Phase changes which are introduced by surface deformations

of the developed film must also be eliminated. Leith (11) suggests using

a liquid gate technique where an emulsion index-matching fluid is placed

on the film which is sandwiched between two optical flats. KODAK High

Contrast Copy film was selected for fringe recording (see Appendix I) . To

determine the correct slope, a template with a slope of 2 was made. From

the characteristic curves (see Appendix II) it can be seen that these

processing conditions produce a fairly constant slope; the development

time of 6 minutes was used.

Apparatus

The requirements for the gratings to be used in this experiment were:

a. Uniform grating transmission over an area approximately

24mm x 36mm.

b. Variation of grating frequency from approximately

2c/mm to lOOc/mm.

c. Variation of grating modulation.

A method for grating production suggested by Swing and Shinn (12)

and also by Leith (11) was examined. The Fourier transform of a Ronchi

ruling (R) is taken by a lens (L.). The resulting orders of diffraction

15



can be filtered by a spatial filter (SF) and re-transformed by L2 to

produce cosine fringes of varying frequency and contrast (see sketch below)

R

I

Fringes

This method was attempted, but the available Ronchi ruling appeared to

have a very low spatial frequency envelope of the sort produced when two

frequencies beat together. A microdensitometer produced a trace of fringes

obtained from the ruling similar to the following sketch.

.55-

R> r-

5

-T-

7
r

8 IF6 7 8 9

Distance (MM)

Because this condition would introduce unwanted harmonics and self-images

into the experiment, the use of a Ronchi ruling was abandoned.

A second method for making sinusoid gratings is realized by creating

interference fringes (see Appendix III). The Twyman-Green modification

of the Michaelson two-beam interferometer (8) has features which meet the

previously stated requirements. An Ealing, Michaelson interferometer was

used with a laser source. A 40x microscope objective (MS) was placed in

16



Ml
//////////////////////

X

(I

z
-iY

P. interference

front of the laser (S) and the beam focussed onto a 12.5-micrometer-

diameter spatial filter (SF ) . A lens (LX collimated the TEM mode

beam to .05 log E, an almost flat beam intensity across the interferometer

aperture. Another lens (L) brought the fringe pattern to a focus, and

the fringe pattern on the opposite side of this focal point was extensive

enough to fill a 35mm negative. The fringe frequency was varied with a

micrometer screw by tilting the mirror, M..
, either about the Z-axis

or Y-axis.

Steel (13) describes the problems involved in replacing a

conventional source with a laser in an interferometer. The reflections

created by each optical surface will form additional, unwanted fringe

17



patterns due to the characteristic long coherence length. In this case

four reflections of the source were observed at the focus of L2. The

dot array could be varied by tilting the reference mirror (M.. ) either

along its vertical or horizontal axis to create either a parallel set of

unwanted fringes or a cross hatch at the image plane (P.) (see below).

A Brewster's angle beam-splitter would reduce these reflections when

used with the polarized light beam from the laser. Because of mechanical

limitations on the interferometer, a Brewster's angle beam-splitter

could not be installed. L_ transformed the four reflections to frequency

space, and a spatial filter (SF) was introduced at the focus of L

eliminating the unwanted orders. A suitably sized pinhole was placed at

the image plane and the two unwanted points were removed (see sketch) .

Unwanted Orders

Pinhole

A Nikormat camera body was set up behind the spatial filter to record the

fringes. The filtered fringes which were of uniform intensity, free from

spurious images, and of sufficient size to fill the film plane were then

recorded.

18
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Gratings

The biasing of the fringes to control modulation was accomplished by

cutting off one beam of the interferometer and fogging the film with a

pre-exposure of 0.1 second. The fringe exposure time was varied. The

density of the grating was measured by a macro-densitometer to determine

where the average exposure was located on the T. vs E curve. When the

correct exposure was determined, several gratings were made, and a

Fourier transforming setup (11) was assembled on the optical bench to

check for the presence of unwanted harmonics introduced by emulsion

thickness variations . The diffraction pattern of the gratings was

examined with a microscope, and in all cases an unwanted second order

point existed. Several iterations of exposure and processing were

performed, but it appeared as though the film were introducing a phase

change. To eliminate this change, an index-matching liquid was made by

mixing together Cargille Immersion Liquids of 1.624 and 1.457 refractive

index in a 1:1 ratio to produce an index of approximately 1.540 (14). The

film was coated with the fluid and sandwiched between two optical flats.

The unwanted side order disappeared completely, and the gratings were

produced. Ten gratings were generated with bias and frequency ranges as

shown in Table 1.

19



TABLE I

BIAS AND FREQUENCY RANGES

Frequency Bias Exposure Fringe Exposure

(c/mm) (sec) (sec)

%
1.74 0.1 0.1

4.14 0.1 . 0.1

h 4.53 0.1 0.2

f4 4.53 0.1 0.04

f5 9.45 0.1 0.1

*6 11.80 0.1 0.2

f? 11.80 0.1 0.04

f8 18.45 0.1 0.1

f9 26.95 0.1 0.1

fio 32.70 0.1 0.1

The determination of the grating frequency was made by counting fringe

peaks recorded by the slit-scanning photometer. A spatial interval large

compared to the grating period was used to average the period.

Experimental Procedures

The modulation measurement apparatus was mounted on a Tech Ops 3-metre

optical bench. A microscope (M) of lOOx magnification and a phototube

housing (PT) with a variable slit were mounted together on a single plate

to ensure constant magnification. Precision micrometer screws (MS)

accurate to 0.0005 inches, 0.0002 inches, were attached to the plate

for positioning in the x- and z-axes as shown below.

Microscope

Obj ective

Lens

0>

Laser

Grating

Experimental Set-Up
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The slit width was varied between 0.3mm and 1.5mm depending on the fringe

frequency. This aperture was sufficient to ensure that the slit was

small relative to the grating period (approximately 10:1, period to

slit size). Each self- imaging period was divided into ten positions

along the z-axis, and the image at each position was scanned by moving

the target with a synchronous motor along the x-axis for approximately

0.1 in. The microphotometer apparatus was then moved to the next position

on the z-axis and a new reading was made. The phototube output was

amplified by an Amnico photomultiplier amplifier and recorded by a

Varian Associates G-11A Strip Chart Recorder. After each intensity

measurement was recorded, the photomultiplier and strip chart were re-

zeroed. It was necessary to allow the gratings to stand for a while

after the liquid gate was made to let excess liquid bleed from between

the plates. If this did not occur, changes in transmission would occur as

the liquid moved between the plates.

To establish the validity of the measurement apparatus, the modulation

of each grating, the square root of two times the ratio of the side order to

the central order, was determined from measurements made by a Fourier trans

forming apparatus set up on the optical bench. Measurements of the central

and side orders were made in the spatial domain as suggested by Leith (11)

(see below) .

Spatial

Filter

Plane Waves Lens Lens

-?

z-axis

Spatial

Grating Frequency Domain

Domain

Fourier-Transforming Apparatus
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Care was taken to ensure that the same area on the grating used for the

sinusoid traces was used for modulation measurement. The amplitude

transmission of the gratings was computed from the intensity measurements

and then the modulation was determined. The results are shown in Table II

TABLE II

GRATING PARAMETERS

Bias (sec) Grating
(Amplitude Transmission)

0.1

0.1

0.2

0.04

0.1

0.2

0.04

0.1

0.04

0.04

0.223(1+0.281 cos 2 tt f]X)
0.200(1+0.245 cos 2 tt f2x)
0.200(1+0.141 cos 2 tt f3x)
0.200(1+0.212 cos 2 tt f4x)
0.200(1+0.200 cos 2 tt f5x)
0.223(1+0.245 cos 2 tt f6x)
0.314(1+0.284 cos 2 tt f7x)
0.223(1+0.200 cos 2 tt fgx)
0.314(1+0.156 cos 2 tt fgx)
0.314(1+0.142 cos 2 tt f10x)

Next, the modulation of the images was found from estimates of the average

maximum and minimum of the chart recordings. These modulation values were

compared to the modulations obtained from the results of the Fourier

transforming operation. A scatter diagram was drawn, and the correlation

coefficient was calculated (Appendix IV) and found to be significant.

The significant correlation indicates that the slit-scanning experimental

technique was valid and is a good method for measuring the modulation

of the targets. A plot of a typical modulation-vs-position curve is

presented in Appendix V. A graph of actual test traces versus a photo

graph of the image is presented in Appendix VI. A computer program was

written to normalize the individual modulations and plot them as a function

2
of A f tt z (see Appendix VII) .
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Conclusions

Each modulation was normalized to the highest modulation of the

individual target to obtain some estimate of experimental error. Because

the data should follow a cosine distribution, several methods to determine

the best fit curve through the data were tried. In each case the cosine-

squared term was assumed not to be significant. This assumption can be

considered valid when the actual values of the terms are considered. The

values averaged 0.05 transmission units or less and were thus below the

sensitivity of the photomultiplier-chart recorder combination.

2
The normalized data (modulation vs A f tt z) was evaluated by a

nonlinear regression analysis program (See Appendix VIII). A cosine

curve was fit to the data, and precision terms were calculated for the

experimental data. From an analysis of the precision values, it was

determined that the maximum error in position, when the position is

calculated from the modulation, is one part in one hundred-fifty eight

(1:158). This ratio is equivalent to stating that the distance from a

1 c/mm grating, illuminated by 632.8 nm laser light, can be determined to

20mm over an interval of 3160mm by measuring the modulation. From the

theoretical considerations and the results of the analysis of the

experimental data it has been shown that modulation of the self images

of sinusoidal gratings can be measured accurately enough to predict the

spatial distance from the original grating as long as the cycle in which

the measurement is being made is known.
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APPENDIX I

For dimensional stability and fine grain, KODAK 649-F High-Resolution

Plates were originally considered. These plates were obtained and the backs

were painted with a solution of lamp black and shellac to minimize reflec

tion. A sensitometer was set up using tungsten illumination with a 632.8

nanometer interference filter to approximate the laser light to be used.

Vogelsong(15) stated that Kodak results had shown no significant difference

between this method and laser sensitometry. He further stated that ampli

tude measurements could be obtained by taking the square root of intensity

measurements derived from macrodensity measurements. A high-quality fil

ter was of course necessary. A Baird Atomic B-l interference filter with

a 9.3nm bandwidth was used. A regression analysis (16) was performed on

the results of the 649-F sensitometry and a second-order equation fit to

the curve. The result was: Density = 16. 54+12. 66(Log Exposure) +2. 44 (Log
2

Exposure) . The first derivation showed that a slope of 2 would fall on

the toe region which is very low in contrast. Because of the difficulty

of lowering the 649-F D-Log E curve to a gamma of 2, it was decided to use

a different film.
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APPENDIX III

Two methods of fringe production were tried and rejected: Lloyd's

mirror (17), and Young's slit experiment (17) . The principle disadvantage

of Lloyd's mirror (see below) was the finite area of the fringe pattern.

u scope obj .

and pinhole

,^j , ,
0I ^ Fringes

Mirror

The fringe intensity varied, and the fringes were bounded by the diffrac

tion of the pinhole.

The second method was a modified Young's slit experiment (see below)

y scope obj.
.Mirror

and pinhole

Laser
3 1 1 1 1 CZ>^r_ / SJ

i Fringes

BS

This method was equipment limited because precision slits were not avail

able. Using a beam-splitter, two point sources were created, and fringes

were generated, but the small separation necessary for low frequencies

could not be achieved. The fringe frequency (200c/mm) was too high and

the fringe contrast was too low.
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APPENDIX IV

SCATTER DIAGRAM

1.0
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Fourier Transform Modulation (AC/DC)

r (Correlation Coefficient) = 0.9878

Any variation in the plot is due to

experimental random factors .
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Appendix VL
Sample Traces For f=^,^5c/MM
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APPENDIX VIII

A Fourier analysis of the data was considered, but because of the

random distribution of the data, the Fourier approach was discarded. The

data could have been grouped, but this technique may have introduced an

unwanted bias into the results. A polynomial regression analysis was per

formed on the data because the cosine can be expanded by the series:

2 4 6

COS X = 1 - -X + ^ _

^ +
. . .

If the polynomial obtained had very-low odd x powers and followed the gen

eral form of the expansion, the data could be assumed to be sinusoidal and

an error estimate could be derived. The equation which was calculated by

a program in the IBM Scientific Subroutine Package (18) took the following

form:

Y = 0.77 -0.59X

+0.005X4

This form obviously does not follow the expansion. The values of the co

sine computed from this expression were also in poor agreement with the

actual data points.

William Lawton, a professional statistician at Eastman Kodak Company,

examined the computer plot (Appendix VII) of the normalized data and stated

that since a sinusoidal distribution is predicted by the theory, and the

data plots sinusoidal, the only analysis he would perform would be a non

linear regression using a biased cosine with, and without, a phase shift,

as the statistical model. A nonlinear regression analysis (Eastman Kodak

Company Proprietary Program) was performed by computer. The program cal

culates bias level, amplitude, frequency, phase, and error terms for each

of these parameters. Two curves were fit to the data (Figure Villa, b) and

the resulting equations of the curves are:

Y(t1) = 0.567 +0.334 cos (1.934t -0.244),

Y(t) = 0.561 +0.333 cos (1.888t)

where: Y(t) =

modulation, and

Nt = Af2iTZ.
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Because the degree of correlation for the curve with phase shift (Y(t ))

is statistically the same (0.850 for YO4) vs 0.856 for Y(t2)), the equa

tion with the phase term was discarded. Using Y(t ) as the model, error

terms were computed for each of the model variables. The results are shown

in Table A.

Table A. Error Terms

Variable Value (95% conf.)

Percent Error

(95% conf.)

z-axis modifier(t)

DC level

Amplitude

1.890 0.022

0.560 0.019

0.330 0.026

0.95

3.50

7.90

An analysis of these results indicates that errors arising from

positioning inaccuracies along the z-axis or errors arising from the grating

frequency measurements are not significant. This aspect of the experiment

was statistically in control. The error in the bias level and amplitude

terms does not seem large when the method of measurement is considered. A

significant error factor in the computation of these terms is the method for

normalizing the various modulations. Because each target was normalized

against itself, the nonlinear model represents the total error. If a model

were fit for each target-modulation series, the term would probably be less;

thus, for the selected range of target frequencies and z-axis positions, the

modulation can be measured to 7.9, 95 percent of the time. This inaccuracy

corresponds to a modulation, or cosine term error of at most 0.079 at the

maximum modulation of 1.000. This value of the modulation indicates that

the Fourier image point can be predicted to 0.40 radians, or the position

error at this point is 12.5 percent. If the grating frequency error is

assumed to be negligible, the z-axis error can be computed by determining

the actual z-distance of 0.4 radians from the relation: argument (radians)=

? 2
A-n-f z. If the wavelength is 632. 8nm, z becomes 20.0/f for 95 percent.
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This error can be interpreted for 1 c/mm where the self-image interval is

3160 mm. Thus, if the modulation is measured, the maximum position error

at any point would be 20mm. From these computations it follows that the

technique for determining z-axis position using modulation measurements

is valid if the cycle in which the measurement is being made is known.

34



N en

CN r-\

4-1 CO

r< >*

t=
?J

<
co

>

2 2
O O
11 i i

E- co

< CO

J w
3 c_

Q CJ3

s
Q Oi

PJ <
NI m
1I 2
?J
i i

< j

WW
i

2
o o

2 2

Q

2
OJ

a.

o , ,

DCVJ

ca

CD

t N

+ ^f

t
h- CN

o

0

1
O ,-,

U3 w-^

<*

m to
*

a.

ui
0

a
,1

u

o
u

a-rP
3-

m
bO

tr.

+
0

+

O ,
,

? en t~-

00
0

II N

, , t \

P

?
'

, v '

U.s- X

Dti'I OB't dq'i 08 "a 09 'o ova

Id N0ISS3U03H HH3NIT-NQN

02'0 ?O'lf

35



N CO
CN 11

CH CO
r< >-

t= J

<
CO

>

2 2
o o
11 11

H co

< co
j w
D OS

Q CT

y

Q OS

tq <
M tt]
r-1 2
J 1H

< hJ

^>J 1
cd 2
O O
2 2

OVl 02 't 00 't 08 "0 09 '0 0VO

Id NQISSBdCGd yb3NI>NDN

OS'O 00
0

36


	Rochester Institute of Technology
	RIT Scholar Works
	5-27-1970

	The modulation of sine-wave gratings at Fourier and Fresnel imaging points
	Donald Kingsley
	Recommended Citation



