12-1-2012

Semi-supervised heterogeneous evolutionary co-clustering

Pankaj Andhale

Follow this and additional works at: http://scholarworks.rit.edu/theses

Recommended Citation

This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact ritscholarworks@rit.edu.
Semi-supervised Heterogeneous Evolutionary Co-clustering

by

Pankaj Andhale

A Master’s Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Science

Supervised by

Dr. Manjeet Rege
Department of Computer Science
B. Thomas Golisano College of Computing and Information Sciences
Rochester Institute of Technology
Rochester, New York
December 2012

Approved By:

Dr. Manjeet Rege
Department of Computer Science
Primary Adviser

Dr. Reynold Bailey
Department of Computer Science
Reader

Prof. Henry Etlinger
Department of Computer Science
Observer
Abstract

One of the challenges of the machine learning problem is the absence of sufficient number of labeled instances or training instances. At the same time generating labeled data is expensive and time consuming. The semi-supervised approach has shown promising results to solve the problem of insufficient or fewer labeled instance datasets. The key challenge is incorporating the semi-supervised knowledge into the heterogeneous data which is evolving in nature. Most of the prior work that uses semi-supervised knowledge has been performed on heterogeneous static data. The semi-supervised knowledge is incorporated into data which aid the clustering algorithm to obtain better clusters. The semi-supervised knowledge is provided as constrained based or distance based. I am proposing a framework to incorporate prior knowledge to perform co-clustering on the evolving heterogeneous data. This framework can be used to solve a wide range of problems dealing with text analysis, web analysis and image grouping. In the semi-supervised approach we incorporate the domain knowledge by placing the constraints which aid the clustering process in performing effective clustering of the data. In the proposed framework, I am using the constraint based semi-supervised non-negative matrix factorization approach to obtain the co-clustering on the heterogeneous evolving data. The constraint based semi-supervised approach uses the user provided must-link or cannot-link constraints on the central data type before performing co-clustering. To process the original datasets efficiently in terms of time and space I am using the low rank approximation technique to obtain the sparse representation of the input data matrix using the Dynamic Colibri approach.
Contents

Abstract .. iii

1 Introduction .. 1

2 Background and Related Work 4
 2.1 Semi-supervised learning 4
 2.2 Evolutionary Co-clustering 5
 2.3 Heterogeneous Co-clustering using non-negative matrix factorization 6
 2.4 Low Rank Matrix Approximation 7

3 SSHECC .. 10
 3.1 Notation used in the SSHECC 10
 3.2 SSHECC Algorithm Description 12
 3.3 SSHECC Algorithm 16

4 Experiments .. 18
 4.1 Dataset preparation 18
 4.1.1 Image Dataset 18
 4.1.2 Web service Dataset 19
 4.1.3 Synthetic Dataset 20
 4.2 Experiments ... 21

5 Conclusion ... 30

6 Acknowledgments .. 31

Bibliography ... 32
List of Figures

3.1 Semi-supervised co-clustering of heterogeneous star structure relational evolving data at time step t and $t + 1$.. 11

4.1 (a) Web service and (b) Image datasets forming a star structure schema where, (a) The terms forms the central type and is connected to service and operations. (b) The image forms cental type and is connected to texture feature, Gabor feature and user logs .. 20

4.2 Detecting the number of clusters in the current time step data at using Krzanowski-Lai, Davies-Bouldin index, Silhouettes and Calinski-Harabasz index techniques .. 22

4.3 Semi-supervised co-clustering accuracy is measured by placing 0, 1, 2 and 4 percent constraint on evolving web service dataset from time step t_0 to t_7 where the numbers of instances features are shifted, added or removed from clusters. .. 23

4.4 Measuring the semi-supervised co-clustering accuracy by varying the value of α while keeping the constraint percentage constant on the web service dataset .. 24

4.5 Comparing the results of SSHECC when the percentage of evolved instances change keeping the constraints and α constant on the web service dataset .. 25

4.6 Visual representation of must-link and cannot-link constraint on the image and the user log dataset at time step t consisting of 5 row and column clusters. The constraints are placed on the central type data. i.e. images represented by green and red lines .. 26

4.7 Semi-supervised co-clustering accuracy is measured by placing 0, 1 and 2 percent constraint on the evolving image dataset from time step t_0 to t_7 where the numbers of instances features are shifted, added or removed from clusters. .. 27
4.8 Measuring the semi-supervised co-clustering accuracy on image dataset where instances are evolved randomly keeping the percentage constraint and α constant . 28

4.9 Semi-supervised co-clustering accuracy is measured by placing 0, 1, 3 and 5 percent constraint on the evolving synthetic dataset from time step t_0 to t_7 where the numbers of instances features are shifted, added or removed from clusters. 29
List of Tables

3.1 Symbol Definition used in SSHECC . 12
1. Introduction

The sophistication in the data gathering techniques has led to the generation of large amounts of unstructured data. This data is heterogeneous and evolving in nature, and efficient techniques to process and analyze the data need to be developed. In the absence of background knowledge or the characteristics of the data and class labels, to gain insightful information about the given dataset, a clustering technique is implemented. Clustering is a process of grouping similar instances together[15][16]. Only one dimension of data is used in clustering.

Co-clustering is a technique which explores the dual dimension of the data, by identifying natural grouping based not only on the instance similarity, but also uses the feature similarity[9][2] as well as the instance feature relationship is used. The co-clustering approaches are either graph theory, information theory or probability based models[7]. The graph theory approach such as Spectral Graph Partition(SVD) [2], Consistent Bipartite Graph Copartitioning (CBGC)[11] and iso-perimetric co-clustering [27] have been used to perform co-clustering. Most of the real world data mining problems are heterogeneous in nature, so a star structure relational heterogeneous data model is used to simulate these problems [7].

To deal with the heterogeneous data in the evolving environment such as blogs, social networks, professional networks etc. we have to handle the incoming data at each time step. The clustering should be based on the current characteristics of the data [5]. At the same time it should not deviate too much from the previous time step [8]. As in the real world we do not frequently observe a drastic shift in the associations between the subsequent time step data. The evolutionary algorithm is able to suppress the noisy data
and capture the evolving changes in the data at every time step simultaneously and represent the clusters associated with current time step data and close enough to the previous time step data. Nathan Green has performed the co-clustering on the evolving data using the spectral approach[23]. The non-negative matrix factorization approach for co-clustering is the most efficient way as it requires less space and time for computation and also the results obtained are intuitive [7]. The heterogeneous data co-clustering is implemented using the simultaneous clustering of related data types. Our approach will be dealing with the star structure schema, where the central type is connected to all other types. To simulate a star structure heterogeneous environment consider the interrelations of words, documents and categories in the text mining field. The text corpus document is the central type which is connected to the words and categories. Single sided constraints are placed on the central type i.e. documents. Using the distance learning metric [7] the distances within the similar data points will be reduced and the semi-supervised knowledge is incorporated. Finally co-clustering is performed using the non-negative matrix factorization.

Semi-supervised is a learning approach which combines learning from the labeled and unlabeled instances. The semi-supervised approach is used to perform classification and clustering. Using the semi-supervised approach we can build a classifier with a better prediction accuracy using the smaller size of labeled training datasets. Semi-supervised approach when used in clustering helps clustering algorithm to obtain better clusters. There are two sources of information for the semi-supervised clustering [14]; the first one is the similarity distance measurement and the second one is pairwise constraints. In the distance based approach the clustering algorithm is first trained on the supervised data. In the constraint based approach the clustering algorithm itself is modified. User provided constraints are incorporated using the simultaneous distance metric learning and feature selection to compute the new relational matrices. Clustering is performed on new relational matrix.
A framework proposed in this thesis will provide a solution to the challenging research problem that has never been addressed until now. It uses the semi-supervised non-negative matrix factorization approach to perform co-clustering on the heterogeneous evolving data using the low rank approximation. Practical datasets used in modeling of the real world problems are sparse in nature. The low rank approximation is used to create a sparse representation of the input data matrix. To the best of my knowledge, this is first work on the semi-supervised co-clustering of heterogeneous evolving data.

The following chapters of the thesis are organized as follows. Chapter 2 will review the background and related work. The proposed Semi-supervised Heterogeneous Evolutionary Co-clustering (SSHECC) algorithm and its description is explained in Chapter 3. Followed by the dataset preparation and experiments performed on the datasets from various domains in Chapter 4 and finally the conclusion in Chapter 5.
2. Background and Related Work

A review of background and related work is provided in this section. Topics covered in this chapter are semi-supervised learning, evolutionary co-clustering, heterogeneous co-clustering using non-negative matrix factorization and low rank approximation.

2.1 Semi-supervised learning

In the real world data the number of training instances or labeled instances is small. Generating labeled instances is a very costly and time consuming process. Hence the use of the semi-supervised technique helps to overcome the problem of small training data samples. The semi-supervised clustering and co-clustering has shown that accuracy is improved by providing the semi-supervised knowledge to the clustering algorithm [6][7]. The domain knowledge is incorporated in the form of constraints to the input data matrix before performing clustering. This knowledge helps the clustering algorithm by providing better clustering results. The semi-supervised approach is further categorized depending on the source of knowledge as semi-supervised clustering with labels and semi-supervised clustering with constraints. In the labeled approach the clustering algorithm is trained on the supervised knowledge. In the constraint approach the clustering algorithm itself is modified. The constraint approach is used to bias the search of the clustering algorithm to obtain appropriate clustering of data [14]. Recently researchers has combined the constraint and the distance based approach[35],[6]. The different semi-supervised clustering approaches include Semi-supervised Kernel k-means [20], Semi-supervised Spectral normalized Cuts [17] and Semi-supervised non-negative matrix factorization [6]. The semi-supervised non-negative matrix factorization approach provides a unified framework for semi-supervised co-clustering, and has significant advantages over the other approaches mentioned by Chen.
in [7],[6]. Prior work has been done on semi-supervised clustering and co-clustering of the homogeneous as well as heterogeneous static data, Chen [7] presents a way to incorporate the semi-supervised knowledge in heterogeneous static data that aids the clustering algorithm. The semi-supervised knowledge is provided by placing the must-link and cannot-link constraints on the central data type. The new relational matrix is derived by iterative distance metric learning and modality selection.

2.2 Evolutionary Co-clustering

Co-clustering on evolutionary data has been a relative new topic. Earlier work was related to clustering of evolving data. To capture the changes of the evolving data we need to consider the evolving nature of the data and the noise coming at each time step. The algorithm that performs the clustering on the evolving data should co-relate the current clusters with the previous clusters and suppress the noise in the data at each time step. Evolutionary clustering approach is different from incremental clustering [24],[26]. It is not only incrementing the cluster centroids but also capturing the previous clustering results with the new ones. In the very first work done on clustering of evolving data by Chakrabarti [5] where Chakrabarti propose the solution to the evolutionary hierarchical and the K-means clustering algorithms. Later on Chi [8] built upon the work of Chakrabarti and introduced a temporal smoothness in the evolutionary clustering algorithms to improve the clustering quality. There are two parameters associated with the clustering cost which consists of snapshot quality which tells how well the cluster is defined denoted by \(f_{sq} \) and the historic cost denoted by \(f_{hc} \) which tells us the historic association of the current clusters with the previous time step. The temporal smoothness introduced by Chi.[8] consists of two new frameworks. The first one is preserving cluster quality (PCQ). The second is the preserving the cluster membership (PCM) which measures the current cluster quality and difference between the current clusters and the previous clusters respectively. Later on Nathan Green [23] use the evolutionary clustering approach to perform evolutionary co-clustering using
the Singular Value Decomposition and introduces two approaches. The two approaches are evolutionary co-clustering with respect to current (RTC) and with respect to history (RTH). The total cost for co-clustering the evolving data with only one type is the sum of snapshot quality and the historic cost as

$$J_{cost} = -\alpha f_{sq} + (1 - \alpha) f_{hc}$$ \hspace{1cm} (2.1)

In the equation 2.1 α is the factor such that $0 \leq \alpha \leq 1$

2.3 Heterogeneous Co-clustering using non-negative matrix factorization

The technique that performs simultaneous co-clustering of multi-type data that is mostly present in the real word applications is known as heterogeneous co-clustering. There are different algorithms that have been proposed for co-clustering of high dimensional data. The use of co-clustering of heterogeneous data for image retrieval, bioinformatics and text mining has attracted the attention of researchers. Co-clustering approaches are information theory based models, probability-based models and graph theoretic approach based models. The probability based model proposed the Problistic Latent Semantic Analysis (PLSA) model[13] for co-occurrence of data which is used in collaborative information filtering. It uses the Singular Value Decomposition(SVD) method to obtain the pairwise co-clustering of the data objects which are projected into low dimensional space. The PLSA was further advanced into more comprehensive generative model known as Latent Dirichelt Allocation. Different pairwise co-clustering techniques such as Mixed Membership Block Model[1], infinite Relational Model[18] and Bayesian co-clustering were introduced [30]. A High dimensional co-clustering framework such as a mixed membership Relational Clustering model in Expectation Minimization [22] is used to get the parametric soft clustering results. In the information theory based models Dhillon [20] presented a pairwise co-clustering algorithm to maximize information between the clustered random
variables by placing the constraint on the number of row and column clusters. A generalized framework based on the information theory approach was proposed by Gao [11] where Bregman divergence is the objective function to obtain the co-clustering. One of the recent approaches proposed by Bekkerman and Jeon proposed the Combinatorial Markov Random Field (CMRF)[3] algorithm for high order co-clustering. Gao proposes a graph partitioning solution to solve the higher order co-clustering where the central data type connects to other data types forming a star structure schema. It is also called the fusion of multiple pairwise co-clustering sub-problem with the constraint of the star structure [6]. The star structure schema provides better abstraction for most of the real world data mining problems. The star structure is represented by connecting the different data types such as Y_1, Y_2, Y_3, Y_4, Y_5 to the central Data type Y_c. The semi-supervised non-negative matrix factorization is used because it models data with different distributions and can perform hard and soft clustering. The non-negative matrix factorization approach provides better clustering accuracy as compared with other methods [6][7].

2.4 Low Rank Matrix Approximation

The real world graph application problems are large but sparse in nature. One of the effective ways to store the large graphs is using the sparse matrix representation. Sparse matrix representation stores only the non-zero entries so that the space complexity is reduced to $O(V)$ from $O(V^2)$. The rate of the incoming data is increasing, to handle this efficiently the input data stream needs to be processed efficiently without recomputing from scratch as well as without the need of holding a huge amount of data in the memory. Holding such massive datasets in the memory and performing computations not only consumes a great deal of time, but also requires huge computation power. The graphs are represented in the form of a two dimensional matrices. To address this problem we use the Matrix Approximation method. The Matrix Approximation method reduces the size of the original input...
data matrix. The reduced or compact representation is also known as sparse matrix representation. The compact representation can be stored in the memory and used for further analysis. Social networks, computer networks, biological networks and the World Wide Web are represented as a graph. The real world graphs have millions of nodes and edges connecting them. Also the real world graphs are sparse in nature. Graph problems are represented in the form of an adjacency matrix such that the value corresponding indicates the presence of the edge between the vertices and the value represents the weight. A novel idea of low rank approximation was proposed by Tong at the KDD’08 conference [33]. The algorithm is efficient in terms of time and space complexity while computing the low rank approximation matrix. This method is known as the Colibri and family of Colibri methods like the Colibri – S and Colibri – D are presented in the paper by Tong [33]. Singular Value Decomposition [4] techniques fails to preserve the sparseness of the graph after performing low rank approximation. The Colibri method preserves the sparseness with optimum time and space requirement. The author provides solutions to the two major research problems. To get the desired approximation accuracy with least computation and space cost and secondly for efficiently tracking the approximation monitoring of the dynamic graphs over different time steps. In the Colibri – S the main idea is while iterating over the sampled columns during the construction subspace, the linearly dependent columns are eliminated. The SVD uses all the points in the subspace reconstruction where as CUR uses few points or a subset of the available points but most of the values are duplicated in the subspace reconstruction. Compact Matrix Decomposition(CMD)[10],[31] removes these duplicates from the CUR in the subspace reconstruction. The number of points used by Colibri in the space reconstruction is using the least number of points with the removal of linearly dependent columns and there are no duplicates in it. Later on the CMD approach was put forth which is computationally less intense and space requirement is smaller than the Singular Value Decomposition approach. The recent approach which holds to be more efficient is the Colibri for low rank approximation. The three steps in the Colibri – S are
1. Sampling the \(c \) columns of Matrix D exactly the same way as done in CUR.

2. Selecting the linearly independent columns and building a Matrix C also known as the core.

3. Iteratively checking if a new column in D is linearly dependent on the current columns.
 If yes we skip the column’s of D. Otherwise it appends D and updates the core Matrix C.

The Colibri − D is the extension of Colibri − S. We could have called Colibri − S at every time step \(t \) to compute the core Matrix C. But computing the core matrix C from scratch at each time step is an expensive task. Considering that the changes in the graph between two consecutive time steps are not very dramatic from each other represented by the core Matrix \(C_t \) and \(C_{t-1} \). The goal is to leverage the core Matrix \(C_t \) quickly to get \(C_{t-1} \).
3. SSHECC

This chapter explains the semi-supervised heterogeneous evolutionary co-clustering algorithm where the semi-supervised knowledge is incorporated into the evolving relational data and co-clustering is performed using the non-negative matrix factorization

3.1 Notation used in the SSHECC

In the semi-supervised co-clustering of heterogeneous evolving data algorithm, the user provided constraints in the form of must-link and cannot-link are embedded in the current relational data matrix which evolves at each time step. The semi-supervised approach incorporates the knowledge which aids the clustering algorithms to provide better co-clustering of data. Dynamic Colibri technique is used to perform Low rank matrix approximation which will provide the sparse representation of the original data matrix. The co-clustering is obtained using the non-negative matrix factorization technique on the sparse data matrix.

Figure 3.1 represents the star schema of heterogeneous evolving data at time step t and $t + 1$ are shown with the must-link and cannot-link constraints. At time step t cut 1 is preferred and at time step $t + 1$ the data has evolved and according to the evolutionary algorithm cut 1 must be preferred but, we are providing the domain knowledge to our clustering algorithm using the must-link and cannot-link constraints. So the cut 2 will be preferred over cut 1 at time step $t + 1$. Semi-supervised knowledge is provided using the constraints of must-link and cannot-link on the central data which further enhances the clustering accuracy. At the same time, we will be dealing with the data which is evolving at each time steps. At each time step t a snapshot of the data is captured and fed as the input to the algorithm and the evolving cluster results are the exact representations of the current data.
Figure 3.1: Semi-supervised co-clustering of heterogeneous star structure relational evolving data at time step t and $t + 1$

and the evolving change is captured at every time step. The algorithm is able to capture and incorporate the changes and at the same time it eliminates the noisy data and prevents drifting of clusters. Only the single sided constraints are used and the constraints are placed on the central data type. We perform the low rank approximation of the original matrix before implementing the non-negative matrix factorization which gives co-clustering results. We are using the Dynamic Colibri approach to perform low rank approximation on the input data matrix because the accuracy, time and space complexity of the Dynamic Colibri outperforms the other approaches [33]. The sparse representation is the approximate representation of the original data matrix without the loss of information. As low rank approximation compresses the input data matrix into a sparse representation maintaining the originality, this representation is effective in terms of robustness to noise, feature selection and provides higher clustering accuracy. Keeping track of low rank approximation error at each time step will help to analyze the modifications of the underlying structure of data or the nature of the evolving relationship. The sparse representation provides reduced computation effort when performing co-clustering. The low rank approximation technique will be beneficial when dealing with huge datasets.
Table 3.1: Symbol Definition used in SSHECC

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>l</td>
<td>The number of feature modalities</td>
</tr>
<tr>
<td>m</td>
<td>The central data type</td>
</tr>
<tr>
<td>r</td>
<td>Number of instances</td>
</tr>
<tr>
<td>f</td>
<td>Number of features</td>
</tr>
<tr>
<td>B_{ml}^{mt}</td>
<td>The relational matrix of central type and l^{th} feature modality at current time step</td>
</tr>
<tr>
<td>B_{l-1}^{mt}</td>
<td>The relational matrix of central type and l^{th} feature modality at previous time step</td>
</tr>
<tr>
<td>t</td>
<td>Current time step</td>
</tr>
<tr>
<td>$t-1$</td>
<td>Previous time step</td>
</tr>
<tr>
<td>T</td>
<td>Must-link constraints</td>
</tr>
<tr>
<td>A</td>
<td>Cannot-link constraints</td>
</tr>
<tr>
<td>\tilde{B}_t</td>
<td>Modified relational Low rank approximation matrix after incorporating the SS learning at current time step</td>
</tr>
<tr>
<td>\hat{B}_t</td>
<td>Modified relational matrix after incorporating the SS learning at current time step</td>
</tr>
<tr>
<td>α and β</td>
<td>Parameters for tuning the algorithm</td>
</tr>
<tr>
<td>mf</td>
<td>Modality importance factor</td>
</tr>
<tr>
<td>P</td>
<td>Cluster indicator matrices</td>
</tr>
<tr>
<td>Q</td>
<td>Cluster membership indicator matrices</td>
</tr>
</tbody>
</table>

3.2 SSHECC Algorithm Description

In the heterogeneous relational data environment we have m data types where $m > 1$. Each dataset has r instances and f features. Each data type is represented as $Y^1_t = \{y_{11}, y_{12},..., y_{1r}\}$, $Y^2_t = \{y_{21}, y_{22},..., y_{2r}\}$, $Y^3_t = \{y_{31}, y_{32},..., y_{3r}\}$ and $Y^m_t = \{y_{m1}, y_{m2},..., y_{mr}\}$. The relationship between instances of Y^m_t and Y^j_t is measured using the association matrix $O_{t}^{mj} \in R_{t}^{(n_r \times n_f)}$ where the rows and columns index the instances of the two types. An entry lt signifies the relation between instances y_{ml} and y_{jt} of types Y^m_t and Y^j_t respectively. The data is analyzed at different time steps denoted by the index t, represented as B_{t}^{mj}. In the evolutionary settings there are certain situations where the number of instances or features might differ than the previous time step data matrix. In order to make them equal, we have four different cases that handle these changes and provide consistent input data matrix.

1. The number of instances in the current time step t is greater than the previous time step $t-1$.

2. The number of instances in the current time step t is less than the previous time step $t - 1$

3. The number of features in the current time step t is greater than the previous time step $t - 1$

4. The number of features in the current time step t is less than the previous time step $t - 1$

In the first case where the number of instances in the current time step t is greater than the previous time step $t - 1$ we take the mean of the features and append them to previous time step to make the number of instances equal. If we use the deletion approach to make the number of instances similar in the input matrix we are unable to capture the change as well as appending some random value instances will shift the clusters drastically and cluster drift is observed. In the second case where the number of instances in the current time step t is less than the previous time step $t - 1$ we use Colibri to identify the instances that needs to be removed from the $t - 1$ step so as to make the number of instances equal. In the third scenario if new features are added to the dataset at t time step then to make the number of features equal in the previous time step data $t - 1$ and current time step t we take the mean of the instance of the dataset at $t - 1$ time step and append it to the dataset at $t - 1$ time step. If we use the deletion approach to make the number of features equal then we might not be able to capture the evolving change in the data over a period of time and the clusters will not be the true representation of the data. In the fourth scenario if the number of features in the current time step data t is less than the previous time step data $t - 1$ we use the Colibri to identify the features that needs to be deleted from the $t - 1$ dataset. In the evolutionary environment we can provide more emphasis to the current time step data or the previous time step data by changing the value of α in the cost function.

The semi-supervised knowledge is incorporated using the pairwise constraints derived from the given labels on the central data type where the must-link constraints represented by $T_t=\{(y_{mp}, y_{mq})\}$ and cannot-link constraints represent by $A_t=\{(y_{mp}, y_{mq})\}$, where (y_{mp}, y_{mq})
$y_{mq} \in T_t$ implies that y_{mp} and y_{mq} are belonging to same cluster for the current time step t, while $(y_{mp}, y_{mq}) \in A_t$ implies that y_m and y_j are not belonging to the same cluster in the current time step t. The new association matrix \tilde{B}^{mj}_t between Y^m_t and Y^j_t is obtained by the distance learning matrix L^{mj}_t for each association matrix O^{mj}_t. Through the distance metric learning and feature selection prior knowledge is integrated into co-clustering for the current time step t making the must-link data points as close as possible and cannot-link data points as far as possible.

$$d(y_{mp}, y_{mq}) = \sqrt{(y_{mp} - y_{mq})^T L^{mj}_t (y_{mp} - y_{mq})} \quad (3.1)$$

The optimization of L^{mj}_t is equivalent to the generalized semi-supervised linear discriminate analysis and is solved iteratively [7]. We compute new association matrices \tilde{B}^{mj}_t based on the learned distance metrics L^{mj}_t as shown in the algorithm in section 3.3 Low rank approximation is performed to obtain the sparse representation \hat{B}^{mj}_t. Finally, clustering of heterogeneous relational evolving data with the incorporated supervision is achieved by factorizing matrices \hat{B}^{mj}_t. Matrix P_t consists of the centroid and matrix Q_t contains the cluster membership indicator, the value indicates the object association with cluster at time step t. Computing the snapshot quality from equation 3.2, the historic cost is computed using 3.3 The final cost of the cut given by the equation 3.4

$$f_{sq} = - \sum_{1 \leq i \leq j \leq m} \| \hat{B}^{mj}_t - P^m_t Q^{mj}_t P^{(j)T}_t \|_F^2 \quad (3.2)$$

$$f_{hc} = \sum_{1 \leq i \leq j \leq m} \| \hat{B}^{mj}_{t-1} - P^m_{t-1} Q^{mj}_{t-1} P^{(j)T}_{t-1} \|_F^2 \quad (3.3)$$

$$J_{cost} = -\alpha.f_{sq} + (1 - \alpha).f_{hc} \quad (3.4)$$

The final cost of the cut given by the equation 3.4 and the cut is selected to perform co-clustering of data at time step t in the heterogeneous environment. In the SSHECC algorithm we provide the semi-supervised knowledge and obtain the new relational matrix.
for every time step t. Later on the number of instances in the current time step data and the previous time step data are verified and then we compute the sparse matrix using the low rank approximation. Finally we perform co-clustering on the heterogenous data using the Non-negative matrix factorization.

As the data is evolving with time the number of clusters might change. Determining the number of clusters in the evolving data is a challenging task[25]. To address this problem we are using four different techniques to determine the number of clusters in the data. The four different techniques are Krzanowski-Lai [19], Davies-Bouldin index[21], Silhouettes [28] and Calinski-Harabasz index [32],[12]. The number of clusters is determined from $\hat{B}_i^{(mi)}$ as mentioned in the SSHECC algorithm in section 3.3
3.3 SSHECC Algorithm

Algorithm 1 Semi-supervised Heterogeneous Evolutionary Co-clustering

Require: A relational matrix $B^{(ml)}_t \in B_{n \times m}^{n \times m}$ for $t = \{1, 2, ..., S\}$

Ensure: $P_t^{(ml)} \in \widetilde{B}_{n \times m}^{n \times k_m}$ (row cluster indicator matrix) and $P_t^{(ll)} \in \widetilde{B}_{k_l \times n_l}^{k_l \times n_l}$ (column cluster indicator matrix) and $Q_t^{(ml)} \in \widetilde{B}_{k_m \times k_l}^{k_m \times k_l}$ (block value matrix)

1: for $t = 2, S$ do
2: \(\tilde{D}_t \) is the target distance vector consisting of constraints T_t and A_t,
3: \[\text{if}\ (y_{mp}, y_{mq}) \in T_t \text{ then} \]
4: \[\tilde{d}_{mp,mq} = 0 \]
5: \[\text{end if} \]
6: \[\text{if}\ (y_{mp}, y_{mq}) \in A_t \text{ then} \]
7: \[\tilde{d}_{mp,mq} = 1 \]
8: \[\text{end if} \]
9: Initial distance metric L_t^{ml} is obtained by SS-LDA with constraints T_t and A_t
10: Set the number of iterations $t=0$
11: \[\widehat{B}_t^{(ml)} = \sqrt{L_t^{ml}B_t^{(ml)}} \]
12: Distance vector with only data points having constraints $D_t^{(ml)}$
13: \[mf_{opt} = \arg\min_{\alpha} \| \tilde{D}_t - \sum_{t=1}^{S} \alpha^{(ml)D^{(ml)t}} \|_2^2 \]
14: Let $B_t^{(ml)} = \alpha^{(ml)\widehat{B}_t^{(ml)}}$ and learn the new distance metric $L_t^{(ml)}$ by SS-LDA with constraints T_t and A_t
15: \[\text{if}\ a_{c+1} - a_c > \varepsilon \text{ then} \]
16: \[c = c + 1 \]
17: \[\text{repeat above steps} \]
18: \[\text{else} \]
19: \[\widehat{B}_t^{(ml)} = B_t^{(ml)} \]
20: \[Exit() \]
21: \[\text{end if} \]
22: end for
if 11:
 end if
12:
for 17:
16:
end if
15:
end for
14:
18:
Use intermediate results from the Colibri method to get unique and independent subspace from \hat{B}_{t-1} equivalent to length of \hat{B}_t
19:

Estimate number of clusters in \hat{B}_t
20:

Obtain the clustering using the following rules by applying recursive on \hat{B}_t
21:

Subject to the constraints $\forall_{ab}: P^{(m)}_{S_{ab}} \succeq 0$ and $P^{(i)}_{S_{ab}} \succeq 0$, where $\| \cdot \|$ denote Frobenius matrix norm, $P^{(m)}_S \in \mathbb{B}^{n \times k}, Q^{(mi)}_S \in \mathbb{B}^{k \times l}, P^{(i)}_S \in \mathbb{B}^{l \times m}, k \ll n$ and $l \ll m$.

\[
P^{(m)}_{(S)(ab)} \leftarrow P^{(m)}_{(S)(ab)} \frac{\sum_{i=1}^l \left(\sum_{t=1}^S \alpha (1 - \alpha)^{S-t} \cdot \hat{B}_t^{(mi)} \right) P^{(i)^T}_S Q^{(mi)^T}_S \right)_{ab}}{\sum_{i=1}^l \left(P^{(m)}_S Q^{(mi)}_S P^{(i)^T}_S Q^{(mi)^T}_S \right)_{ab}} \quad (3.5)
\]

\[
P^{(i)}_{(S)(ab)} \leftarrow P^{(i)}_{(S)(ab)} \frac{\left(Q^{(mi)}_S P^{(i)}_S \left(\sum_{t=1}^S \alpha (1 - \alpha)^{S-t} \cdot \hat{B}_t^{(mi)} \right) \right)_{ab}}{\sum_{i=1}^l \left(Q^{(mi)}_S P^{(i)}_S Q^{(mi)}_S P^{(i)}_S \right)_{ab}} \quad (3.6)
\]

\[
Q^{(mi)}_{(S)(ab)} \leftarrow Q^{(mi)}_{(S)(ab)} \frac{\left(P^{(m)}_S \left(\sum_{t=1}^S \alpha (1 - \alpha)^{S-t} \cdot \hat{B}_t^{(mi)} \right) P^{(i)^T}_S \right)_{ab}}{\sum_{i=1}^l \left(P^{(m)}_S Q^{(mi)}_S P^{(i)^T}_S Q^{(mi)^T}_S \right)_{ab}} \quad (3.7)
\]
4. Experiments

This chapter explains the data pre-processing steps performed on the datasets used in experimentation and the different experiments performed to validate the proposed SSHECC algorithm described in the previous section. We have used publicly available datasets and a synthetic dataset to validate the SSHECC Algorithm. The real datasets consist of the web service community dataset[29],[36] and the image dataset[6],[27]. The synthetic dataset is generated using the Bernoulli processes [7]. All the datasets have been preprocessed, cleaned and evolved so that we have the data in the required format forming a star structure and multiple time steps.

4.1 Dataset preparation

4.1.1 Image Dataset

An image data set is created for the experimentation, consisting of 4700 images which are selected from 47 categories of images where each category consists of 100 images. The images belong to animal, automobiles, hairstyles, waterfalls, landscape, etc. We are extracting the 45 color features, 42 texture features from the images as well as incorporating the user feedback in the form of log features. The color features includes color channels and the texture feature includes Gabor wavelength based texture, edge detection histogram and edge direction coherence vector. The image – log relational matrix is generated depending on the number of image categories selected, the number of images selected per category and number of logs for each category. For each category of image randomly few of the images are selected and marked 1. Multiple logs for each category of images are created. The number of logs for each category is less than the number of images selected
in each category. Based on the extracted visual features we build three rational matrices. The image – color, image – texture and the image – log which simulated the heterogeneous environment for the experiments. Each element in the matrices is normalized into the range of [0, 1]. Semi-supervised knowledge is provided and co-clustering is then performed on the images, color features, texture features and log features simultaneously. The image dataset simulates the heterogeneous data environment as shown in figure 4.1. Where image is the central data type and is connected by the color features, texture features and log features forming a heterogeneous star structured schema. We are placing the constraints on the images which is the central data type in the image dataset experiment. Constraints are placed on the current time step data. To simulate the heterogeneous evolved data environment for the experiment purpose. The data is evolved from time step t_0 to t_7, where at every time step the instances or features are evolved such as some number of instances are shifted from one cluster to another, some of new instances are added, some instances are removed.

4.1.2 Web service Dataset

The WSDL document that contains the web service information which is used to extract the terms, services and operations that the web service is composed of. Different techniques like tokenization, portering and stemming are used to extract the required information to create the web service dataset. As shown in figure 4.1 a. the web services dataset consists of two relational matrices one is terms – operations and the second is terms – services. The terms – operations matrix consists of 384 terms and 72 operations. In the terms – services matrix we have 384 terms and 97 services. Terms is the central data type in this dataset. Semi-supervised knowledge is incorporated for co-clustering by placing the constraints on the central type which is terms in this case. The number of row clusters and column clusters is five. Terms belong to various categories like communication, education, food, medical and travel. This simulates the tri-type of data where terms from the central type are connected by services and operations.
Figure 4.1: (a). Web service and (b). Image datasets forming a star structure schema where, (a). The terms forms the central type and is connected to service and operations. (b). The image forms central type and is connected to texture feature, Gabor feature and user logs.

4.1.3 Synthetic Dataset

The synthetic data is generated using the Bernoulli processes. Two different types of synthetic datasets were generated from the same process where the numbers of instances, features, number of row clusters and column cluster were changed. In the first set of synthetic datasets, the central type is connected to three other types of data. The dimensions of the first relation R_{11} has 400 instances and 200 features. The relation R_{12} is having 400 instances and 100 features. The last relation R_{13} is having 400 instances and 60 features. There are 3 row clusters and 2 column clusters in R_{11}, R_{12} and R_{13}. The data is evolved from time step t_0 to t_7. Such that at each time step either the instances are evolved or features are evolved. The evolving step consists of change of instances or features, addition of
new features or instances, or deletion of instances or features. In the second set of synthetic dataset, the central type is connected to three other types of data the dimensions of the first relation R_{11} has 1000 instances and 200 features. The relation R_{12} is having 1000 instances and 100 features. The last relation R_{13} is having 1000 instances and 60 features. There are 5 row clusters and 2 column clusters in R_{11}, R_{12} and R_{13}.

The data is evolved in both the dataset from time step t_0 to t_7 such that at each time step either the instances are evolved or features are evolved. The evolving step consists of change of instances or features, addition of new features or instances, or deletion of instances or features.

4.2 Experiments

The SSHECC algorithm’s accuracy is validated using the multiple set of experiments performed on the two real datasets and a synthetic dataset. Real world datasets are selected from different fields such as the web services dataset[29] and image dataset [27]. The synthetic data set is generated using the Bernoulli process [7] as mentioned in the data preprocessing steps.

The accuracy is measured in terms of micro-accuracy [7]. The co-clustering accuracy is measured on all the datasets by varying the number of must-link and cannot-link constraints on the central data. The co-clustering accuracy is measured by changing the α parameters and changing the percentages of instances and features that are evolved from time step t_0 to t_7, and by varying the constraints percentage at every time step.

Figure 4.2 shows how the algorithm detects the number of clusters in the underlying data. The data is evolved at each time step. As mentioned earlier we are using four different techniques to calculate the number of clusters and then the mode is taken, so that we get the most accurate number of clusters present in the data.

Figure 4.3 is the plot of co-clustering accuracy of SSHECC on the evolving data for each time step t_0 to t_7 vs accuracy on web services dataset with varying the percentage of
Figure 4.2: Detecting the number of clusters in the current time step data \(t \) using Krzanowski-Lai, Davies-Bouldin index, Silhouettes and Calinski-Harabasz index techniques.

Constraints. The value of \(\alpha \) is 0.8 and at current time step is \(t_0 \). At time step \(t_1 \), 10 percent of the instances are shifted from one cluster to another. In the next time step \(t_2 \), 10 percent of the instances are added to a cluster, at time step \(t_3 \), 5 percent of the instances are removed. We can see the co-clustering accuracy is reduced at this time step. But at the next time step i.e. \(t_4 \), 10 percent of features are shifted from one cluster to another the algorithms ability to perform consistent co-clustering even as the data evolves can be observed. Also as the percentage of the constraints is increased the co-clustering accuracy is improved as we can see the accuracy for 0, 1, 2, 3 and 4 percent constraints. The constraints are placed
Figure 4.3: Semi-supervised co-clustering accuracy is measured by placing 0, 1, 2 and 4 percent constraint on evolving web service dataset from time step t_0 to t_7 where the numbers of instances features are shifted, added or removed from clusters.

on the current data at every time step. As we can see the overall accuracy improves when constraints are placed. The lowest accuracy is when we perform co-clustering without any semi-supervised knowledge. i.e. 0 percent constraint.

Figure 4.4 shows the co-clustering accuracy of the SSHECC on the evolving web service data where the value of α is set to 0.9, 0.5 and 0.2 to measure if the value of α impacts accuracy. When the value of α is 0.9 it means more value is given to the current time step data while performing clustering with respect to historic data. The value of $\alpha = 0.2$ means more importance is given to the historic data while clustering the current time step data and the current time step data will be clustered according to the historic clusters. The value of $\alpha = 0.5$ means equal weights are assigned to the current time step data and the historic time step data to obtain the cluster.

Figure 4.5 shows that only 1 percent constraint were placed on the evolving web service data and the values of α was same the only change was in the percentage of the instances
Figure 4.4: Measuring the semi-supervised co-clustering accuracy by varying the value of α while keeping the constraint percentage constant on the web service dataset.

that are evolved. In the first set of evolved data only 5 percent of the instances were evolved at each time step t and in the second set the data was evolved by 10 percent at each time step t. As we see the co-clustering accuracy is almost similar in both the runs. This implies that the algorithm performs well and provides consistent results and is capable of handling the changes in the evolving data, even when new instances or features are added or removed or shifted from one cluster to another. This experiment models the real world scenario where the data is evolving and the percentage of instances that are added or removed or shifted can change.

Figure 4.6 shows the co-clustering snapshot of the image and the log feature data at time step t where we have 450 instances clustered into 5 different clusters represented on the Y-axis and 60 logs per image category so the total number of features is 300 represented by the X-axis. We are generating the constraints on the instances of central type i.e. images in this case to embed the semi-supervised knowledge. The semi-supervised knowledge is represented by the green lines and red lines. The green lines indicate the
must-link (together) constraint. Such that instances belonging to the same cluster are together and the red lines indicate the instances belonging to the different clusters should not be together thereby maximizing the distance between those two data points. As we can see the instances within the cluster C1, C3 and C5 are together whereas the instance in C1 and instance in C2, C2 and C3, C4 and C5 are having cannot link (apart) constraint since they do not belong to the same cluster.

Figure 4.7 shows the co-clustering accuracy of the SSHECC algorithm on the image data which is evolved from time t_0 to t_7 with constant constraint percentage at every run. The image dataset consists of images belonging to 47 categories and each category is having 100 images. Multiple numbers of experiments are performed by varying the number of images selected from each category. We are randomly selecting 5 categories of images and 90 images in each category, the value of α is set to 0.8. The percentages of evolved instance and feature is kept between 5 and 15 percent. This experiment was run multiple times by
randomly selecting different image categories and the rest of the parameters we kept the same to observe that the co-clustering accuracy is not impacted by different categories of images. The observed results were consistent. From the above figure it is clear that the co-clustering accuracy increases when the percentage of the constraints increases. This validates our assumptions that SSHECC performs well when the percentage of constraints is increased on the images. SSHECC performs co-clustering efficiently on different image categories and accuracy is consistent and independent of the image categories.

In figure 4.8 only the instances are evolved in a random fashion on the web service dataset and constraints percentage is kept constant for each time step. The co-clustering
Figure 4.7: Semi-supervised co-clustering accuracy is measured by placing 0, 1 and 2 percent constraint on the evolving image dataset from time step t_0 to t_7 where the numbers of instances features are shifted, added or removed from clusters.

accuracy vs the time step t is plotted as we can see even if the new instances are added, deleted or shifted from one cluster to another to another the SSHECC algorithm performs efficient co-clustering as measured by the co-clustering accuracy. This implies that the SSHECC is capable of efficiently handling the evolving changes and performing consistently. This environment simulates that random events happen in the real world situation where features remain constant and only the instances changes.

Figure 4.9 represents the co-clustering accuracy on evolving synthetic dataset. The SSHECC algorithm was run for different percentage of constraints and accuracy is measured. The value of α is set to 0.8 and the SSHECC is executed for different percentage of constraints. The evolving percentage of instances is set between 10 to 15. The new constraints are generated for every time step. In figure 4.9 at time t_1 12 percent of the instances are added. At time step t_2 10 percent of the instances are shifted. At time step t_3 5 percent
of the instances are removed. Similarly at time step t_4, t_5, t_6 and t_7 7 percent of features are shifted, 4 percent features are removed and 10 percent features are removed respectively.

After conducting multiple experiments on web service, image and synthetic datasets we observed that as the semi-supervised knowledge is provided to the co-clustering algorithm on the evolving data, the co-clustering accuracy increases for all the datasets. However the percent increase in the co-clustering accuracy as the percentage of constraints increases is different for all the datasets as well as how the data is evolved. The SSHECC algorithm can handle changes in the evolving data and perform consistently. Also the SSHECC can handle random evolving of the data. This validates our assumption that SSHECC algorithm performs co-clustering efficiently and can be used in solving the real world problems where the percentage of the labeled instances is small, also the co-clustering accuracy increases as the semi-supervised knowledge is provided.
Figure 4.9: Semi-supervised co-clustering accuracy is measured by placing 0, 1, 3 and 5 percent constraint on the evolving synthetic dataset from time step t_0 to t_7 where the numbers of instances features are shifted, added or removed from clusters.

5. Conclusion

I have presented a novel algorithm to perform semi-supervised co-clustering of heterogeneous evolving data (SSHECC). The semi-supervised knowledge is incorporated in the evolving data by placing the must-link and cannot-link constraints on the central data type of the current time step data. The new relational matrix is then reduced into a sparse representation using the Colibri approach and finally co-clustering is performed using the non-negative matrix factorization technique. The experimental results in the previous section on the real datasets as well as synthetic dataset have shown increased co-clustering accuracy as the percentage of semi-supervised knowledge is increased. Further research of incorporating the semi-supervised knowledge using different techniques as well as a new heuristics in order to select the instances on which the must-link and cannot-link constraints to be applied will be an excellent topic for research.
6. Acknowledgments

Thanks to Professor Rege for mentoring me during my Masters and also providing me the knowledge of Data Mining as well as guiding me through the thesis. Thanks to the staff members of the computer science department at Rochester Institute of Technology, all the committee members for serving on my committee. Thanks to Amit Salunke for helping me in pre-processing image dataset. Thanks to Hanghang Tong, Spiros Papadimitriou, Jimeng Sun, Philip Yu and Christos Faloutsos for making Colibri [33], implementation as well as to Yanhua Chen, Lijun Wang and Ming Dong for making semi-supervised distance learning [7] implementation available for our research work.
Bibliography

[34] Lijun Wang, Manjeet Rege, Ming Dong, and Yongsheng Ding. Low-rank kernel matrix factorization for large scale evolutionary clustering. *IEEE Transactions on Knowledge and Data Engineering*, 99(PrePrints), 2010.
