
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

5-1-1995

The Design, construction, and implementation of an engineering The Design, construction, and implementation of an engineering

software command processor and macro compiler software command processor and macro compiler

Jesse Coleman

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Coleman, Jesse, "The Design, construction, and implementation of an engineering software command
processor and macro compiler" (1995). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F4468&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/4468?utm_source=repository.rit.edu%2Ftheses%2F4468&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

THE DESIGN, CONSTRUCTION, AND
IMPLEMENTATION OF AN ENGINEERING

SOFTWARE COMMAND PROCESSOR AND
MACRO COMPILER

by

Jesse J. Coleman

A Thesis Submitted
in

Partial Fulfillment
of the

Requirements for the

MASTER OF SCIENCE
in

Mechanical Engineering

Approved by: Professor [Names Illegible]
Thesis Advisor

Professor _

Professor _

professor_-;;_--,-------;-;-;---;-__
Department Head

DEPARTMENT OF MECHANICAL ENGINEERING
COLLEGE OF ENGINEERING

ROCHESTER INSTITUTE OF TECHNOLOGY

MAY 1995

Title of thesis THE DESIGN, CONSTRUCTION, AND IMPLEMENTATION OF AN

ENGINEERING SOFTWARE COMMAND PROCESSOR AND MACRO COMPILER

____________________hereby grant permission to the

Wallace Memorial Library of RIT to reproduce my thesis in whole or in part. Any reproduction will

not be for commercial use or profit.

Date S I, I) I C) S-

ABSTRACT

This paper presents the design and construction of a software translator that serves as a

foundation, or central engine, around which an entire engineering software system can be

constructed. To provide the user with a powerful interface to drive an application, a high-level

procedural language similar to FORTRAN or BASIC is integrated into the translator. An

application shell was also written to provide the user with an interactive command line

environment for using the translator. The translator, language, and application shell together

mechanize a programming and command interpreter environment. Users can interactively enter

commands from the keyboard or load and process prewritten macro files from disk. The

language gives users the ability to create variables, arrays, and functions, process complex

mathematical expressions, and develop sophisticated macro programs. The language is quite

capable of solving very complex engineering problems. Several engineering examples are

presented including a solution to a four-bar crank mechanism, adding a material library to an

application, a command line integration solver, a Runge-Kutta routine for solving sets of

differential equations, and a convolution integral routine. The translator is modular, easily

extensible, written entirely in C/C++, and readily portable to different platforms. A set of

diagnostic tools is integrated into the translator to aid the developer in future development work.

Complete theory and design details for all phases of the translator and language are presented.

Performance issues are studied including a comparison against C/C++ and MS-DOS Qbasic.

Exploration in application integration for a simulation package similar to CSMP is investigated. A

complete Language and Compiler Guide is supplied with the program.

TABLE OF CONTENTS

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF SYMBOLS ix

1. INTRODUCTION 1

2. TRANSLATOR THEORY 6

2.1 Overview 6

2.2 Grammars 9

2.2.7 Context-Free Grammars 9

2.2.2 Parse Trees 12

2.3 Syntax Analysis 13

2.3.1 Recursive Descentwith Predictive Parsing 13

2.3.2 Note on LeftRecursion 15

2.4 Semantic Analysis 15

2.5 Syntax-Directed Translation 16

2.6 Lexical Analysis 19

2.7 Static Checking 20

2.8 Intermediate Code Generation 21

2.9 Code Optimization 21

2.10 Code Generation 22

2.11 Interpretation 22

2.12 Threaded Code Interpreter/Compiler 23

2.12.1 Primitives andSecondaries 24

2.12.2Dictionary 25

2.12.3 Stacks andRegisters 26

2.12.4 Outer Interpreter 26

2.12.5 Inner Interpreter 27

3. TRANSLATOR DESIGN 33

3.1 Overview 33

3.2 Lexical Analysis 36

3.2.1 Transliterator 37

3.2.2 Scanner 39

3.3 The Parser 44

3.3.1 SyntaxAnalysis With Embedded SemanticActions 45

3.3.2 Type Checking 48

3.3.3 Intermediate Code Generation 48

3.4 Symbol Table 49

HI

3.4.1 Table Structure 49

3.4.2 Scope andBinding Time 50

3.4.3 RecordFormats 50

3.4.4 Service Routines 55

3.5 Error Module 56

3.5.1 Interface Routines andRecordFormat 56

3.5.2 ErrorManagementRules 57

3.5.3 Example 58

3.5.4 Design Note - Multiple ErrorRegistration 59

3.6 Threaded Interpreter/Compiler 60

3.6.1 Primitives andSecondaries 62

3.6.2 TILKeywordDictionary 69

3.6.3 Stacks andRegisters 70

3.6.4 Outer Interpreter 71

3.6.5 Inner Interpreter 72

3.7 Source Language Specification 73

4. IMPLEMENTATION 82

4.1 Examples Solving Engineering Problems 82

4.1.1 Four-Bar CrankMechanism 82

4.1.2Material Library 86

4.1.3 Integration Solver 89

4.1.4 Fourth-Order Runge-KuttaDEQ Solver. 94

4.1.5 Convolution Integral 102

4.2 Performance Evaluation 107

4.3 Language Extensions 110

4.3.1 User-DefinedExtensions 110

4.3.2 System Extensions 110

4.4 Application Integration 111

4.4.1 SimulationModeler Ill

4.4.2 Finite ElementAnalysis 116

5. RESULTS 119

6. CONCLUSIONS 131

7. REFERENCES 133

APPENDIX A: ZORTECH/SYMANTEC C++ COMPILER 134

APPENDIX B: SOURCE CODE MODULES 135

APPENDIX C: LANGUAGE AND COMPILER GUIDE 136

C1. Introduction 136

C1.1 The CommandProcessor 136

C1.2 Uses andLimitations 737

C2. Program Structure 138

IV

C2.1 Translation Units 138

C2.2 Lifetime 138

C2.3 Scope 138

C2.4 Linkage 138

C3. Language Elements 139

C3.1 Tokens 139

C3.2 Comments 139

C3.3 Keywords 139

C3A Identifiers 139

C3.5 Constants 140

C3.6 Operators 140

C4. Types And Declarations 141

C4.1 Base Types 141

C4.2 UserDefined Types 141

C4.3Declarations 142

C4.4 Initialization 142

C4.5 Storage 142

C5. Variables And Arrays 143

C5.1 Variables 143

C5.2Arrays 143

C6. Assignments, Operators, and Expressions 145

C6.1Assignments 145

C6.2 Operators 145

C6.3 Expressions 146

C6.4 Type Conversion 146

C7. Program Control Flow Statements 147

C7.1 Conditional Statements. 147

C7.2 Iterative Statements 150

C7.3 BREAKStatement 152

C8. Functions 153

C8.1 Definition 153

C8. 2 Parameters, Local Variables andArrays 154

C8.3 RETURNStatement 155

C8.4 Invocation 156

C9. Symbolic Constants 157

C10. Miscellaneous Commands 158

C11. Specialized Command Sets 159

C11.1Mathematical 159

C11.2 Utility. 159

C11.3I/0 160

C11.4 Diagnostic 162

C12. Operations Guide 163

C12.1 System Requirements 163

C12.2 System Configuration 163

C12.3 Running the CommandProcessor 163

C12.4 Interpreting the Symbol Table Listing. 777

C12.5 Customizing the Startup Environment. 773

C13. Example Code 174

C13.1 Four bar crank mechanism 174

C14. Advanced Diagnostics 176

C14.1 Intermediate Language Output 176

C14.2 Threaded Code Generation 177

C14.3BackEnd Threaded Interpreter/Compiler. 179

C14.4 Symbol Table ObjectDestructors 181

C15. Error Messages 182

C15.1 Lexical 182

C15.2 Parser 182

C15.3 Symbol Table 184

C15.4 Compiler 184

C15.5Runtime 185

C15.6 System 785

BIBLIOGRAPHY 186

VI

LIST OF TABLES

Table 2.1 Grammar productions to derive an expression 10

Table 2.2 Grammar productions and syntax-directed definitions 16

Table 2.3 Grammar productions with embedded semantic actions 17

Table 2.4 Step by step action of TIL interpreter 31

Table 3.1 Character classification table 37

Table 3.2 Token classification table 39

Table 3.3 Examples of token classifications 40

Table 3.4 State table 43

Table 3.5 TIL headerless primitives 63

Table 3.6 TIL headerless secondaries 63

Table 3.7 TIL immediate vocabulary primitives 63

Table 3.8 TIL compiler vocabulary primitives 64

Table 3.9 TIL core vocabulary primitives 65

Table 3.10 Terminal set 74

Table 3.11 Nonterminal set 75

Table 4.1 Compilation times for a few selected macro files 107

Table 4.2 Source code for performance test 108

Table 4.3 Test execution times 109

Table 5.1 Language constructs 123

Table 5.2 Operators, precedence, and associativity 123

Table 5.3 Language token set 124

Table 5.1 Compilation times for a few selected macro files 128

Table 5.2 Source code for performance test 129

Table 5.3 Test execution times 129

Table 5.4 Equivalent simulator input decks 130

Vll

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

Figu

LIST OF FIGURES

e 2.1 Typical compiler/interpreter translation phases 8

e 2.2 Parse tree for a simple expression 12

e 2.3 Primitive and secondary code structures 24

e 2.4 TIL dictionary 25

e 2.5 Memory layout of TIL dictionary and machine code routines 29

e 3.1 Actual translator design for this project 35

e 3.2 Lexical analyzer 36

e 3.3 Stream buffer and pointers 38

e 3.4 State diagram to construct an identifier 41

e 3.5 State diagram to construct an unsigned number 42

e 3.6 Parser 44

e 3.7 Threaded code interpreter/compiler 61

e 3.8 Flowchart of basic outer interpreter operation 71

e4.1 Four-bar crank mechanism 82

e4.2 Program to solve four-bar crank mechanism problem 83

e4.3 Graph of four-bar crank mechanism output angles 85

e4.4 Material library program 86

e 4.5 Numerical integration program using the Trapezoidal method 89

e4.6 Hypothetical integration routine using pointers 93

e4.7 Input data file for Runge-Kutta program 95

e4.8 Rocket flight characteristics 96

e4.9 Program to implement 4th-order Runge-Kutta DEQ solver 97

e 4.10 Hypothetical Runge-Kutta solver using pointers 100

e 4.11 Input data file for Convolution Integral program 103

e 4.12 Response of 2nd-order system using the Convolution Integral 104

e4.13 Convolution Integral program 105

e4.14 Atypical CSMP program 112

e 4.15 Viscously damped spring mass system 112

e4.16 Simulator input deck 113

e4.17 Translator as a central engine for an FEA system 116

e 5.1 Basic translator operation 119

e 5.2 Typical command stream 119

e 5.3 Translator design 120

e 5.4 Translator startup screen 125

VIII

LIST OF SYMBOLS

<) grammar nonterminal

e empty set; "null
sequence"

for a nonterminal

() grouping operator

[] optional grammar segment, array operator

{ } repeating grammar segment, set operator

|
"or"

symbol; alternative choice

-> grammar production symbol

0, <|> angle (deg)

Q heat transfer rate (Btu/hr)

T temperature (F), thrust force (Ibf), period (sec)

k thermal conductivity (Btu/hr-ft-F), spring constant (lbf/ft)

A surface area (ft2)

Ax distance (ft)

cp specific heat at constant pressure (Btu/lbm-F)

x, y displacement (ft)

g gravitational acceleration = 32.17 (ft/sec2)

W weight (Ibf)

K aerodynamic drag coefficient (lbrsec2/ft2)

C, damping ratio

co0 natural frequency (rad/sec)

m mass (slug)

c damping coefficient (slug/sec)

h(t) unit impulse response (ft/lbf)

t time (sec)

F, / force (Ibf)

IX

1. INTRODUCTION

Definition, Description, and Background

From practical experience and exposure to many different engineering software systems over

the years, it's apparent that the most successful and versatile systems are the ones that

incorporate a command interpreter and provide the userwith some form of programming

environment. A system of this type gives the end application user the most powerful means to

interface with and drive an application. A typical command interpreter allows the user to interact

with the application by entering commands at the keyboard or loading and processing prewritten

macro files from disk. The inclusion of a high-level procedural language adds a programming

environment that gives the user the ability to create variables, arrays, and functions, process

complex mathematical expressions, and develop sophisticated macro programs. The ability to

create and process macros is the key to a powerful and flexible system that allows a user to

customize an application particular to their needs. Macros provide a powerful mechanism to

support and drive an application:

System configurations can be set or altered.

Frequently used variables and functions can be loaded at startup and be immediately
available to the user.

Libraries of special functions can be created and loaded for use when needed. Libraries can

transform a general purpose system into a specialized computing environment.

Libraries of geometric entities or parts can be stored as macros and loaded when needed.

Entire session files can be processed.

Application processes can be automated.

To provide an application with a command interpreter and programming environment, a

translatormust be designed into the system. Technically, a translator is defined as a mechanism

which takes as input a source language and produces as output either:

1) A generated target language for later execution on a host machine.

2) A generated target language which itself becomes the input source language for further

translation.

3) Interprets during translation and synthesizes actions that are executed by calling appropriate

host machine subroutines.

The process of translation involves analysis and synthesis. A translator must analyze a source

language to determine it's content and structure, interpret the meaning or action intended by the

language, and synthesize either a target language or directly execute host machine subroutines

to perform the intended actions. A translator that generates a machine-oriented target language

is called a compiler, a translator that interprets during translation and synthesizes actions is

called an interpreter.

Translators allow the user to express algorithms and command statements in a high-level

language independent of the host machine's target language. A FORTRAN compiler is good

example of a translator used by engineers and scientists. The source language is tailored

specifically for algorithmic, numerical computations and requires no knowledge of the host

machine language. The familiar DOS command language is another good example where a

translator is used to implement a command interpreter. The source language consists of

commands designed to interface with and drive the DOS operating system. System commands

are entered at the keyboard, interpreted, and executed. The ability to write and process batch

files adds a programming environment that gives the user the capability to customize and drive

the DOS environment.

Translation mechanisms are present in one form or another in most applications. Even systems

that do not have all the capabilities of the more advanced applications still implement some form

of translation. The ability to simply key in a command requires rudimentary lexical, syntactic, and

semantic analysis to be performed. Expression processing increases the complexity of

translation and requires advanced parsing, type checking, implicit casting, and a full set of

mathematical operators. The addition of user defined variables adds symbol table and

management routines for memory allocation, insertion, searching, and deleting of variables.

Language and translation theory even play important roles in areas one might not expect at first.

Solid modelers that implement Constructive Solid Geometry (CSG) systems are based on the

same language and parsing theory used to specify and translate grammars. Parse trees for a

grammar parallel CSG trees for a solid. For instance, the primitives or tokens of a grammar

(technically called terminals) might include FLOAT, LET, +, -; where CSG terminals would

include CYLINDER, BLOCK, SPHERE, n (intersection), u (union), and - (difference). Grammar

statements or sentences (called nonterminals) would include such items as for_statement and

if_statement, while CSG nonterminals would represent intermediate parts that make up the final

solid being constructed. Even the tools learned and used in translation development are

indispensable in application development: linked lists, stacks, trees, etc. Linked lists are quite

often used in applications to build dynamic data structures for objects such as geometric entities

and to group parent/child relationships among objects. Quadtree and octree tree data structures

are used by solid modelers to represent plane and solid geometric objects. FEA modelers imploy
the same tree structures to implement mesh generation.

Whether directly or indirectly, translator theory and design is present in practically every

engineering software application. Therefore, if one seriously endeavors to develop a professional

engineering package; translator and language theory, design, and construction must be

undertaken.

Developing a modern engineering software package is a major undertaking in many respects. To

be competitive in today's market, an application must be designed to give the user as much

flexibility and power as possible to interface with and drive an application. Graphical user

interfaces manage forms, menus, and other widgets to provide a user-friendly environment that

greatly increases ease of use and productivity. Interactive graphics allow the user to easily

visualize, construct, and manipulate entities such as solid geometry, finite elements, boundary

conditions, etc. However, as necessary and useful as these interfaces are, they do not afford the

user the flexibility and power required to customize, extend, and drive the application. To

accomplish this, an engineering software package must incorporate a translator to provide the

application with a command interpreter and programming environment.

A superior system design includes a translator that provides:

1) An interactive command interpreter environment.

2) An application command set that gives the user access to all of the system routines and

databases.

3) A high-level procedural language to support programming.

Many reasons lead to both the need for a translator and its construction first in the overall design

of an application. From a user's point of view, a truly professional package should offer the

following:

Interactive command line input from the keyboard.

The ability to process mathematical expressions.

The ability to create variables and use them in expressions or as command arguments.

The ability to write functions or macros to do calculations and drive application processes.

A comprehensive application command set with access to system routines and databases.

A high-level procedural language for programming.

From a developer's point of view, a translator offers the following advantages:

No single system can be designed to meet all the requirements of every user. A

programming and command interpreter environment gives the user as much flexibility as

possible to customize and drive an application to meet their specific needs.

A translator provides a solid foundation, or central engine, around which an entire application

can be constructed.

A system designed around a translator is easily extensible for future development.

- A programming and command interpreter environment is necessary to be competitive with

the current state of the art in software packages.

Many successful systems that implement translators are in use today. The familiar PATRAN pre

and post processor is a good example of a finite element system that includes a translator with a

high-level procedural language and extensive application command set. The user can write

functions or macros in PCL (Patran Command Language) and compile them into the system.

These macros can then be used to construct geometry, generate meshes, model complex spatial

and temporal fields, etc.

The CSMP (Continuous System Modeling Program) simulation program developed by IBM is a

problem-oriented programming language that includes the FORTRAN language and a command

set tailored towards solving ordinary differential equations and block diagram simulations. In

actuality, CSMP is a translator that takes as input CSMP statements and produces as output a

FORTRAN source language subroutine. This subroutine is then compiled with an integration

routine using a standard FORTRAN compiler and executed.

The Hewlett-Packard ME10/30 Mechanical Engineering CAD Systems integrate a translator to

provide a programming and command interpreter environment. This system incorporates a high-

level procedural language and an extensive application command set that includes system

commands to generate menus, control graphic viewports, interface to digital tablets, etc. As a

matter of interest, it was this very system that was the main inspiration for this project.

Other examples include Unigraphics, AutoCAD, ACSL, ProENGINEER, NISA, Aries, etc.

Purpose

This paper presents the design and construction of a translator, language, and application shell

that serve as a foundation and framework around which an entire engineering software system

can be constructed. To provide the end application user with a powerful interface to drive an

application, a high-level procedural language similar to FORTRAN or BASIC was developed and

integrated into the translator. Since no application was actually constructed, an application shell

was written to create an interactive command line environment for using the translator. The shell

and translator comprise a single executable program: cp.exe. After system startup and

initialization, a programming and command interpreter environment is created that lasts for the

duration of the application session. Users can then interactively enter commands at the keyboard

or load and process user-written macro files from disk.

Major features of the translator include:

Creates a programming and command interpreter environment.

Takes as input a fully structured source language very similar to BASIC or FORTRAN.

Supports two modes of operation; an interpreter mode and a compile mode.

Performs type checking and implicit casting.

Extensive error checking is performed during all phases of translation including runtime

support for floating point exceptions and array bounds checking.

Reentrable; user-defined macros can call the translator to process commands or compile

functions at runtime.

Easily extensible for future development and application integration.

Portable to other hardware platforms; the entire system was written in C/C++.

A set of diagnostic tools is integrated into the translator to aid the developer.

The major features of the language include:

Free format of source language text.

Symbolic constants.

Variables and multi-dimensional arrays.

User-defined types or records.

User-defined functions that take parameters and return values.

Program flow control constructs; e.g., IF, SWITCH, FOR, REPEAT, WHILE, etc.

Local, global, and external objects.

Mathematical functions; e.g., SIN(x), ABS(x), COSH(x), LN(x), etc.

Complex arithmetic expressions; e.g., x
= EXP(-zeta*wn*(t-s))*SIN(SQRT(1.0-

zetaA2.0)*wn*(t-s)).

Screen and disk I/O functions; e.g., OPEN, CLOSE, PRINT, PRINT #, INPUT, INPUT*, etc.

The project resulted in the following major items:

Complete theory and design details for all phases of the translator and language.

CP.EXE - An executable translator program that creates a programming and command

interpreter environment. The program includes an integrated application shell to provide the

userwith an interactive command line environment.

A complete Language and Compiler Guide.

A set of diagnostic tools to aid the developer.

Translator C++ source code modules and several example macro files.

Example code solving engineering problems; Four-Bar Crank Mechanism, Material Library,

Integration Solver, Runge-Kutta DEQ Solver, and Convolution Integral.

Performance evaluation including a comparison against C/C++ and MS-DOS QBasic.

Exploration in application integration for a simulation package similar to CSMP.

2. TRANSLATOR THEORY

2.1 Overview

A translator is a mechanism which takes as input a source language and produces as output

either:

1) A generated target language for later execution on a host machine.

2) A generated target language which itself becomes the input source language for further

translation.

3) Interprets during translation and synthesizes actions that are executed by calling appropriate

host machine subroutines.

The process of translation involves analysis and synthesis. A translator must analyze a source

language to determine it's content and structure, interpret the meaning or action intended by the

language, and synthesize either a target language or directly execute host machine subroutines

to perform the intended actions. A translator that generates a machine-oriented target language

is called a compiler, a translator that interprets during translation and synthesizes actions is

called an interpreter.

Conceptually, translation may be grouped into phases as shown below:

Lexical Analysis

Syntax Analysis

The process of constructing valid language tokens from the input source

language text stream.

The process of recognizing whether a given token sequence is a valid

language statement, and if so, what its structure is.

Semantic Analysis The process of performing the actions or meaning intended by the

language.

Intermediate Code The production of an intermediate form of the source language that is

Generation easily optimized and translatable into a target language or executable by
an interpreter.

Code Generation Generation of target language.

or

Interpretation Execution of appropriate host machine subroutines to perform the

intended actions of the source language.

Additional phases of translation include:

Static Checking The many types of checks that are performed during translation such as

type checking, flow control checking, uniqueness checking, etc.

Code Optimization The process of optimizing the intermediate code to produce faster

running target code.

Symbol Table Management of the data structures used by the translator to store and

Management retrieve records of objects and their associated attributes.

Error Management Error tracking, reporting, and recovery management during all

phases of the translation process.

Conceptually, phases are distinct processes performed during translation. Depending on the type

of translator design, phases are often combined together and some even omitted such as code

optimization. Translator designs are commonly structured into modules; each module's job to

process a phase of group of phases.

The phases of translation can also be grouped into front and back ends. The front end typically
includes all phases of translation necessary to process the source language into an intermediate

language form. The back end includes all phases necessary to process the intermediate

language into executable code or synthesize actions by interpretation. A typical compiler or

interpreter layout grouped into front and back ends is shown in Figure 2.1.

Quite a bit of theory has been developed around the phases of translation and include studies

into many areas such as formal grammars, finite automata, parsing techniques, error recovery
and correction, data-flow analysis, etc. This paper presents in the next sections an introduction to

some of the basic theory relevant to this particular translator design. The reader is referred to

any of the translator books given in the Bibliography section of this paper for further background

on translator theory and methods.

The following major topics will be covered:

Context-Free Grammars

Lexical Analysis

Syntax Analysis using Recursive Descent with Predictive Parsing

Syntax-Directed Translation with Embedded Semantic Processing

Threaded Code Interpreters

Front End

Back End

Source Language

Lexical Analysis

Syntax Analysis

Semantic Analysis

Type Checker

Intermediate Code

Generator

m
i Code Optimizer i

L . J

Intermediate

Language

i

1

Code Optimizer
'-"T"-

Interpreter

' '

Code Optimizer i

Code Generator

Execute Host

Machine Subroutines

Target Language

Error

Manager

Symbol Table

Manager

Figure 2.1 Typical compiler/interpreter translation phases.

2.2 Grammars

A grammar is a formal specification of the structure, or syntax, of a language. A grammar

defines what symbols are used to write a language and what sequences of symbols are

permitted.

2.2.1 Context-Free Grammars

A context-free grammar is a type of grammar often used to describe the syntactic structure of

programming
languages.1

A context-free grammar consists of four parts:

1 . A finite, nonempty set of symbols called terminals. Terminals are the words and symbols that

make up the language; e.g., FOR, +, *, {, LET, WHILE, etc.

2. A finite, nonempty set of nonterminals. Nonterminals represent sequences of terminals

and/or nonterminals used in a language; e.g., for_statement, assignment_statement,

if_statement, expression, etc.

For example, a WHILE block is represented by the nonterminal while_statementwhich

represents the sequence \NH\LE(expr) statementjist ENDWHILE.

WHILE, (,), and ENDWHILE are terminals, expr and statementjist are nonterminals.

3. A finite, nonempty set of rules called productions. A production associates the replacement

of a single nonterminal with a sequence of terminals and/or nonterminals or the null

sequence, e.

For example, the production for a while_statement would be given by:

while_statement -> WHILE(expr) statementjist ENDWHILE

If alternative productions for a nonterminal exist, each is grouped with the nonterminal and

preceded by the production symbol "->". Alternatively, the
"|"

symbol may be used to

indicate an alternative production.

For example, the following sets of productions for expr are equivalent:

expr - term + term

-> term - term

expr -> term + | - term

4. A designation of one of the nonterminals in part 2 as a starting nonterminal from which all

others can be generated by systematic application of the rules in part 3.

To illustrate the concept of a context-free grammar, a simple example for evaluating expressions

is presented in Example 2.1.

Example 2.1. A context-free grammar specification for evaluating expressions is given below:

1 . terminal set:

2. nonterminal set:

3. productions:

a) expr -

->

b) term

{ number, (,), +, , /,
*

}

{expr,term,factor)

term + term

term - term

term

factor*
factor

factor I factor

factor

c) factor

4. Starting nonterminal

(expr)
number

expr

Now consider the expression 3/5+(8-2)*4. To show this is a valid expression in the language, a

sequence of productions applied to expr using the rules in part 3 must exist. The application of

rules to derive the final form consisting of all terminals is called a derivation. Application of rules

on expr to derive 3/5+(8-2)*4 is shown below in Table 2.1 .

RULE PRODUCTION

3.a expr- term + term

3.b expr -> factor 1 factor + term

3.c expr -> 3 / factor + term

3.c expr -> 3 / 5 + term

3.b expr -> 3 / 5 + factor
*

factor

3.c expr -> 3 / 5 + (expr)
*
factor

3.a expr- 3 / 5 + (term - term)
*

factor

3.b expr -> 3 / 5 + (factor - term)
*

factor

3.c expr -> 3 / 5 + (8 - term)
*

factor

3.b expr -> 3 / 5 + (8 - factor)
*

factor

3.c expr^y 3 / 5 + (8 - 2)
*

factor

3.c expr->3/5 + (8-2)*4

Table 2.1 Grammar productions to derive an expression.

10

The derivation used in Example 2.1 to generate the expression is not unique. However, for an

unambiguous grammar, there exists a unique left-most and right-most derivation. The derivation

shown was a left-most derivation. A left-most derivation systematically applies rules to derive

nonterminals from left to right. A right-most derivation does the same but from right to left.

A grammar that produces more than one left-most or right-most derivation is termed ambiguous.

Ambiguous grammars have more than one left or right-most derivation and special handling is

required by the parser to resolve the ambiguity.

The parser implemented in the translator implements left-most derivation for all cases except

exponentiation in expressions. Exponentiation has right to left associativity and a right-most

derivation is used in that case.

High-level language constructs are just as easily represented by a context-free grammar. Shown

below are some typical productions for a few of the common flow control constructs.

A typical WHILE block:

while_statement -> WHILE(expr) statementjist ENDWHILE

A simple IF block:

if_statement -> IF(expr) statementjist ENDIF

A powerful form of the FOR block:

for_statement -> FOR(assignmentjist ', expr ; assignmentjist) statementjist NEXT

An entire program can be the starting symbol for a grammar with a production as shown below:

program -> PROGRAM program_name statementjist END_PROGRAM

11

2.2.2 Parse Trees

A parse tree is a graphical representation of the productions applied to a starting nonterminal to

reach the final terminal symbols of the grammar. A parse tree has the following characteristics:

1 . A single starting node, or root, which is the starting nonterminal.

2. Leaves that are terminal symbols.

3. Interior nodes that are nonterminals.

A parse tree for the expression given in Example 2.1 is shown in Figure 2.2.

Figure 2.2 Parse tree for a simple expression.

The derivation given in Example 2.1 also illustrates a depth-first traversal of the parse tree. A

depth-first traversal descends down the parse tree to reach the leaves as quickly as possible.

12

2.3 SyntaxAnalysis

Syntax analysis, or parsing, is the process of recognizing whether a given string is in a

language, and if so, what its structure is. Parsing reads input terminals from left to right, and

using the grammar of the language, attempts to construct the parse tree for the derivation. Two

major classes of parsing techniques exist; top-down and bottom-up.

Top-down parsing starts at the root, or starting nonterminal, and builds downward to the leaves.

Parsing systematically applies productions to single nonterminals to yield sequences of terminals

and/or nonterminals until the terminals, or leaves of the tree, are reached.

Bottom-up parsing starts at the leaves of the tree and builds upward to the root. Parsing

systematically substitutes sequences of terminals and/or nonterminals for single nonterminals

until the starting nonterminal, or root of the tree, is reached

Much work has gone into the theory of parsing and as a result, many techniques exist for

implementing parser schemes. The reader is referred to any of the compiler books given in the

Bibliography section of this paper for background on parsing methods.

2.3.1 Recursive Descentwith Predictive Parsing
The parsing method chosen for use in this translator is a popular top-down method called

recursive descentwith predictive parsing. This technique is easily extendible, uses the activation

records of function calls to implicitly build a parse tree, exploits function recursion, requires no

backtracking (the next token read always determines which routine to call), and directly parallels

the format of the grammar. Semantic actions and type checking are easily integrated into the

parsing routine. Additionally, for someone without a background in compiler theory, it's the

easiest technique to understand and learn.

Major elements of a Recursive Descent Predictive Parser

A procedure or routine exists for each nonterminal in the grammar.

The next token to be read, called the lookahead symbol, unambiguously determines which

procedure or routine to call.

The construction of a parse tree is implicit in the function call activation records.

The parser exploits function recursion for nesting of statements and expressions.

13

To illustrate predictive parsing using the recursive descent technique, see Example 2.2.

Example 2.2 Consider the production for the while statement:

while_statement -? WHILE(expr) statementjist ENDWHILE

A typical 'C routine to process this production would be as follows:

void while_statement()

{

matchfWHILE); match('C); exprfj; matchC)*); statementlistO; match(ENDWHILE);

}

matchO is a short routine that calls the lexical analyzer to get the next token. It takes a

parameter that is compared to the current token; if they match, the next token is extracted, if

they don't match, an error is generated. The parameter passed to matchO is actually predicting

what the current token must be according to the grammar specification.

exprfj is the main routine to evaluate expressions for the nonterminal expr.

statementlistO is the main routine to evaluate statements for the nonterminal statementjist.

To simulate the parsing process, assume some routine has already extracted the next token and

found it to be WHILE. This triggers a call to the function while_statement().

Step 1 . Current token is WHILE. Call matchfWHILE) to extract the next token.

Step 2. Current token is either (or something else. Call match('('); if the current token is (, the

next token is extracted, if not, an error is generated.

Step 3. Call routine exprfj. This routine will process the expression. If successful, no errors will

be generated and program control returns.

Step 4. Current token is either) or something else. Call match(')'); if the current token is), the

next token is extracted, if not, an error is generated.

Step 5. Call routine statementlistO- This routine will process the statements in the body of the

while block. Since while blocks can be nested, this routine may actually call

while_statementO several times, which in turn calls statementlistO. This is where the

recursive nature of function calls is used to implement nesting. If successful, no errors

will be generated and program control returns.

Step 6. Current token is either ENDWHILE or something else. Call match(ENDWHILE); if the

current token is ENDWHILE, the next token is extracted, if not, an error is generated.

Step 7. The while statement has been successfully parsed, return to calling routine.

14

2.3.2 Note on Left Recursion

Left recursion occurs when the left-most nonterminal on the right side of a production is the

same nonterminal as on the left side of the production. For example,

expr - expr + term

This form of production will cause the recursive descent parser to go into an infinite loop making
repeated calls to exprO- Left recursion can be eliminated by introducing a new nonterminal and

rewriting the grammar to be right recursive in form.

expr - termmorejerms

morejerms -> + term

For a general discussion on left recursion elimination, see Aho, Sethi, and
Ullman.2

2.4 Semantic Analysis

The process of parsing discussed in the previous section carries out recognition and syntactic

analysis of the source language. Semantic analysis performs the actions or meaning intended by
the language. Semantic rules define the actions required to carry out the activities necessary for

translation; e.g., insertion of objects into a symbol table, intermediate code generation, error

handling, etc.

Syntax-directed definitions and translation schemes relate semantic rules with productions. Both

are a generalization of a context free grammar where each grammar symbol has an associated

set of attributes; synthesized and inherited. Inherited attributes are computed from the parent and

siblings of a node in the parse tree. Synthesized attributes are computed from the attributes of

the children of a node in the parse tree.

Listed below are some of the major elements of each:

Syntax-Directed Definitions

High-level specifications for translations.

Hide implementation details and order of evaluation.

Dependency graphs and topological sorting to determine evaluation order of semantic rules.

Syntax trees and dags to decouple translation from parsing.

Translation Schemes

Indicate order in which semantic rules are to be evaluated.

Reveal implementation details.

Semantic actions are coupled with parsing.

The reader is referred to Aho, Sethi, and Ullman for a detailed discussion on syntax-directed

definitions and translation
schemes.3

15

2.5 Syntax-Directed Translation

A syntax-directed translation scheme was implemented in the translator to generate postfix

expressions for the entire language. A syntax-directed translation scheme associates attributes

with each element of the grammar and embeds semantic processing with parsing. Attributes can

be anything; a value, a memory address, an object type, etc. The productions of the grammar

are modified to include semantic actions where necessary to implement the semantic rules.

For example, let's look again at Example 2.1 and this time include semantic analysis to generate

an intermediate language string in postfix notation. Table 2.2 shows the productions and syntax-

directed definitions for the language.

PRODUCTIONS SEMANTIC RULES

expr -> term + term expr. val = term^val \\ term2.val ||
'+'

-> term - term expr. val = term^.val \\ term2.val ||
'-'

-> term expr.val = term.val

term ->

factor'
factor term.val = 1'actor\.val || factorial \\

'*'

-* factor 1 factor term.val = factor\.val || factorial \\ V

-> factor term.val = factor,val

factor -> (expr) factor.val = expr. val

-> number factor.val= number, val

Table 2.2 Grammar productions and syntax-directed definitions.

The semantic rules in Table 2.2 associate synthesized string attributes for each production. The

|| symbol represents string concatenation. The derivation of an expression will result in a final

string representation of the output in expr.val. To implement a translation scheme, we first define

an action symbol { }. An action symbol is used to represent a semantic action in a production.

For example, expr - term + term { emit('+') }. Here a routine called emit is called to output

the
'+'

symbol.

16

Embedding semantic actions in the grammar yields the following:

expr -> term + term { emit('+') }
-> term - term { emitf-') }
-> term

term ->

factor*
factor { emit('*') }

-> factor / factor {emitf/') }
- factor

facfor - (expr)
- number { emit(number) }

Note that the translation scheme presented above emits strings as the productions are parsed.

This differs from the syntax-directed definition given in Table 2.2 that synthesizes strings through

concatenation until the final string is stored in expr. val.

Now, again consider the expression 3/5+(8-2)*4. Processing of the expression will result in the

following intermediate string representation:
35/82-4*

+

Application of rules on expr to derive 3/5+(8-2)*4 with embedded semantic actions is shown

below in Table 2.3.

RULE PRODUCTION SEMANTIC ACTION

3.a expr -> term + term

3.b expr- factor 1 factor + term

3.c expr -> 3 / factor + term 3

3.c expr- 3 / 5 + term 5 /

3.b expr -> 3 / 5 + factor
*

factor

3.c expr -> 3 / 5 + (expr)
*
factor

3.a expr -> 3 / 5 + (ferni - term)
*

factor

3.b expr -> 3 / 5 + (factor - term)
*
factor

3.c expr- 3 / 5 + (8 - term)
*

factor 8

3.b expr -> 3 / 5 + (8 - factor)
*

factor

3.c expr -> 3 / 5 + (8 - 2)
*

factor 2 -

3.c expr^> 3/5 + (8 -2) *4 4
*

+

Table 2.3 Grammar productions with embedded semantic actions.

17

Let's again revisit Example 2.2 but include semantic processing.

Example 2.3 Consider the production of the while statement with embedded semantic actions.

while_statement -> {inc blocklevel}

{emitf'while")}
WHILE (expr) {emit("if^statementjist ENDWHILE {emit("wend")}

{emit{breakcount), emit("setbrk")}
{dec blocklevel}

Semantic actions:

blocklevel Integer representing the level or nested depth of the current while statement.

while Keyword for back end compiler indicating start ofwhile block.

if Keyword for back end compiler to insert code to evaluate expr and jump to

appropriate location.

wend Keyword for back end compiler indicating end ofwhile block.

breakcount Integer representing number of BREAK statements in current while block.

setbrk Keyword for back end compiler to insert jump code for break statements.

The actual source code to process a while block is shown below. LP is a global pointer to a

linked list of level records. Levels correspond to the depth of nested flow control statements. Any
flow control statement creates a new level record on entry and inserts it in the list. LP always

points to the most recent record which represents the current level. The BREAK statement uses

LP to store a count of the number of breaks that occur in the current level. On exit, the current

level record is deleted and LP is set to point to the next higher up level.

static void while_statementO

{
if(error.statusO) return;

LevelRecord *Level = new LevelRecord;

Level->Next = LP;

LP = Level;

matchfWHILE); emit("while"); match('C); boolexprO; match(')'); emitfif);

statementlistO; match(ENDWHILE); emit("wend");

emit("ii"); emit(itoa(LP->breakcnt,AddressBuffer,1 0)); emit("setbrk");

LP = Level->Next; delete Level;

}

Processing a single while block with no nesting and two break statements would result in the

following intermediate code generation:

while ...expressioncode... if ...statement code... wend N 2 setbrk

18

2.6 LexicalAnalysis

Lexical analysis is the process of constructing valid language tokens from the input source text

stream. Lexical analysis can be included in the grammar specification for parsing or separated

into a separate phase.

For example, a portion of a context-free grammar to construct the nonterminals (identifier) and

(number) is presented below.

(identifier) -> (letter) {(letter) \ (digit)}

(number) -> (integer) ["."] [(exponent)]

-> [(integer)]
"."

(integer) [(exponent)]

(integer) - (digit) {(digit)}

(exponent) ->

"E"

|
"e"

[(sign)] (integer)

(sign) ->

n .11 i ii m

(digit) ->

"0"

|
"1"

|
"2"

| ... |
"9"

(letter) ->

"A"

|
"B"

| ... |
"Z"

1 1
"_"

1 1
"a"

|
"b"

| ... |
"z"

Of course, some routine is needed to extract characters from the source text. Also, note that

tokens are not in the terminal set of the grammar in this implementation, but appear as

nonterminals.

More commonly, lexical analysis is handled by a separate phase of the translator. The lexical

analyzer, or "scanner", is called by the parser to extract the next token from the input source text

stream. This implementation allows classification of tokens and inclusion of tokens into the

grammar's terminal set. White space, comment removal, and error handling are also much

easier to implement. A state table mechanizes the construction of tokens and is discussed in

detail in the design section of this paper.

19

2.7 Static Checking
Static checking includes many types of checks that must be done by the compiler during
translation. These checks include:

Type Checking:

Assuring that operands are compatible with each other, operations are defined for a particular
operand type, function parameters are of the appropriate type, assignments are compatible, etc.

Flow Control Checking:

Checking that flow control statements such as BREAK and RETURN appear in legal context in a

source code program. For example, RETURN cannot be used outside of a function definition and

must be used if a function is to return a value.

Uniqueness Checking:

Checking that external objects have been declared only once, objects declared in the body of a

function are unique, function parameters have distinct names, etc. For example, suppose an

external variable is declared as FLOAT xcoor. A check must exist to search the symbol table to

be sure that xcoor has not been previously declared as something else.

Many other checks may have to be done depending on the complexity, structure, and content of

the language and design of the translator. Most checks are easily embedded into the translation

scheme.

20

2.8 Intermediate Code Generation

Although a translator can be designed to directly generate target code from a source language,

intermediate code generation is commonly employed in translator designs. Intermediate code

generation has the following advantages:

Different back end translators can be designed to produce target code for various host

machines and still use the same front end translator.

A single code optimizer phase can be designed to optimize the intermediate form

independent of the host machine.

A more easily optimized and translatable form of language can be generated for target code

production or execution by an interpreter.

Three common forms of intermediate representation are syntax trees, postfix notation, and

three-address code. Postfix notation was chosen for this design to allow the inclusion of a back

end threaded interpreter/compiler which is itself a stack-based, postfix notation translator.

Postfix notation requires the operands of an expression precede the operator. For example, the

infix expression 4+5/3 would have the postfix form: 4 5 3/+. Extending this notation to include

function calls, a call such as hyp(x,y,z) would have the postfix form: x y z hyp.

Postfix notation is easily implemented using a stack based machine which will be discussed in

detail in the threaded code interpreter section of this paper. Intermediate language generation is

easily implemented in a syntax-directed translation scheme.

2.9 Code Optimization

Code optimization is an attempt to perform transformations on code to ultimately produce

performance improvements. Optimization can be applied at several stages:

Source Code User applies code improvements to source code by improving
algorithms, etc.

Intermediate Code Optimizing phase of compiler performs local and global optimizing
techniques such as subexpression elimination, copy propagation,

dead-code elimination, loop optimization, etc.

Target Code Optimizing phase of compiler performs optimization techniques to take

advantage of particular host machine's hardware such as register usage,

instruction set, etc.

No optimization phase is currently implemented in the translator. For a detailed discussion on

code optimization, see Aho, Sethi, and
Ullman.4

21

2. 10 Code Generation

The generation of target code from intermediate language code is the final phase of the

compiling translator. Typical target code includes absolute or relocatable machine language or

assembly language. For a detailed discussion on code generation, see Aho, Sethi, and Ullman.
5

The translator designed for this project does not actually generate machine-dependent code, but

instead, generates a threaded code (list of addresses that point to host machine subroutines.)

This threaded code is processed by a software interpreterwhich will be discussed in detail in the

sections that follow.

2.11 Interpretation

Interpretation synthesizes actions during translation that are executed by calling appropriate host

machine subroutines. Interpreters can be software or hardware in design. A typical computer

executing a program is actually running a hardware interpreter built into the CPU. The main

steps involved are:

1 . Fetch the next instruction pointed to by the instruction pointer IP

2. Increment the instruction pointer IP

3. Decode the instruction

4. Execute the instruction

5. Repeat steps 1-4

Of course, the CPU interpreter is processing a list of binary machine instructions specific to the

host machine. A software interpreter, on the other hand, usually processes a list of abstract

machine instructions which have a corresponding host machine language subroutine associated

with them. The steps involved in a software interpreter are very similar:

1 . Fetch the next abstract machine instruction pointed to by the instruction pointer

2. Increment the abstract machine instruction pointer

3. Determine which host machine subroutine is to be called

4. Execute the host machine subroutine

5. Repeat steps 1-4

A threaded code interpreter is a form of software interpreterwhich was chosen for this translator

design and is discussed in detail in the next section.

22

2.12 Threaded Code Interpreter/Compiler

A threaded code interpreter is itself a translator that incorporates a threaded code generator and

software interpreter. Threaded code is a fully analyzed internal form of instructions comprised of

addresses that point to either:

Primitives which are executable host machine subroutines or

Secondaries that are lists of threaded code instructions pointing to primitives and/or secondaries.

The job of the interpreter is to step thru a list of threaded code instructions and execute the code

associated with each instruction. If the instruction points to a primitive, a call to the host machine

subroutine is made and executed. If the instruction points to a secondary, which itself is a list of

threaded code instructions, the interpreter's instruction counter is set to point at the new list, and

the interpreter processes the secondary's list of instructions. After the secondary has been

processed, control returns back to the next instruction following the call to process the

secondary.

Primitives point to the actual code that's executed by the host machine. Secondaries group
pointers to primitives and other secondaries and form a list of threaded code instructions akin to

a program, function, or subroutine. The ability of the threaded code interpreter to create

secondaries is very similar to the action of a compiler generating a machine code target

language. Because of this, the threaded code interpreter can be considered to have two modes

of operation; a compile mode where secondaries are created and an execution mode where

threaded code is interpreted and executed.

The term Threaded Interpretive Language, or TIL for short, refers to the internal form of code

generated by the translator. However, it's commonly used in reference to all elements of the

interpreter, and will be likewise adopted here for convenience.

The main elements of a TIL are:

Primitives and Secondaries

Dictionary

Stacks and Registers

Outer Interpreter

Inner Interpreter

The following sections describe the main elements of the TIL. The interpreter sections will pull all

he elements together and should give a clear picture of the mechanization and operation of the

hreaded interpreter.

23

2.12.1 Primitives and Secondaries

Primitives and secondaries are called keywords, much the same as reserved words in other

languages. Each have distinct record structures as shown in Figure 2.3.

WA

PRIMITIVE SECONDARY

address of

keyword lexeme

Header Section

Code Address WA

WA + 2

WA + 4

WA + 6

WA + 2n

WA + 2(n + 1)

address of

keyword lexeme

Header Section

link address of

next keyword

link address of

next keyword

address of

primitive 's

machine code

subroutine

address of

COLON

machine code

subroutine

Code Address

WA#1 Code Body

WA#2

WAV3

'

WA#n

word address of

primitive SEMI

Return Address

Figure 2.3 Primitive and secondary code structures.

Each keyword is comprised of sections as follows:

Header Address of the keyword's name or lexeme and the link address of the

next keyword in the dictionary. Note that some system keywords exist that

have no headers. These are not available to the user but are used by the

translator to perform special operations. Since the translator is aware of their

existence and location, no header is required. For example, SEMI is a

headerless primitive inserted at the end of each secondary by the compiler.

Code Address Address of an executable machine code subroutine. For a primitive, the

machine code subroutine is the actual machine code to execute whatever

function the primitive was designed to do. For a secondary, the machine

code routine is always COLON, a special subroutine designed into the

interpreter to handle secondaries.

24

Code Body For a primitive, the actual machine code routine located somewhere in

memory (not shown in Figure 2.3.) For a secondary, the code body section is

a list of threaded code word addresses; WA#1, WA#2, WA#3, Each WA#

corresponds to the starting word address, WA, of a primitive or secondary.

Return Address Word address of the primitive SEMI which is used to terminate

the execution of a secondary.

Assuming a 2-byte word address scheme, all primitives with headers have a fixed record size of

6 bytes. Secondaries have variable record lengths depending on the number of threaded code

instructions that are compiled into the code body of the secondary.

In addition to primitives and secondaries, threaded code lists may also include addresses that

are not instructions, but instead, are pointers to literals such as numbers, character strings, and

the like. Literal handlers are primitives designed to allow for the inclusion of such literals in

threaded code lists. For each literal, the word address of the appropriate literal handler must

immediately precede the address of the literal in the threaded code list. During execution, the

literal handler will extract the literal at the address currently pointed to by the instruction pointer,
push it to the data stack, and then increment the instruction pointer past the literal address to the

next valid instruction in the threaded code list.

2.12.2 Dictionary
The TIL maintains a data structure called a dictionary. The dictionary is a linked list of TIL

keyword records. At startup, the dictionary is loaded with all the system primitives. As translation

proceeds, the dictionary dynamically grows with the insertion of new keywords as secondaries

are created in compile mode. See Figure 2.4.

Secondaries Primitives

Figure 2.4 TIL dictionary.

25

2.12.3 Stacks and Registers

The TIL interpreter uses stacks and several registers as described below:

DS Data Stack; LIFO stack used to store numbers and addresses

RS Return Stack; LIFO stack used to store return addresses when a secondary calls

another secondary or a primitive.

I_reg Instruction Register; used to store address of next threaded code instruction in

current secondary being processed.

WA_reg Word Address Register; used to store the word address of the current keyword or

the address of the code body section of the current keyword.

CA_reg Code Address Register; used to store address of next executable machine code

body.

2.12.4 Outer Interpreter

The outer interpreter serves as a controlling executive for the interpreter. In many TIL's, the

outer controlling executive is itself a secondary written in the language of the TIL.

The outer interpreter, just as other translators, performs rudimentary lexical, syntax, and

semantic analysis, as well as calling the inner interpreter to generate threaded code or execute

instructions.

The basic operation of the outer interpreter is as follows:

Step 1 . Scan the input text stream and extract the next token.

Step 2. If the token is an address or number,

a) If execute mode, push it to the data stack, repeat Step 1 .

b) If compile mode, insert it in the threaded code list of the current secondary under

construction, repeat Step 1.

Step 3. Search the dictionary to see if the token is a keyword. If found,

a) If execute mode, push the word address WA of the keyword into the word address

register and execute the inner interpreter, repeat Step 1.

b) If compile mode, insert the keyword word address WA into the threaded code list of

the current secondary under construction, repeat Step 1 .

Step 4. Token is not a number, address, or keyword; generate an error.

26

2.12.5 Inner Interpreter

The inner interpreter mechanizes the language by executing a small loop as illustrated in the

pseudo code shown below:

REPEAT

MOV *WA_reg, CAjreg
CALL CA_reg
MOV *l_reg, WA_reg
l_reg++

UNTIL(EXITFLAG==TRUE)

To start the process prior to entering the loop, the word address, WA, of the current keyword to

be executed is copied into the WA_reg. EXITFLAG is set FALSE, and the WA of a special

headerless entry to set EXITFLAG to TRUE is copied into l_reg. This preparation sets up the

current keyword to be executed and also adds an instruction to call an exit routine after the

keyword has been executed.

Upon entering the loop, the followings steps are performed:

1) Copy the address of the machine code routine pointed to by WA_reg into the code address

register, CA_reg.

MOV *WA_reg, CA_reg

2) Execute the machine code routine at the address in CA_reg.

CALL CA_reg

3) Copy the word address pointed to by the next threaded code instruction in l_reg to the word

address registerWA_reg.

MOV *l_reg, WA_reg

4) Increment the address in the instruction register l_reg. This is the address of the next

threaded code instruction.

I_reg++

5) Check EXITFLAG. If TRUE, exit the inner interpreter loop. If FALSE, repeat steps 1) thru 4).

Two supporting machine code routines exists to mechanize the processing of secondaries;

COLON and SEMI. These routines perform the following actions:

COLON Push the contents of the instruction register l_reg to the return stack RS. Increment

the WA_reg, then copy the contents of word address registerWA_reg to the

instruction register l_reg.

PUSH l_reg, RS
WA_reg++

MOVWA_reg, l_reg

SEMI Pop the top address off the return stack RS, copy it into the instruction register l_reg.

POP RS, l_reg

27

To best illustrate the operation of the interpreter, a step by step analysis of the processing of an

assignment statement is given in the following example.

Example 2.4 Processing an assignment statement in execute mode.

Assume the front end translator has processed the following source language assignment

statement:

x = 3.0 + pi2

and emitted the intermediate language stream:

296068 3.0 pi2 f+ if

where 296068 is the address of the variable x, pi2 is a secondary that returns 2*pi, f+ is a

primitive to add two floating point numbers, and !f is a primitive to store a floating point number

at a specified address.

Two secondaries have been previously created, pi and pi2. The keyword pi is a simple routine

that pushes the value 3.14159 to the data stack. The keyword pi2 is another simple routine that

calls pi twice, then adds the two top stack values together to leave 6.28319 on the data stack.

Simulated dictionary entries for the two secondaries, along with all the supporting primitives and

machine code routines, is shown in Figure 2.5.

28

256920 100284 Headerless primitive
"SEMI"

256990 100250 Headerless primitive
"EXIT"

257006 100290 Headerless primitive
"FLOATJJH"

262400 256990 Special headerless entry to

mechanize
"EXIT"

270000 290074 Primitive
"f+"

270002 269994

270004 111348

270018 290094 Primitive "If

270020 270012

270022 111550

281200 290074 Secondary
"pi"

281202 269994

281204 100266

281206 257006

281208 293200

281210 256920

285100 290074 Secondary
"piZ'

285102 269994

285104 100266

285106 281204

285108 281204

285110 270004

285112 256920

!
i

i

100250

100266

100284

Machine code

routine EXIT

Machine code

routine COLON

Machine code

routine SEMI

i

100290

i

111348

111550

Machine code routine FLOATJJH

to handle floating point literals

Machine code routine to

perform floating point addition

Machine code routine to store

floating point number

TIL Dictionary
Fragment

290074

290094

290122

290154

293200

Keyword lexeme
"f*"

Keyword lexeme "If

Keyword lexeme
"pi"

Keyword lexeme
"piZ'

Floating point literal
3.14159

Figure 2.5 Memory layout of TIL dictionary and machine code routines.

29

Assuming the TIL is in execute mode, the outer interpreter will perform the following actions:

1) Extract the address 296068 of variable x and push it to the data stack

l_reg WA_reg CA_reg RS DS

]

WA_reg CA_reg

] LZZZI IZ= 296068

2) Extract the number 3.0 and push it to the data stack

CA_reg RSl_reg WA_reg
r^

i
i~"

i c j

DS

3.0

296068

3) Lookup the keyword
"pi2"

in the TIL dictionary, copy the word address WA of the keyword

into the word address registerWA_reg, copy the word address of the headerless entry to

implement EXIT into the instruction register l_reg, and execute the inner interpreter.

I_reg WA_reg CA_reg

I 262400 I I 285104 I I I

RS DS

3.0

296068

The entire step by step action of the interpreter to process the assignment statement is shown in

Table 2.4.

30

Routine Instruction l_reg WA_reg CA_reg RS DS

OUTER PUSH 296068, DS 296068

PUSH 3.0, DS 3.0, 296068

PUSH 285104, WA_reg 285104 3.0, 296068

PUSH 262400, l_reg 262400 285104 3.0, 296068

INNER MOV *WA_reg, CA_reg 262400 285104 100266 3.0, 296068

CALL CA_reg 262400 285104 100266 3.0, 296068

COLON PUSH l_reg, RS 262400 285104 100266 262400 3.0, 296068

WA_reg++ 262400 285106 100266 262400 3.0, 296068

MOVWA_reg, l_reg 285106 285106 100266 262400 3.0, 296068

INNER MOV *l_reg, WA_reg 285106 281204 100266 262400 3.0, 296068

l_reg++ 285108 281204 100266 262400 3.0, 296068

MOV *WA_reg, CA_reg 285108 281204 100266 262400 3.0, 296068

CALL CA_reg 285108 281204 100266 262400 3.0, 296068

COLON PUSH l_reg, RS 285108 281204 100266 285108,262400 3.0, 296068

WA_reg++ 285108 281206 100266 285108,262400 3.0, 296068

MOVWA_reg, l_reg 281206 281206 100266 285108,262400 3.0, 296068

INNER MOV *l_reg, WA_reg 281206 257006 100266 285108,262400 3.0, 296068

l_reg++ 281208 257006 100266 285108,262400 3.0, 296068

MOV *WA_reg, CA_reg 281208 257006 100290 285108,262400 3.0, 296068

CALL CA_reg 281208 257006 100290 285108,262400 3.0, 296068

FLOATJ.H PUSH "l_reg, DS 281208 257006 100290 285108,262400 3.14159,3.0,296068

l_reg++ 281210 257006 100290 285108,262400 3.14159,3.0,296068

INNER MOV *l_reg, WA_reg 281210 256920 100290 285108,262400 3.14159,3.0,296068

l_reg++ 281212 256920 100290 285108,262400 3.14159,3.0,296068

MOV *WA_reg, CA_reg 281212 256920 100284 285108,262400 3.14159,3.0,296068

CALL CA_reg 281212 256920 100284 285108,262400 3.14159,3.0,296068

SEMI POP RS, l_reg 285108 256920 100284 262400 3.14159,3.0,296068

INNER MOV *l_reg, WA_reg 285108 281204 100284 262400 3.14159,3.0,296068

l_reg++ 285110 281204 100284 262400 3.14159,3.0,296068

MOV *WA_reg, CA_reg 285110 281204 100266 262400 3.14159,3.0,296068

CALL CA_reg 285110 281204 100266 262400 3.14159,3.0,296068

COLON PUSH l_reg, RS 285110 281204 100266 285110,262400 3.14159,3.0,296068

WA_reg++ 285110 281206 100266 285110,262400 3.14159,3.0,296068

MOVWA_reg, l_reg 281206 281206 100266 285110,262400 3.14159,3.0,296068

INNER MOV *l_reg, WA_reg 281206 257006 100266 285110,262400 3.14159,3.0,296068

l_reg++ 281208 257006 100266 285110,262400 3.14159,3.0,296068

MOV *WA_reg, CA_reg 281208 257006 100290 285110,262400 3.14159,3.0,296068

CALL CA_reg 281208 257006 100290 285110,262400 3.14159,3.0,296068

FLOATJ.H PUSH "l_reg, DS 281208 257006 100290 285110,262400 3.14159, 3.14159, 3.0, 296068

|_reg++ 281210 257006 100290 285110,262400 3.14159, 3.14159, 3.0, 296068

INNER MOV *l_reg, WA_reg 281210 256920 100290 285110,262400 3.14159, 3.14159, 3.0, 296068

l_reg++ 281212 256920 100290 285110,262400 3.14159, 3.14159, 3.0, 296068

MOV *WA_reg, CA_reg 281212 256920 100284 285110,262400 3.14159, 3.14159, 3.0, 296068

CALL CA_reg 281212 256920 100284 285110,262400 3.14159, 3.14159, 3.0, 296068

Table 2.4 Step by step action of TIL interpreter.

31

Routine Instruction l_reg WA_reg CA_reg RS DS

SEMI POP RS, l_reg 285110 256920 100284 262400 3.14159 3.14159,3.0,296068

INNER MOV *l_reg, WA_reg 285110 270004 100284 262400 3.14159 3.14159,3.0,296068

l_reg++ 285112 270004 100284 262400 3.14159 3.14159,3.0,296068

MOV *WA_reg, CA_reg 285112 270004 111348 262400 3.14159 3.14159,3.0,296068

CALL CA_reg 285112 270004 111348 262400 3.14159 3.14159,3.0,296068

FADD PUSH ADD(POP DS.POP DS),DS 285112 270004 111348 262400 6.28319 3.0, 296068

INNER MOV *l_reg, WA_reg 285112 256920 111348 262400 6.28319 3.0, 296068

l_reg++ 285114 256920 111348 262400 6.28319 3.0, 296068

MOV *WA_reg, CA_reg 285114 256920 100284 262400 6.28319 3.0, 296068

CALL CA_reg 285114 256920 100284 262400 6.28319 3.0, 296068

SEMI POP RS, l_reg 262400 256920 100284 6.28319 3.0, 296068

INNER MOV *l_reg, WA_reg 262400 256990 100284 6.28319 3.0, 296068

l_reg++ 262402 256990 100284 6.28319 3.0, 296068

MOV *WA_reg, CA_reg 262402 256990 100250 6.28319 3.0, 296068

CALL CA_reg 262402 256990 100250 6.28319 3.0, 296068

EXIT MOV TRUE, EXITFLAG 262402 256990 100250 6.28319 3.0, 296068

INNER MOV *l_reg, WA_reg 262402 100250 6.28319 3.0, 296068IIIIIIIIIIII

l_reg++ 262404 frTrTrTrTrTr 100250 6.28319 3.0, 296068

OUTER PUSH 270004, WA_reg 262404 270004 100250 6.28319 3.0, 296068

PUSH 262400, l_reg 262400 270004 100250 6.28319 3.0, 296068

INNER MOV *WA_reg, CA_reg 262400 270004 111348 6.28319 3.0, 296068

CALL CA_reg 262400 270004 111348 6.28319 3.0, 296068

FADD PUSH ADD(POP DS.POP DS),DS 262400 270004 111348 9.28319 296068

INNER MOV *l_reg, WA_reg 262400 256990 111348 9.28319 296068

l_reg++ 262402 256990 111348 9.28319 296068

MOV *WA_reg, CA_reg 262402 256990 100250 9.28319 296068

CALL CA_reg 262402 256990 100250 9.28319 296068

EXIT MOV TRUE, EXITFLAG 262402 256990 100250 9.28319 296068

INNER MOV *l_reg, WA_reg 262402
41 II 41 II 144* 100250 9.28319 296068

|_reg++ 262404 TrTrTrfrTrrr 100250 9.28319 296068

OUTER PUSH 270022, WA_reg 262404 270022 100250 9.28319 296068

PUSH 262400, l_reg 262400 270022 100250 9.28319 296068

INNER MOV *WA_reg, CA_reg 262400 270022 111550 9.28319 296068

CALL CA_reg 262400 270022 111550 9.28319 296068

STORE MOV(POP DS, POP DS) 262400 270022 111550

INNER MOV *l_reg, WA_reg 262400 256990 111550

l_reg++ 262402 256990 111550

MOV *WA_reg, CA_reg 262402 256990 100250

CALL CA_reg 262402 256990 100250

EXIT MOV TRUE, EXITFLAG 262402 256990 100250

INNER MOV *l_reg, WA_reg 262402
11411114 4*4*
II II II II II II 100250

l_reg++ 262404
II 44 41 14 4*4*
PI II II PI II IP 100250

OUTER Exit outer interpreter

Table 2.4 (cont.) Step by step action of TIL interpreter.

32

3. TRANSLATOR DESIGN

3.1 Overview

The main goal of this project was to design a translator with an easily extensible command

language for future development and include a core set of high-level language constructs typical

of modern procedural languages. Two separate audiences were considered in the design of the

language and translator; the application developer and the end application user.

The application developer will need to interface an application command set into the language at

a future point in time. To provide ease of extensibility for the developer, the following language,

translator, and development schemes were implemented:

Context-free grammar

Syntax directed translation scheme

Recursive descent parser

Modular design of translator

C/C++ development language; platform independent design

The end application user will require all the power of a high-level language to interface with and

drive an application. To achieve this, the following core language constructs were designed into

the system:

Variables and multidimensional arrays.

User defined types or records.

Functions that take parameters and return values.

Flow control constructs; e.g., IF, SWITCH, FOR, REPEAT, WHILE, etc.

Local, global, and external objects.

Mathematical functions; e.g., SIN(x), ABS(x), COSH(x), LN(x), etc.

Complex arithmetic expressions

Free format

Symbolic constants

33

The translator design for this project consists of a front end translator incorporating a recursive

descent parser and a back end threaded interpreter/compiler. See Figure 3.1.

The front end translator:

Takes as input a fully structured source language very similar to BASIC or FORTRAN.

A top down recursive descent parsing technique is used to implement a syntax-directed

translation scheme for infix to postfix notation with embedded semantic actions.

Type checking and implicit casting are integrated into the parser.

A separate lexical analyzer handles the task of token construction, classification, and

attribute binding.

All storage is static; symbol table management and memory allocation tasks are handled by
the front end.

Extensive error checking is performed during all phases of translation.

The intermediate language generated is in postfix notation, type checked, and syntactically

correct in form.

The back end threaded interpreter/compiler:

A threaded code interpreter very similar to FORTH.

Takes as input a postfix language consisting of numbers, addresses, and keywords.

Two modes of operation; an interpreter mode and a compile mode.

In compile mode, keyword definitions are compiled into threaded code to become new

keywords in the language.

In interpreter mode, keywords are executed immediately.

A software interpreter very similar to the actual hardware interpreter in a computer is

mechanized to execute the threaded code.

Floating point exceptions and runtime array bounds checking are supported.

34

Front End

Back End

Source Language

"

Lexical Analysis

' '

Symbol Table

ManagerSyntax Analysis

' '

Semantic Analysis

' '

Type Checker

i '

Intermediate Code

Generator

Intermediate Error

ManagerLanguage

< ' * '

TIL

Interpreter

TIL Code

Generator

? ?

Execute Compile

Figure 3.1 Actual translator design for this project.

35

3.2 LexicalAnalysis

The lexical analysis phase of the compiler has the task of constructing valid

language tokens from the input source text stream. The lexical analyzer, or

"scanner", is called by the parser to extract the next token from the input source

text stream.

The lexical analyzer performs the following tasks:

Character recognition and classification.

Token construction and classification.

Removal of comments and white space from the source code.

Error checking.

Character recognition and token construction are separated into two distinct processes as shown

in Figure 3.2. The scanner handles the job of token construction; the transliterator extracts

characters from the input stream buffer.

II II II II II II II II 1

Stream Buffer

Scanner i m i i ;
Tnlran

j]

,i

Char

Reg

acter

ster

m

Register j

Transliterator

Figure 3.2 Lexical analyzer.

36

3.2.1 Transliterator

The function of the transliterator is to extract the next character from the input stream buffer,

classify it, and return a class and attribute value for the character. Classification simplifies the

task of the scanner during token construction. For example, to construct an integer, the scanner

only needs to know the character is a digit between 0 and 9, but not the exact digit. Attributes

encode additional information about an object; in this case, the ascii code of the character. A

simple table lookup mechanism is implemented to handle character recognition and

classification.

3.2. 1.1 Character Classification

Character classifications and attributes are shown in Table 3.1 .

CLASS Description Characters VALUE (ASCII code)

DIGIT numbers 0 thru 9 48-57

LETTER letters and underscore A thru Z, _, a thru z 65-90,95,97-122

ARITHMETIC arithmetic operators *, +, -, A
* 42,43,45,47,94

RELATIONAL relational operators *, *i
= 60-62

NEWLINE line feed (LF) 10

WS white space (HT, VT, FF, CR, space) 9,11-13,32

CONTROL control characters 0-31,127 excluding
'WS'

ILLEGAL upper ascii characters 128-255

NONE all others in range ASCII 32-126 #, %, &, [, ... 35,37,38,91,...

Table 3.1 Character classification table.

3.2. 1.2 The CharacterRegister

A character register is used to store the current character's class and attribute value. Classes are

enumerated constants, each having a unique integer value. Attribute values are simply the

corresponding ascii code for the character. For example, if LETTER=2 and the current character

is the letter 'F', then the character register contents returned to the scanner would be:

CHARACTER REGISTER

CLASS VALUE

2 70

37

3.2.1.3 The Stream Buffer

The source text stream is actually stored in a buffer as shown in Figure 3.3. Two pointers are

used to navigate the buffer; BPO and BP. BPO is always set to the start of the current character

on entrance to the lexical analyzer. This marks the start of the current token being constructed.

BP is used to mark the next character to be read. On entrance to the lexical analyzer, BP=BP0.

In operation, the transliterator extracts the character pointed to by BP, then increments BP to

point at the next character in the buffer. As characters are extracted, BP is incremented. When

the last character read causes the recognition of a token, BPO and BP mark the token in the

buffer and are used to extract the token lexeme. On exit, BPO is set to BP to mark the start of

the next token.

N| (| 4 | 5 |) | EOF |L O A T CR LF E T = S I

A

BPO

A

BP

Figure 3.3 Stream buffer and pointers.

The scanner module frequently deincrements BP when a token is recognized. This effectively

pushes back the last character read that caused the recognition of a token, but was not a part of

the token itself. This is necessary so that when the parser calls for the next token, the character

will not be skipped. For example, in Figure 3.3, the space character caused the recognition of the

token FLOAT. When the transliterator extracted the space, BP was incremented to point at the

next character, x. The scanner must deincrement BP so that when the lexical analyzer is called

again, space will be the current character in the buffer.

38

3.2.2 Scanner

The function of the scanner is to construct a valid token from the characters it receives from the

transliterator, classify it, resolve token attributes, and return it to the parser. Comments and white

space are also stripped from the source text during this phase. A state table is implemented to

mechanize token recognition and classification.

3.2.2.1 Token Classification

Token classifications and attributes are shown in Table 3.2.

CLASS Description SUBCLASS TYPE LEXEME

IDENTIFIER identifier IDENTIFIER, VARIABLE,

ARRAY, OR FUNCTION

IDENTIFIER, VARIABLE,

ARRAY, OR FUNCTION

pointer to lexeme

RESERVED reserved word RESERVED FLOAT, IF, REPEAT, etc... pointer to lexeme

TYPE type specifier type# TYPE pointer to lexeme

NUMBER real or integer number FLPT, INT NUMBER pointer to lexeme

SLITERAL string literal SLITERAL SLITERAL pointer to lexeme

SPECIAL operator SPECIAL ascii # of single character or

LT, LTE, GT, GTE, etc...

DONE end of stream DONE DONE

Table 3.2 Token classification table.

3.2.2.2 The Token Register

Once the scanner recognizes a token, a copy of the token is extracted from the stream buffer

and placed in a token buffer. A token register is used to store the current token's class and

attribute values. Classes are enumerated constants, each having a unique integer value.

Attributes depend on the class of token, but can include Subclass, Type, and Lexeme.

For example, suppose the current token is the floating point number 1.25. The contents of the

token register and buffer would be:

TOKEN REGISTER

TOKEN BUFFER

CLASS SUBCLASS TYPE LEXEME

NUMBER FLPT NUMBER ptr to token buffer |

' '

d: 2 5 \o i ;
i i i

r~

39

Some additional examples are presented in Table 3.3 to clarify the contents of the token register

for different classes of tokens. Bold uppercase names in the token register represent enumerated

constants having unique integer values. Actual numbers are the unique integer codes for the

current token, if applicable.

CURRENT TOKEN TOKEN REGISTER

DESCRIPTION TOKEN CODE CLASS SUBCLASS TYPE LEXEME

ptr to token buffer INew identifier ycoor IDENTIFIER IDENTIFIER IDENTIFIER

Existing variable identifier xcoor IDENTIFIER VARIABLE VARIABLE ptr to token buffer

Existing array identifier A2 IDENTIFIER ARRAY ARRAY ptr to token buffer

Reserved word WHILE 301 RESERVED RESERVED 301 ptr to token buffer

User defined type POINT 328 TYPE 328 TYPE ptr to token buffer

Integer number 37 NUMBER INT NUMBER ptr to token buffer

String literal
"Material"

SLITERAL SLITERAL SLITERAL ptr to token buffer |

Single character operator 43 SPECIAL SPECIAL 43

Multi-character operator 128 SPECIAL SPECIAL 128

End of stream EOF DONE DONE DONE

Table 3.3 Examples of token classifications.

When the scanner recognizes a token as being an identifier, it must search the symbol table to

determine if the identifier already exists as a variable, array, or function, or whether the token is

a reserved word or type. This task could be handled by the parser, but was included in the lexical

analyzer to resolve all token attributes in one phase.

40

3.2.2.3 StateDiagrams

To construct a state table for a given language, state diagrams are used. A state diagram

pictorially represents the states and transition paths a machine would step through to construct a

token. A state diagram has a starting state, transition paths, intermediate states, and a

recognition state. For example, to construct an identifier given a starting state S with the next

character being a letter, see Figure 3.4.

letter | digit

letter
. _ , _

Identifier

Figure 3.4 State diagram to construct an identifier.

Starting at state S, a letter is received. The system moves to state 2 along the transition path.

Once at state 2, the system now has two transition paths it can follow. Receiving a letter or digit,
the system moves again to state 2. The process continues until neither a letter or digit is

received at which time the system moves to the recognition state R; an identifier.

A more complex state diagram to construct an unsigned number is shown in Figure 3.5.

3.2.2.4 State Table

Once the state diagrams have been constructed, a state table can be created as shown in Table

3.4. Each row represents a state and each column represents a transition path corresponding to

the character class or value returned from the transliterator. Numbers in the table correspond to

intermediate states. Recognition, starting, and error states are subscripted in the table to refer to

the listing and descriptions given below the table.

For example, given a starting state S and transition path LETTER, we see from the table that the

next state would be state 2. Once at state 2, there are 3 possible transition paths; DIGIT,

LETTER, or other. DIGIT or LETTER again return to state 2 to continue the process of building
an identifier. Any other transition path leads to the recognition state R3; an identifier.

A state table can be mechanized quite easily using a switch block in 'C

41

Unsigned Real

Unsigned Integer I R digit

Special Symbol

Figure 3.5 State diagram to construct an unsigned number.

42

s

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

ER

5 t=

o _i

o
<

;
-

/ W
LU

z
o

<
o
LU

"5

1 2 15 8 13 14 S1 R1 17 18 ER1 12

1 3 16 16 R2

2 2 R3

5 4 4 R4

7 6 6 R5

5 4 4 R6

7 ER2

7 R7

11 9 12

10 9 ER3 9

S2 10 9 ER4 9

S3 R8 11

R9

13 S4

R10 ER5 14

5 12

7 6 6 R11

R12 R13 12

R14 12

R15

S1 newline character

S2 end of multiline comment

S3 end of single line comment

S4 stripping out white space complete

R1 end of file reached

R2 R1 1 integer number

R3 identifier

R4 R5 R6 R7 floating point number

R8 end of file and single line comment

R9 special character

ER1 illegal character

ER2 missing exponent

ER3 ER4 end of file before end of comment

ER5 end of file before end of string literal

R10 end of string literal

R1 2 special multicharacter <=

R13 special multicharacter <>

R14 special multicharacter >=

R1 5 an error has occurred

Table 3.4 State table.

43

3.3 The Parser

The syntax analysis phase of the compiler has the task of parsing an input token

string to determine whether the string is grammatically correct, and if so, what

it's structure is. Embedded semantic actions carry out the activities necessary

for translation. Together, syntax and semantic analysis constitute a syntax-

directed translation scheme. Type checking and intermediate code generation

are also embedded in the translation scheme. These modules collectively are

referred to as the parser. See Figure 3.6.

The parser performs the following tasks:

Grammar recognition and structure.

Semantic actions; e.g., symbol table management, nested block level tracking, implicit

casting, etc.

Type checking.

Error management.

Intermediate code generation.

IIIII

Syntax Analysis

Tnkpn
j

Register Semantic Analysis

i i i i ii i

Intermediate

Code Buffer

1 11

LEXICAL
^ '

ANALYZER

Type Checker

>
*

Intermediate Code

Generation

PARSER

Figure 3.6 Parser.

44

3.3.1 Syntax Analysis With Embedded Semantic Actions

Syntax analysis is accomplished using a recursive descent technique with predictive parsing.

Recall from the theory section of this paper, that for each nonterminal in the grammar, a

corresponding function is written. These functions closely parallel the grammar specification of

the language. For example, the highest level of abstraction in the grammar is at the root of the

parse tree, the command stream. The command stream is a collection of objects; command

statements and function definitions. Shown below is the grammar specification for a command

stream.

(command_stream) -> (object) (more.objects)
(more_objects) -> (object) (more_objects)

(object) -> (function
.definition)

-> (command
.statement)

A typical function to implement this portion of the grammar is shown below.

match(Token.Type);

rdparserQ;

void rdparserO

{

while(Token.Type!=DONE)

{

switch(Token.Type)

{
case(DEFINE): function_definitionO; break;
default: command_statement(); break;

}

}

}

Prior to executing this function, a call is made to the lexical analyzer to get the first token. The
token's class and attributes are stored in the global token register, Token. The while loop
mechanizes the collection of objects until the stream buffer is completely consumed and the

lexical analyzer returns a token attribute of Token.Type=DONE. In the body of the while loop, a
switch block is implemented to determine which type of object is currently being processed. If the
token's attribute Token.Type=DEFINE, the object is the start of a function definition and a call is

made to a routine to process function definitions. Otherwise, its assumed the object is a
command statement and a call is made to a routine to process command statements.

45

The code example given above did not have any embedded semantic actions or error

management. A more realistic translation routine that embeds error handling is illustrated below:

void rdparserO

{

while(!error.status() && Token.Type!=DONE)
{

switchfToken.Type)

{
case(DEFINE): function_definition(); break;
default: command_statement(); break;

}

if(error.status()) return;

}

}

A collection of routines exist to handle errors in the translator. When an error occurs, a call is

made to register the error using error.setO. To see if an error has been registered, a call to

error.statusO is made. Error checking is embedded in the above code at each iteration of the

while loop and after each call to process a function definition or command statement. If an error

has occurred, translation terminates and program control returns to the function that called

rdparserO- At that point, appropriate code would be executed to display the error and reset the

translator.

The code presented above will successfully parse a command stream to determine if it is

syntactically correct. However, semantic actions must be included to effect the translation as

shown below.

void rdparserO

{

while(!error.statusO && Token.Type!=DONE)

{
switch(TokenType)

{
case(DEFINE): function_definitionO; break;

default: command_statementO; break;

}

if(error.statusO) return;

emit(NULL);

til(BR->bufout);

BR->bpout = BR->bufout;

}

}

The intermediate code generated by the parser is written to a buffer by calling the routine emitO-

The processing of a command statement or function definition will usually result in several calls

to emitO to generate the intermediate language stream. Upon returning to rdparserO, the buffer

is null terminated with a call to emit(NULL). Next, a call is made to the back end translator to

process the intermediate language stream; til(BR->bufout), where BR->bufout is a pointer to the

start of the intermediate code buffer. Finally, the pointer BR->bpout, which is used to navigate

the output buffer, is reset to point to the start of the output buffer.

46

Of course, not shown above are the thousands of lines of source code and hundreds of functions

which actually comprise all the nonterminals in the language that make up command statements

and function definitions.

Along with the many functions that define the grammar for the language, the parser consists of

the following main supporting routines, registers, and buffers:

matchO A short routine that calls the lexical analyzer to get the next token. It takes a

parameter that is compared to the current token; if they match, the next token is

extracted, if they don't match, an error is generated. Quite often, the parameter

passed to matchO is simply the current token. This forces a match and gets the

next token. However, at times, the parameter passed to matchO is actually

predicting what the current token must be according to the grammar

specification. If they don't match, an error is generated.

emitO Routine that writes an intermediate language token to the intermediate code

buffer.

error.setO and error.statusO Routines to register or check for errors.

Token Token register used to pass the next token from the lexical analyzer to the

parser.

BR Buffer record which contains pointers to the current input stream buffer and

intermediate code output buffer. Input buffer switching is mechanized in the

parser to facilitate insertion of macro files or symbolic constants into the current

stream being processed. A linked list of buffer records dynamically grows and

shrinks as needed with BR pointing to the buffer record for the current buffer

being processed.

47

3.3.2 Type Checking
Type checking is accomplished by implementing a simple type stack. Whenever the parser emits

an object value such as the address of a variable used in an expression or assignment, the type

code of that value is pushed to the type stack. Then, when an operation or assignment occurs,

embedded type checking routines are executed. For example, suppose the following assignment

statement is made where x and y are floating point variables:

x = 4 + y

The intermediate code emitted by the parser for this statement is shown below:

& 329152 i 4 & 329196 @f i2>f + If

Assume that types FLOAT and INTEGER are coded as 337 and 336, and the storage addresses

of x and y are 329152 and 329196.

First, the parser recognizes x is a floating point variable being assigned a value and emits the

address of x, & 329152. The type code of x is then pushed to the type stack, 337. Next, the

parser evaluates the assignment expression 4 + y. The integer number 4 is emitted, i 4, and the

type code for an integer is pushed to the type stack, 336|337. The address of y is emitted along

with the operator to fetch a floating point value, & 329196 @f, then the type code for y is pushed

to the type stack, 337|336|337. The
"+"

operator pops the two top stack values off the type stack,

337 and 336, and compares the two type values. At this point, the parser recognizes an implicit

cast from integer to float is required to make the two operands the same type. Code is emitted to

convert an integer to a float, i2>f, and since the result of the operation will yield a float, 337 is

pushed onto the type stack, 337|337. Finally, the plus operator is emitted, +. After the

assignment expression is evaluated, all that remains is to type check the assignment and emit

code to store the expression result at the address of x. The two remaining top stack values are

popped off the type stack and compared; the type of the expression and the type of the variable

being assigned to, 337 and 337. Finally, the floating point store operator is emitted, !f.

Of course, whenever a type mismatch occurs that cannot be implicitly cast to the correct type, or

an operation is undefined for a certain type, an error is generated and parsing terminates.

3.3.3 Intermediate Code Generation

Intermediate code generation is also embedded in the syntax-directed translation scheme. The

routine emitO is called whenever an intermediate code token needs to be written to the

intermediate code output buffer.

48

3.4 Symbol Table

The symbol table is a data structure used by the translator to store and retrieve

records of objects and their associated attributes. Objects are variables, arrays,

functions, reserved words, symbolic constants, and types. Object attributes
depend on the type of object, but typically include pointers to object lexemes,
data types, pointers to data storage locations, parameter attributes and return

types for functions, type definition attributes for user defined and base types,
etc.

The symbol table dynamically grows during the translation process. Each time an identifier is

scanned from the input stream, the symbol table is searched for that identifier. If it's found,
attributes are extracted. If not found, it's inserted as a new record into the table and attributes are

added as the parsing process continues.

Symbol table routines provide the services to manage the table records. Searching, inserting,
extracting, deleting, etc. are some of the processes needed to manage the table records.

3.4.1 Table Structure

The symbol table actually consists of 6 separate linked lists; 1 list for each object type. Each list

has a unique record format for the object being stored.

VariableList variables defined as external in scope

ArrayList arrays defined as external in scope

FunctionList all user defined functions

ReservedList all system reserved words

SymbolicList all user defined symbolic constants

TypeList all base and user defined types

ists can be classified as global or local.

Global Lists: (6 lists shown above)

VariableList and ArrayList contain variables and arrays defined as external in scope, that is,
defined outside of functions. FunctionList, ReservedList, SymbolicList, and TypeList contain

functions, reserved words, symbolic constants, and base and user defined types that are always

global in scope.

Local Lists:

Variables and arrays that appear in function bodies or parameter lists have records local to that

function. Separate variable and array lists are created for each function and pointers to these

lists are stored as attributes in the function record. These lists are identical in format to the global

lists VariableList and ArrayList.

49

3.4.2 Scope and Binding Time

Variables and arrays are in general classified as either external or local in scope. To facilitate

attribute sharing and binding time, the symbol table refines classification of variables and arrays

as follows:

ID_EXTERN External variable or array

FP_VAL Function parameter passed as "call by
value"

FP_REF Function parameter passed as "call by
reference"

FID_LOCAL Function local variable or array

FID_EXTERN Function external variable or array

Although each object has a unique record, some objects share attributes. For example, a

function variable declared as EXTERN in the body of the function already exists as an external

variable that has a record in VariableList. In this case, pointers to the external variable lexeme

and storage address will be copied into the function's local variable record.

Binding time refers to that time at which attributes are resolved. In most cases, attributes are

resolved at compile time. However, as is the case with reference parameters, some attributes

are not resolved until actual runtime.

3.4.3 Record Formats

Record formats for symbol table objects are detailed below.

Variables:

Record Format:

lexeme typecode scope address next

lexeme ptr to variable name

typecode integer value representing variable type

scope char value representing variable's scope; ID_EXTERN, FP_VAL, FP_REF,

FIDJ.OCAL, FID_EXTERN

address ptr to first element in variable storage block

next ptr to next variable record in table

Scope and Attribute Creation: Bold means shared attribute; capital letters denote runtime

resolution, lowercase denote compile time resolution.

ID_EXTERN

FP_VAL

FP_REF

FIDJ-OCAL

FID EXTERN

lexeme typecode scope address next

lexeme typecode scope address next

lexeme typecode scope ADDRESS next

lexeme typecode scope address next

lexeme typecode scope address next

50

Arrays:

Record Format:

fexeroe | typecode \ scope address size width dimentotal term indexlist next

lexeme ptr to array name

typecode integer value representing array element type

scope char value representing array's scope; ID_EXTERN, FP_VAL, FP_REF,

FIDJ.OCAL, FID_EXTERN
address ptr to first element in array storage block

size total number of elements in array
width storage field width of a single array element (in bytes)
dimentotal number of array dimensions

term a constant term used in calculating the storage offset of array elements

indexlist ptr to array dimension index list

next ptr to next array record in table

Local Record Format: indexlist

1st dimension

2nd

3rd

lower upper size

lower upper size

lower upper size

lower

upper

size

lower array bound of dimension

upper array bound of dimension

number of elements in dimension (upper-lower+1)

Scope and Attribute Creation: Bold means shared attribute; capital letters denote runtime

resolution, lowercase denote compile time resolution. Shaded means not applicable; arrays

cannot be passed by value

ID_EXTERN

FP_VAL

FP_REF

FIDJ.OCAL

FID EXTERN

lexeme typecode scope address size width dimentotal term indexlist next

I v:::-:-:":vlv;::::::::

lexeme typecode scope ADDRESS SIZE WIDTH DIMENTOTAL TERM INDEXLIST next

lexeme typecode scope address size width dimentotal term indexlist next

lexeme typecode scope address size width dimentotal term Indexlist next

51

Reserved Keywords:

Record Format:

lexeme keyword code next

lexeme ptr to reserved keyword name

keyword code unique integer value > 255 assigned to reserved keyword

next ptr to next reserved keyword record in table

Symbolic Constants:

Record Format:

lexeme string next

lexeme ptr to symbolic constant name

string ptr to replacement string

next ptr to next symbolic constant record in table

52

Functions:

Record Format:

lexeme typecode address numparams plist vlist alist next

lexeme ptr to function lexeme

typecode integer value representing type of function return value

address ptr to first element in function return value storage block

numparams integer value representing number of function parameters

plist pointer to function parameter list

vlist pointer to function variable list

alist pointer to function array list

next ptr to next function record in table

Local Record Format: plist

lexeme typecode scope recordtype next

lexeme ptr to parameter lexeme

typecode integer value representing type of parameter

scope char value representing parameter's scope; ID_EXTERN, FP_VAL, FP_REF,

FIDJ.OCAL, FID_EXTERN

recordtype integer value representing kind of parameter; VARIABLE, ARRAY

next ptr to next parameter record in parameter list

Local Record Format: vlist

The vlist is a linked list of variable records local to the function body. Function variable

parameters are also stored at the head of this list. Same record format as Variables.

Local Record Format: alist

The alist is a linked list of array records local to the function body. Function array parameters are

also stored at the head of this list. Same record format as Arrays.

53

Types:

Record Format:

lexeme typecode total units total bytes segment offset list member list next

lexeme

typecode

total units

total bytes

segment offset list

member list

next

ptr to type name

unique integer value > 255 assigned to type

total number of base type storage elements required for type

total number of storage bytes required for type

storage offset index for elements

ptr to type member list, 0 if base type

ptr to next type record in table

Local Record Format: member list

lexeme typeptr segment start segment end next

lexeme ptr to member name

typeptr ptr to member's type record in type table; e.g. member POINT R1 would

point to type record for type POINT

segment start member's starting unit offset relative to type's total unit list

segment end member's ending unit offset relative to type's total unit list

next ptr to next member record in member list

Local Record Format: segment offset list

typecode byte offset

typecode byte offset

typecode byte offset

0 next free byte

typecode integer value representing member type

byte offset relative offset byte of member's data storage location

next free byte next free byte relative to member's data storage location

Example: Suppose a user defined type contains as members an int (type 336), float (type 337),

float, and int. It's segment offset list would be as follows:

336 0

337 4

337 12

336 20

0 24

54

3.4.4 Service Routines

The major service routines for managing symbol table objects are listed below with a brief

description of what each does.

Variables:

lnsertVariable() Insert a new variable record into the symbol table.

Arrays:

lnsertArray() Insert a new array record into the symbol table.

CalcArrayOffsetO Calculate the byte offset of an array element's storage position with respect

to the starting address of the array's storage block

Reserved Keywords:

lnsertReserved() Insert a new reserved keyword record into the symbol table. This routine is

called once at startup to initialize the symbol table with reserved keywords.

Symbolic Constants:

lnsertSymbolic() Insert a new symbolic constant record into the symbol table.

Functions:

InsertFunctionO Insert a new function record into the symbol table.

LookupParameterO Search function's parameter list for a parameter.

Types:

lnsertBasetype()

lnsertTypeDef()

lnsertMember()

LookupType()

LookupMember()

BuildOffsetList()

General Routines:

SetScopeO

SetStateO

Restorestate0

DeleteO

MakeStorageO

LookupO

Insert base types into type table at startup (FLOAT, INTEGER, etc.)
Insert a new user defined type record into the symbol table.

Insert a member into the member list of the current type under construction.

Search type table for a type.

Search a type's member list for a member record.

Builds a storage index array for accessing type member storage locations.

Routine that sets the current VariableList and ArrayList to either global or

local to a function.

Records the current state of the symbol table lists. Used to restore the

symbol table in the case where a system error occurs.

Routine that restores the symbol table lists to the condition recorded with a

call to SetStateO.

Routine to delete an object record from the symbol table.

Routine to allocate storage for a new object.

General lookup routine for any symbol table object.

55

^D

55

3.5 ErrorModule

Error management is integral to all phases of the translation process. Runtime

error support is also included for the detection of floating point errors and array
bounds exceptions.

Typical error management services include:

Registration, detection, and display of errors during translation and runtime

phases

Comprehensive error messages

Display of source line where error occurred and if applicable, line number and filename

Color highlighting of token or expression that generated the error

3.5.1 Interface Routines and Record Format

Basically, the error module consists of a linked list of error records that are registered during the
execution of the translator and three interface routines to set, check, and display/clear the error

records. Interface routines and record format are described below:

Interface routines:

error.statusO Check error module to see if an error(s) has occurred.

error.setO Call error module to register an error.

error.showO Call error module to display errors and reset the error register.

Record Format:

number type code msg text lineno next

number number of error with respect to current error list

type general error classification; LEXICAL, PARSER, SYMTABLE, COMP, IOERR,

RUNTIME, STACKS, FPE.

code integer code used to assist in highlighting error messages

msg ptr to error message

text ptr to source code line containing error

lineno source code line numberwhere error occurs

next ptr to next error record in the current error list

56

3.5.2 Error Management Rules

Error management and control is methodically handled by adhering to the following set of rules:

Rule 1 . Each function in the source code must have as its first statement a call to error.statusO

to check if an error has been registered. If so, program control must be returned to the

calling routine without executing any code in the current function.

Rule 2. If an error can occur within the body of a function, code must be included to call

error.setO to register the error and then return program control to the calling routine.

Rule 3. If a function calls another function, or contiguous sequence of functions, the next

statement must be either:

a.) A call to error.statusO to check if the called function(s) registered an error, and if

so, program control must be returned to the calling routine without executing any

more code in the body of the current function.

b.) A return of program control to the calling routine.

Rule 4. A single controlling executive program or function must exist where return will eventually

come to and code will be executed to display the registered errors and reset the

translator.

Rule 1 . basically shuts down all functions once an error has been registered. Source code may

still continue to call functions as is the case when a function calls several functions sequentially,

but they don't do anything except return.

Rule 2. requires every function to manage and register any errors its responsible for and return

program control to the calling routine in this event.

Rule 3. requires every function that calls another function to perform some task to check if that

called function generated an error, and if so, stop and return.

Rule 4. states that there must exist some top level function where program control must always

return to so that registered errors can be displayed and the translator/application can be reset.

57

3.5.3 Example

A typical code fragment is shown below to illustrate embedding of error management in the

source code.

void open_statementO

{

if(error.status()) return;

match(OPEN);channelO;match(',');modeO;match(',');filenameO;emit("open");

}

void channelO

{

if(error.status()) return;

switch(Token.Type)

{
case('#'): match('#'); ExprO; break;

default:

error.set(0,PARSER,"Channel numbermust be prefixed with # symbol");

return;

}

if(error.status()) return;

if(poptO!=INTEGER)

{
error.set(0,PARSER,"Channel number must be an INTEGER expr in range 1 to 255");

return;

}

}

Suppose, for example, a call is made to the function open_statementO to open a file on disk.

The first action of the function open_statementO is to make a call to the error module to see if an

error has been registered prior to it being called (Rule 1
.) Next, a contiguous sequence of

function calls are made to the functions matchO, channelO, matchO, modeO, matchO, filenameO,

and emitO- Finally, open_statementO returns program control to whatever function called it (Rule

3b.) Since no error can be generated in the body of open_statementO, Rule 2. does not apply in

this case. If an error has been generated at some point executing the open_statementO, program

control will return eventually to a single controlling portion of the program where the error(s) can

be displayed and the system reset (Rule 4.)

Now examine the function channelO which is called by open_statementO-The first action of the

function channelO is to make a call to the error module to see if an error has been registered

prior to it being called (Rule 1
.)
An error at this point would exist only if the preceding call to the

function matchO in open_statementO resulted in an error being registered by itself or some

function it called. If an error exists, program control is returned to open_statementO. If no error

exists, the next step is to process the switch block in the body of channelO.

If case = default, the function channelO has determined an error must be generated, a call is

made to error.setO to register the error, and program control is then returned to

open_statementO (Rule 2.)

58

If case = '#', a contiguous sequence of function calls are made to the functions matchO and

ExprO. Next, a call is made to the error module to see if an error has been registered by one of

the functions called (Rule 3a.) If an error has occurred, program control is returned to

open_statementO- If no error has been registered, the conditional if block is tested for

poptO!=INTEGER. If true, the function channelO has determined an error must be generated, a

call is made to error.setO to register the error, and program control is then returned to

open_statementO (Rule 2.) If false, program control returns to open_statementO with no

registered errors.

3.5.4 Design Note - Multiple Error Registration

Currently, translation stops at the occurrence of the first error detected so a linked list of records

is not necessary. However, future translator development would desirably incorporate some

means of error correction or method of error recovery to continue compilation. This would require

a mechanism to register multiple errors and was the main reason for structuring the error register

with this capability now. However, as it stands, multiple errors can occur if the source code fails

to return properly after the first occurrence of an error. Therefore, the registration of multiple

errors currently serves as a debugging tool for program development.

59

-<J
3.6 Threaded Interpreter/Compiler

The back end interpreter and code generator is a threaded code interpreter. As

stated in the theory section of this paper, a threaded code interpreter is itself a

translator that incorporates a threaded code generator and software interpreter.

Threaded code is a fully analyzed internal form of instructions comprised of

addresses that point to either primitives, secondaries, or literals.

Using a core set of primitives, stacks and registers, and maintaining a threaded code keyword

dictionary, the interpreter mechanizes two modes of operation; a compile mode where

secondaries are created and an execution mode where threaded code is interpreted and

executed.

The major components of the threaded interpreter/compiler are:

Primitives and secondaries.

TIL keyword dictionary.

Stacks and Registers.

Supporting machine code routines.

Outer interpreter controlling executive.

Inner interpreter.

A complete description of a TIL is given in the theory section of this paper. Figure 3.7 shows the

main elements of the TIL.

60

FRONT END

TRANSLATOR

T

| INTERMEDIATE CODE

| BUFFER

'II 7 i

OUTER

INTERPRETER

it

INNER

INTERPRETER

STACKS

Data Address Return

r 1

REGISTERS MACHINE CODE

ROUTINES

Instruction

Word Address

TIL

DICTIONARY

Secondaries Primitives

i-

-n.

i- !
r i
I-

1

I 1
I-

i

Figure 3.7 Threaded code interpreter/compiler.

61

3.6.1 Primitives and Secondaries

Primitives are the core keywords of the language. For each primitive, there exists a

corresponding machine code routine to perform the action the primitive was designed to do.

Secondaries group pointers to other secondaries and primitives and structure lists of threaded

code instructions. Secondaries mechanize language extension, similar to functions, while

primitives form the base language for the system. Shown below are the record formats for

primitives and secondaries.

Primitive Record Format:

lexeme link code address

lexeme ptr to keyword name

link ptr to next keyword record in TIL dictionary
code address ptr to primitive's machine code routine

Secondary Record Format:

lexeme link code address word address #1 word address #2 SEMI address

lexeme ptr to keyword name

link ptr to next keyword record in TIL dictionary
code address ptr to machine code routine COLON

word address ptr to code address section of primitive or secondary keyword record

SEMI address ptr to code address section of primitive keyword record SEMI

A descriptive listing of all system primitives and secondaries is given in Table 3.5 thru Table 3.9.

For short routines, the actual actions of the routine are described. For longer routines, a general

description is given. See the source code listings in the Appendix for details about a particular

routine.

62

KEYWORD DESCRIPTION

inner til exit routine to set inner interpreter exit flag TRUE
semi inner interpreter routine SEMI

float Ih floating point literal handler routine

int Ih integer literal handler routine

vptrjh void pointer literal handler routine

adr Ih address literal handler routine

str Ih string literal handler routine

runtime routine to pop result of switch floating point expression from DS and

store in temporary register

runtime routine to pop result of switch integer expression from DS and store in

temporary register

runtime routine to evaluate result of conditional expression and branch to

appropriate location in threaded code list

_ifeq
runtime routine to evaluate floating point results of case and switch expression

and branch to appropriate location in threaded code list

JFEQ runtime routine to evaluate integer results of case and switch expression and

branch to appropriate location in threaded code list

Jmp runtime routine to mechanize jump to new location in threaded code list

rtnerr routine to register error when function structure causes a return with no value

Table 3.5 TIL headerless primitives.

KEYWORD DESCRIPTION

inner til exit adr threaded code address of headerless primitive inner_til_exit which is used to

set inner interpreter exit flag TRUE

Table 3.6 TIL headerless secondaries.

KEYWORD DESCRIPTION

dump routine to toggle threaded code listing on or off for debugging

rtn routine to mechanize a RETURN from a function

rtn? routine to check if a secondary properly terminates with a call to SEMI

& set stack to address mode

i set stack to integer mode

ii set stack to immediate integer mode

f set stack to floating point double mode

&s set stack to string pointer mode

&v set stack to void pointer mode

Table 3.7 TIL immediate vocabulary primitives.

63

KEYWORD DESCRIPTION

i routine to terminate a secondary and insert call to SEMI

if routine used in constructing an IF block

elseif routine used in constructing an IF block

endif routine used in constructing an IF block

jmp routine to mechanize jump to new location in threaded code list

while routine used in constructing a WHILE block

wend routine used in constructing a WHILE block

repeat routine used in constructing a REPEAT block

until routine used in constructing a REPEAT block

for routine used in constructing a FOR block

fori routine used in constructing a FOR block

for2 routine used in constructing a FOR block

next routine used in constructing a FOR block

break routine to mechanize a BREAK statement

setbrk routine to mechanize a BREAK statement

swtch routine used in constructing a SWITCH block

SWTCH routine used in constructing a SWITCH block

easel routine used in constructing a SWITCH block

CASE1 routine used in constructing a SWITCH block

case2 routine used in constructing a SWITCH block

case3 routine used in constructing a SWITCH block

CASE3 routine used in constructing a SWITCH block

send routine used in constructing a SWITCH block

SEND routine used in constructing a SWITCH block

default routine used in constructing a SWITCH block

cjmp routine used in constructing a SWITCH block

Table 3.8 TIL compiler vocabulary primitives.

64

KEYWORD DESCRIPTION

: inner interpreter routine COLON

list routine to list TIL keywords to screen

i>f convert top DS entry from integer to floating point

i2>f convert 2nd DS entry from integer to floating point

@f pop address from AS, fetch floating point number stored at address, push to

DS

@f+ pop address from AS and offset from DS, fetch floating point number stored at

address+offset, push to DS

@F copy address from AS, fetch floating point number stored at address, push to

DS

@F+ copy address from AS and pop offset from DS, fetch floating point number

stored at address+offset, push to DS

If pop address from AS and floating point number from DS, store number at

address

!f+ pop address from AS and offset from DS, pop floating point number from DS,
store number at address+offset

IF copy address from AS, pop floating point number from DS, store number at

address

!F+ copy address from AS, pop offset from DS, pop floating point number from

DS, store number at address+offset

@i pop address from AS, fetch integer number stored at address, push to DS

@i+ pop address from AS and offset from DS, fetch integer number stored at

address+offset, push to DS

@l copy address from AS, fetch integer number stored at address, push to DS

@l+ copy address from AS and pop offset from DS, fetch integer number stored at

address+offset, push to DS

ij pop address from AS and integer number from DS, store number at address

!i+ pop address from AS and offset from DS, pop integer number from DS, store

number at address+offset

II copy address from AS, pop integer number from DS, store number at address

11+ copy address from AS, pop offset from DS, pop integer number from DS,
store number at address+offset

@&s pop address from AS, fetch string pointer stored at address, push to DS

@&s+ pop address from AS and offset from DS, fetch string pointer stored at

address+offset, push to DS

@&S copy address from AS, fetch string pointer stored at address, push to DS

@&S+ copy address from AS and pop offset from DS, fetch string pointer stored at

address+offset, push to DS

!&s pop address from AS and string pointer from DS, store string pointer at

address

!&s+ pop address from AS and offset from DS, pop string pointer from DS, store

string pointer at address+offset

!&S copy address from AS, pop string pointer from DS, store string pointer at

address

!&S+ copy address from AS, pop offset from DS, pop string pointer from DS, store

string pointer at address+offset

Table 3.9 TIL core vocabulary primitives.

65

KEYWORD DESCRIPTION

l&v pop address from AS and void pointer from DS, store void pointer at address

@&va pop address from DS, fetch void pointer at address, push void pointer to AS

@&vd pop address from DS, fetch void pointer at address, push void pointer to DS

aof routine to calculate address offset of an array element

aiof routine to calculate address offset of an array element

of+ pop address from AS and offset from DS, push address+offset to AS

OF+ copy address from AS, pop offset from DS, push address+offset to AS

acpy pop target array record address from AS and source array record address

from DS, copy array record entries from source to target
*

pop 2 top stack floating point entries from DS, floating point multiply, push

result to DS

/ pop 2 top stack floating point entries from DS, floating point divide, push result

toDS

+ pop 2 top stack floating point entries from DS, floating point add, push result

toDS

-

pop 2 top stack floating point entries from DS, floating point subtract, push

result to DS
i*

pop 2 top stack integer entries from DS, integer multiply, push result to DS

i+ pop 2 top stack integer entries from DS, integer add, push result to DS

i-
pop 2 top stack integer entries from DS, integer subtract, push result to DS

s+ pop 2 top stack string pointer entries from DS, fetch strings at addresses,

concatenate, push pointer to concatenated string to DS

neg pop floating point number from DS, negate, push result to DS

NEG pop integer number from DS, negate, push result to DS

x<>0 pop floating point number from DS, if not equal to 0, push integer 1 to DS,
else push integer 0 to DS

!x pop floating point number from DS, if not equal to 0, push integer 0 to DS,
else push integer 1 to DS

IX pop integer number from DS, if not equal to 0, push integer 0 to DS, else push

integer 1 to DS

y<x pop 1st and 2nd floating point numbers from DS, if 2nd is less than 1st, push

integer 1 to DS, else push integer 0 to DS

Y<X pop 1st and 2nd integer numbers from DS, if 2nd is less than 1st, push integer

1 to DS, else push integer 0 to DS

y<=x pop 1st and 2nd floating point numbers from DS, if 2nd is less than or equal to

1st, push integer 1 to DS, else push integer 0 to DS

Y<=X pop 1st and 2nd integer numbers from DS, if 2nd is less than or equal to 1st,
push integer 1 to DS, else push integer 0 to DS

y>x pop 1st and 2nd floating point numbers from DS, if 2nd is greater than 1st,
push integer 1 to DS, else push integer 0 to DS

Y>X pop 1st and 2nd integer numbers from DS, if 2nd is greater than 1st, push

integer 1 to DS, else push integer 0 to DS

y>=x pop 1st and 2nd floating point numbers from DS, if 2nd is greater than or

equal to 1st, push integer 1 to DS, else push integer 0 to DS

Table 3.9 (cont.) TIL core vocabulary primitives.

66

KEYWORD DESCRIPTION

Y>=X pop 1st and 2nd integer numbers from DS, if 2nd is greater than or equal to

1st, push integer 1 to DS, else push integer 0 to DS

y=x pop 1st and 2nd floating point numbers from DS, if 2nd is equal to 1st, push

integer 1 to DS, else push integer 0 to DS

Y=X pop 1st and 2nd integer numbers from DS, if 2nd is equal to 1st, push integer

1 to DS, else push integer 0 to DS

yox pop 1st and 2nd floating point numbers from DS, if 2nd is not equal to 1st,
push integer 1 to DS, else push integer 0 to DS

Y<>X pop 1st and 2nd integer numbers from DS, if 2nd is not equal to 1st, push

integer 1 to DS, else push integer 0 to DS

y&x pop 1st and 2nd floating point numbers from DS, if 2nd AND 1st, push integer

1 to DS, else push integer 0 to DS

Y&X pop 1st and 2nd integer numbers from DS, if 2nd AND 1st, push integer 1 to

DS, else push integer 0 to DS

y|x pop 1st and 2nd floating point numbers from DS, if 2nd OR 1st, push integer 1

to DS, else push integer 0 to DS

Y|X pop 1st and 2nd integer numbers from DS, if 2nd OR 1st, push integer 1 to

DS, else push integer 0 to DS

sin pop floating point number from DS, calculate sine, push result to DS

cos pop floating point number from DS, calculate cosine, push result to DS

tan pop floating point number from DS, calculate tangent, push result to DS

asin pop floating point number from DS, calculate arcsine, push result to DS

acos pop floating point number from DS, calculate arccosine, push result to DS

atan pop floating point number from DS, calculate arctangent, push result to DS

sinh pop floating point number from DS, calculate hyperbolic sine, push result to

DS

cosh pop floating point number from DS, calculate hyperbolic cosine, push result to

DS

tanh pop floating point number from DS, calculate hyperbolic tangent, push result

toDS

exp pop floating point number from DS, calculate e lnumDer)> push result to DS

In pop floating point number from DS, calculate natural log, push result to DS

log pop floating point number from DS, calculate base 10 log, push result to DS

sqrt pop floating point number from DS, calculate square root, push result to DS

abs pop floating point number from DS, calculate absolute value, push result to

DS

yAx pop 1st and 2nd floating point numbers from DS, raise 2nd to power 1st, push

result to DS

mem routine to display TIL dictionary memory usage

prtf pop floating point number from DS, print to screen

prti pop integer number from DS, print to screen

prts pop string pointer from DS, print string to screen

prt print newline character to screen

Table 3.9 (cont.) TIL core vocabulary primitives.

67

KEYWORD DESCRIPTION

fprtf pop floating point number from DS, print to file

fprti pop integer number from DS, print to file

fprts pop string pointer from DS, print string to file

fprt print newline character to file

cprt routine to set new file channel

open routine to open new file

close routine to close a file

closea routine to close all files

input routine to extract line of input from keyboard or file

inpf routine to process floating point expression

inpi routine to process integer expression

inps routine to process string expression

ftoa routine to convert floating point number to a string

trans routine to call the translator and process a source language stream

sys routine to shell out of translator to execute a program

del routine to delete an object

local routine to set translator symbol table scope local to a function

global routine to set translator symbol table scope to global

Table 3.9 (cont.) TIL core vocabulary primitives.

68

3.6.2 TIL Keyword Dictionary
The TIL dictionary is simply an array of pointers forming a contiguous block of memory allocated
at system startup. Primitives and secondaries, as well as pointers to literals, are structured and

stored sequentially in this memory block. Each entry in the dictionary is a generic pointer as

shown below.

TIL Dictionary Format:

ptr

ptr

ptr

ptr

ptr i

1

ptr generic pointer to a literal, machine code routine, or dictionary entry

Vocabularies segment the dictionary into different areas. The TIL dictionary is structured with the

following vocabularies:

HEADERLESS

COMPILER

IMMEDIATE

CORE

USER

Bottom of dictionary space used to store headerless system primitives and

secondaries.

System primitives that are executed during compile mode, invalid in execute

mode.

System primitives that are always executed regardless of mode.

Bulk of system primitives; compile in compile mode, execute in execute

mode.

Free space for insertion of user created secondaries.

At startup, all system primitives and secondaries are created and inserted into the dictionary
vocabularies HEADERLESS, COMPILER, IMMEDIATE, and CORE. The remaining dictionary
space is allocated to USER. At present, the dictionary memory block is fixed in size at system

startup. Once the dictionary space becomes filled, no more secondaries can be compiled into the

system.

69

3.6.3 Stacks and Registers

The threaded code interpreter uses the following stacks and registers:

DS Data Stack; LIFO stack used to store numbers

AS Address Stack; LIFO stack used to store addresses

RS Return Stack; LIFO stack used to store return addresses when a secondary calls

another secondary or a primitive.

I_reg Instruction Register; used to store address of next threaded code instruction in

current secondary being processed.

WA_reg Word Address Register; used to store the word address of the current keyword or

the address of the code body section of the current keyword.

Registers are simply generic pointers. Stacks are fixed length arrays of generic pointers

allocated at system startup.

Note that no code address register, CA_reg, is implemented as was described in the theory

section. Since speed is critical to the operation of the inner interpreter, this register was

eliminated. During execution, WA_reg points to the entry containing the code address of the

executable routine so there's no need to move the address to another register and then call the

routine.

Also note the inclusion of an additional stack, the Address Stack. This stack was implemented to

store addresses separate from data to make the design of the interpreter easier to implement.

70

3.6.4 Outer Interpreter

The outer interpreter serves as the controlling executive for the interpreter. The outer
interpreter

performs the following tasks:

Token extraction and classification; number, address, or keyword.

Compilation of threaded code.

Management of system flags and registers.

A flow chart of the basic operation of the outer interpreter is shown in Figure 3.8.

TIL

Initialize system:

Flags

Registers

Stacks

RETURN

Get next token

ERROR

Insert address

into TIL

dictionary.

Execute

keyword
Push to stack

Figure 3.8 Flowchart of basic outer interpreter operation.

71

Several routines support the operation of the outer interpreter:

til() The main controlling executive.

createQ Routine to create header for new secondary.

tokenQ Routine to extract next token from the intermediate code buffer.

searchQ Routine to search TIL dictionary for keyword.

executeQ Routine to execute current keyword or compile into current secondary under

construction.

numberQ Routine to recognize token as a number or address, push to stack or compile into

current secondary under construction.

3.6.5 Inner Interpreter

The inner interpreter is a small loop that mechanizes the execution of threaded code. Shown

below is the actual code comprising the inner interpreter:

// initialize reg_WA with address of keyword code body

// initialize regj to exit inner til instruction

reg_WA=KEYWORD;

reg_l=l_start_adr;

while(FLAG.INNER)

{
reg_WA->funcpO;

// This whileO block is the "inner interpreter".

// funcpO executes the current keyword code

// body. Loop until last code body executed sets

reg_WA=reg_l++->dictp; // FLAG. INNER = OFF.

}

72

3.7 Source Language Specification

A complete four part specification of the context-free grammar used in the translator is presented

in the pages that follow. Recall from the theory section, a context-free grammar is composed of

terminals, nonterminals, productions, and a starting nonterminal.

Notation conventions used in specifying the grammar are as follows:

() Nonterminals; e.g., (object) (more_objects).

8 Empty set; allows substitution of "null
sequence"

for a nonterminal.

[] Optional; e.g., ["&"] (id) means ampersand is optional, "&"(id) or (id) are

acceptable.

{ } Repeating; e.g., { (digit) } means (digit)(digit)(digit)... to whatever length required.

| Alternative choice; e.g.,
"+"

|
"-"

means
"+"

or
"-"

is acceptable.

- Production symbol; single nonterminal to left of symbol has as a production a finite

sequence of terminals and/or nonterminals given to right of symbol. If alternative

productions for a nonterminal exist, each is grouped with the nonterminal and

preceded by the -> symbol.

Boldface words in quotes represent individual terminal symbols; e.g., "LET", "+", "TYPEDEF",

etc.

Boldface italicizedwords in quotes represent a general set of terminal symbols from which one

will be substituted; e.g.,
"fype"

could be "FLOAT", "INTEGER", unsigned rear could be "1.25",

etc.

Boldface nonterminals are used just to emphasize the major nonterminals, they have no

significance.

73

1 . A finite, nonempty set of symbols called terminals. See Table 3.1 0.

E ,
i

& () I]

{ } = <> <

<= > >= +
-

*

/ A OR AND

NOT LET TYPEDEF DEFINE END.DEFINE

RETURN FOR NEXT GLOBAL LOCAL

IF ELSEIF ELSE ENDIF EXTERN

SWITCH CASE DEFAULT ENDSWITCH BREAK

WHILE ENDWHILE REPEAT UNTIL TRANSLATE

FLOAT INTEGER STRING INPUT PRINT

OPEN CLOSE LOAD FTOA DELETE

SYMBOL SYSTEM SIN COS TAN

ASIN ACOS ATAN SINH COSH

TANH ABS SQRT LOG LN

EXP identifier string unsigned real
unsigned

integer

user defined

type

Table 3.10 Terminal set.

74

2. A finite, nonempty set of nonterminals. See Table 3.1 1 .

(command.stream) (input.statement) (external.declaration.statement)

(more_objects) (prompt) (conditional.statement)

(object) (channel) (if.statement)

(command.statement) (varJist) (switch
.statement)

(declaration.statement) (more.vars) (iterative,statement)

(new.identifierJist) (var) (for
.statement)

(more_newJdentifiers) (print_statement) (while.statement)

(newjdentifier) (expressionJist) (repeat.statement)

(dimensionJist) (more_expressions) (return
.statement)

(more_dimensions) (open
.statement) (break.statement)

(dimension) (mode) (expression)

(assignment_statement) (filename) (moretermls)

(assignmentjist) (close.statement) (terml)

(more_assignments) (translate.statement) (moreterm2s)

(assignment) (delete
.statement)

(term2)

(identifier) (delete.list) (moreterm3s)

(indicejist) (more.delete.expressions) (term3)

(morejndices) (delete.expression) (moreterm4s)

(indice) (symbolic.statement) (term4)

(memberjist) (system
.statement) (moretermSs)

(more.members) (local
.statement)

(term5)

(member) (global
.statement) (moreterm6s)

(typedef.statement) (function
.definition) (termG)

(type.name) (return.type) (term7)

(new.memberJist) (new.function.name) (term8)

(more_new
.members) (param.list) (type)

(new.member) (more.params) (id)

(new_member_name) (param) (number)

(function_statement) (param.type) (sliterat)

(function.name) (param.name)

(parameterJist) (statementjist)

(more.parameters) (more.statements)

(parameter) (statement)

Table 3.11 Nonterminal set.

75

3. A finite, nonempty set of rules called productions. Productions for the entire language are

listed below.

(command.stream)

(more.objects)

(object)

-> (object) (more.objects)
-> (object) (more.objects)
-* s

-> (function.definition)
-> (command.statement)

(command.statement)

(declaration.statement)
(new.identifierJist)

(more.new.identifiers)

(new
.identifier)

(dimensionJist)

(more.dimensions)

(dimension)

(assignment.statement)

(assignmentjist)

(more.assignments)

(assignment)

-> (declaration.statement)
-> (assignment.statement)
-> (typedef.statement)
-> (function

.statement)

-> (input.statement)
-> (print.statement)
- (open

.statement)

-> (close.statement)
-* (translate.statement)
- (delete.statement)
-> (symbolic.statement)
-> (system

.statement)

-> (local.statement)

-> (global.statement)

-> (type) (new.identifierJist)
-> (new

.identifier)
(more.new

.identifiers)

->

","

(new.identifier) (more.new.identifiers)

-> s

-> <*>
- </</>

"["(dimension.list)"]"

-> (dimension) (more.dimensions)

->

","

(dimension) (more.dimensions)

- E

-> [[<*/dn>] (integer)
":"

] [(sign)] (integer)

-> ["LET"] (assignmentjist)

-> (assignment) (more.assignments)

-

","

(assignment) (more.assignments)

-

- (identifier)
"="

(expression)

76

(identifier)

(indice.list)

->

->

^

(//> (indice.list) (memberjist)

"["(indice)
(more.indices)"]"

g

(more.indices) ->

","

(indice) (more.indices)

(indice)

(memberjist)

>

->

->

E

(express/on)
"."

(member) (more.members)

(more.members)

^

->

"."

(member) (more^members)

(member)

>

(typedef.statement)

(type.name)
(new.member

.list)

->

->

->

"TYPEDEF"

(type.name) "{'(new.member

(id)

(new.member) (more.new.members)

(more.new
.members)

-

","

(new.member) (more.new.members)

(new.member)
(new.member

.name)

>

->

E

(t/pe) (new.member.name)

(id)

(function,statement)

(function.name)

(parameter.list) ->

->

^

(function.name) (parameter.list)

(id)

"('(parameter)
(more.parameters)")"

(parameter) (more.parameters)

g

(more.parameters) ->

","

(parameter) (more.parameters)

(parameter)

>

->

->

(id)

(expression)

- E

(input.statement)

(prompt)

(channel)

(var
.list)

->

->

-

->

"INPUT"

(prompt) | (channel)
","

(varJist)

(expression)
"#"

(expression)

(var) (more.vars)

(more.vars) ->

","

(war) (more.vars)

(var)

>

->

(print.statement)

(expression,list)

(more,expressions)

"PRINT"

[(channel) ","] (expression.list)

(expression) (more.expressions)
","

(expression) (more.expressions)

77

(open
.statement)

(mode)

(filename)

(close.statement)

(translate.statement)

(delete.statement)

(delete.list)

(more.delete.expressions)

(delete_expression)

(symbolic.statement)

(system
.statement)

(local
.statement)

(global
.statement)

(function.defmition) -,

->

->

-*

->

"OPEN"

(channel)
","

(mode)
","

(filename)

(expression)

(expression)

"CLOSE"

[(channel)]

TRANSLATE" "("(expression)")"

"DELETE"

(delete.list)

(dele te_expression) (more.delete.expressions)
","

(delete.expression) (more.delete.expressions)

E

(expression)

"SYMBOL"

(expression)

"SYSTEM"

(expression)

"LOCAL"

(expression)

"GLOBAL"

"DEFINE"

(return.type) (new.function.name) (param.list)

(statementjist)
"END.DEFINE"

(return.type)
(new

.function.name)

-> (type)

-> E

(param.list) ->

->

"("(param)
(more.params)")"

-> E

(more.params) ->

","

(param) (more.params)

- E

(param)

(param.type)

(param.name)

->

->

->

-

(param.type) (param.name)

(type)

["&"] (irf)
"[" "]"

(statementjist) -> (statement) (more.statements)

- E

(more.statements) -> (statement) (more.statements)

-> E

78

(statement) -> (declaration.statement)
- (external.declaration.statement)
-> (assignment.statement)
- (function

.statement)

-> (conditional.statement)
-> (iterative.statement)
- (return.statement)
-> (break_statement)
- (input.statement)
-> (print.statement)
-> (open.statement)

(close.statement)
-> (translate.statement)
-> (delete.statement)
-> (local.statement)

-> (global.statement)

(external.declaration.statement) -
"EXTERN"

(declaration.stc

(conditional
.statement)

-> (if.statement)
-> (switch

.statement)

(if.statement)
"IF" "("(expression)")"

(statementjist)
[{"ELSEIF" "("(expression)")"

(statementjist)}]
["ELSE"

(statementjist)]
"ENDIF"

(switch.statement) -+

"SWITCH" "("(expression)")"

"CASE" "("(expression)")"

(statementjist)
["CASE" "("(expression)")"

(statementjist)]
["DEFAULT"

(statementjist)]
"ENDSWITCH"

(iterative.statement) -> (for
.statement)

-> (while.statement)

-> (repeat.statement)

(for
.statement)

"FOR" "("(assignment_list)";"(expression)";"(assignment_list)")"

(statementjist)
"NEXT"

(while.statement)
"WHILE" "("(expression)")"

(statementjist)
"ENDWHILE"

(repeat.statement)
"REPEAT"

(statementjist)
"UNTIL" "("(express/on)")"

(return.statement)
"RETURN"

[(express/on)]

79

(break.statement) ->

"BREAK"

(expression) -> (terml) (moretermls)

(moretermls) -

"OR"

(terml) (moretermls)
c

(term!)

>

-> (term2) (moreterm2s)

(moreterm2s) ->

"AND"

(term2) (moreterm2s)

(term2)

>

-> (term3) (moreterm3s)

(moretermSs) ->

"="

|
"<>"

(term3) (moreterm3s)

(term3)

>

(term4) (moreterm4s)

(moreterm4s) ->

"<"

|
"<="

|
">"

|
">="

(rerm4) (moreterm4s)

(term4)

y

(termS) (moreterm5s)

(moreterm5s) ->

"+"

|
"-"

(termS) (moretermSs)

(termS)

>

-> (termS) (moreterm6s)

(moreterm6s) ->

"*"

|
7"

(term6) (moreterm6s)

(term6)

>

->

E
"+"

|
"-"

|
"NOT"

(rerm7)

- (term/)
(term7) -> (termS)

["A"

(term6)]

(term8) ->

"("(express/on)")"

-> (number)

- (sliteral)

-> (identifier)

-> (function
.statement)

-

"SIN"

|
"COS"

|
TAN"

|
"ASIN"

|
"ACOS"

|
"ATAN"

|
"SINH"

|
"COSH"

|
"TANH"

|
"ABS"

|
"SQRT"

|
"LOG"

|
"LN"

|
"EXP"

(type)

(id)

(number)

(sliteral)

->

"FLOAT"

|
"INTEGER"

|
"STRING"

I "user defined
type"

->

"identifier"

-> "unsigned
integer"

\ "unsigned
real'

->

string"

80

The following portion of the grammar is embedded in the lexical analyzer and included here for

reference only:

(letter) {(letter) \ (digit)}

(integer) ["."] [(exponent)]

[(integer)]
"."

(integer) [(exponent)]

(digit) {(digit)}

(id) ->

(number) ->

->

(integer) ->

(exponent) ->

(sign) ->

(digit) -

(letter) -

(arithmetic) ->

(relational) -

(equality) -

(string.literal) ->

(char) ->

[(sign)] (integer)
+"

"0"

|
"1"

|
"2"

| ... |
"9"

"A"

I
"B"

| ... |
"Z"

| |
"_"

| |
"a"

|
"b"

| ... |
"z"

<="

I
">"

I
">="

<>"

"""{(char)}"""

any legal character, ASCII codes 0-127

4. A designation of one of the nonterminals in part 2 as a starting nonterminal from which all

others can be generated by systematic application of the rules in part 3.

Starting nonterminal is: (command.stream)

81

4. IMPLEMENTATION

Engineering examples, performance evaluation, and application integration are discussed in the

following sections. It's recommended that the reader study the Language and Compiler Guide in

the Appendix to familiarize themselves with the language and program usage before proceeding

with this section.

4. 1 Examples Solving Engineering Problems

Several engineering examples are presented in the following sections to illustrate the current

capabilities of the translator and system language. The TRANSLATE command is used in some

of the examples shown here to exploit the translator's reentrant capability and give the reader

some insight into this unusual feature. However, until pointers are included in the system

language, efficient use of the TRANSLATE command cannot be attained. Nevertheless, the

benefits to the user are such that it was decided to use this feature in the examples that follow.

4.1.1 Four-Bar CrankMechanism

This example presents a program to solve for the output angles of a four-bar crank mechanism

given a set of input angles. Freudenstein's equation is solved numerically using the
Newton-

Raphson method. For a complete description of the Newton-Raphson method, derivation of

Freudenstein's equation, and solution to the four-bar crank mechanism problem, see James,

Smith, and
Wolford.6

Problem: A typical four-bar crank mechanism is shown in Figure 4.1 . Calculate the output

angles <|) for a
360

rotation of the input crank in
5 increments starting at 9

= 0. Use the

following link lengths: a = 1.0, b = 2.0, c = 2.0, d = 2.0

Figure 4.1 Four-bar crank mechanism.

82

Theory: Calculation of for a given input angle 9 is found by solving Freudenstein's equation:

Ri*cos9 - R2*cos(j) + R3 - cos(9 -

<J>)
= 0 Equation 4.1

where:

R, = d/c

R2 = d/a

R3 =
(d2

+
a2

-

b2

+ c2)/2*c*a

In order to solve Equation 4.1, an iterative approach using the Newton-Raphson method is

implemented.

Solution: This problem is easily solved using the Newton-Raphson method. Program code to

solve the problem is shown in Figure 4.2.

// Program to calculate output crank angles in a four-bar mechanism using the

// Newton-Raphson method to solve Freudenstein's equation.

//

// a length of input crank, in

// b length of coupler link, in

// c length of output link, in

// d length of fixed link, in

// delta_theta increment of input angle, deg
// theta value of input angle, deg
// theta_max maximum value of input angle, deg
// R1 ,R2,R3 constants calculated from link lengths

// phi value of output angle, deg and radians

// new_phi improved value of output angle, deg and radians

// f1 f(phi)=R1*cos(theta)-R2*cos(phi)+R3-cos(theta-phi)

// fO f(phi)=R2*sin(phi)-sin(theta-phi)

// epsilon accuracy check value, radians

Figure 4.2 Program to solve four-bar crank mechanism problem.

83

DEFINE bar40
FLOAT a,b,c,d // variable declarations

FLOAT delta_theta,theta,theta_max //

FLOAT R1,R2,R3,phi,new phi //

FLOAT f1 ,f0,epsilon //

INTEGER i //
a= 1.0, b = 2.0, c = 2.0, d = 2.0 // variable initializations

delta_theta = 5.0 //

theta = 0.0 //

theta max = 360.0 //

phi = 41.0 //

epsilon = 0.00001 //

R1 = d/c // constant calculatons

R3 =

(dA2.0+aA2.0-bA2.0+cA2.0)/(2.0*c*a) //

theta = theta*0.01 745329 // convert angles to radians

theta max = theta max*0.01 745329 //

phi = phi*0.01 745329 //

deltajheta = delta_theta*0.01 745329 //

FOR(i=1;theta<=theta max ; i=i+1, theta=theta+delta theta)
f1 = R1*COS(theta)-R2*COS(phi)+R3-COS(theta-phi) // calc Freudenstein eq
fO = R2*SIN(phi)-SIN(theta-phi) // calc derivative

new phi = phi-fl/fO // calc improved phi val

WHILE((ABS(new_phi-phi)-epsilon)> 0) // iterate calcs until phi converges

phi = new phi // with accuracy specified

f1 = R1*COS(theta)-R2*COS(phi)+R3-COS(theta-phi)
fO = R2*SIN(phi)-SIN(theta-phi)
new phi = phi-f1 /fO

ENDWHILE

PRINT theta/0.01 745329,",",new_phi/0.01745329

phi = new phi // approximate next output angle

NEXT

END DEFINE

Figure 4.2 (cont.) Program to solve four-bar crank mechanism problem.

84

To run the program, load the file 4bar.mac. At the command prompt type:

com> bar40 <ENTER>

The program will run and print the results to screen.

Results: Results of calculations are graphed in Figure 4.3.

o o
CM

o g o g
CM ^ <D <D

OOQOOOOQO

CMWCMCMCMCOCOrOfO

Input angle (deg)

Figure 4.3 Graph of four-bar crank mechanism output angles.

85

4.1.2 Material Library
This example presents a method for incorporating a materials library into an application

environment. A materials library should be storable on disk for retrieval at the users discretion

and also provide a mechanism for insertion of new materials. To this end, a single macro file

matlib.mac is created containing the following:

a TYPE DEFINITION section for creation of a user-defined type called material

a FUNCTION DEFINITION section for creation of the function newmat() which is used to

insert new materials into the library

a MATERIALS section used for declaration and assignment of materials

Figure 4.4 is a listing of the program code to create and maintain a materials library.

// TYPE DEFINITION section

TYPEDEF material

{
FLOAT kx,
FLOAT ky,
FLOAT kz,
FLOAT cp

}
// FUNCTION DEFINITION section

DEFINE newmatO

STRING name.stream.spc

FLOAT kx,ky,kz,cp
INPUT "Enter new material name: ",name

INPUT "Enter kx

INPUT "Enter ky
INPUT "Enter kz

INPUT "Enter cp

",kx

",ky
",kz

",cp
spc =

" "

stream = "material "+name

stream = stream+spc+name+".kx = "+FTOA(kx)

stream =
stream+spc+name+".ky

= "+FTOA(ky)

stream = stream+spc+name+".kz
= "+FTOA(kz)

stream = stream+spc+name+".cp
= "+FTOA(cp)

TRANSLATE(stream)

OPEN #1

PRINT
#1,""

PRINT #1 ."material "+name

PRINT #1 ,name+".kx= ",kx

PRINT #1,name+".ky
= ",ky

PRINT #1,name+".kz = ",kz

PRINT #1
,name+".cp

= ",cp
CLOSE #1

END DEFINE

Figure 4.4 Material library program.

86

// MATERIALS section

material steel

steel.kx = 9.4

steel.ky = 9.4

steel.kz = 9.4

steel.cp
= 0.11

material aluminum

aluminum,kx = 118

aluminum.ky = 118

aluminum.kz = 118

aluminum.cp
= 0.214

material copper

copper.kx = 223

copper.ky
= 223

copper.kz = 223

copper.cp
= 0.0915

material lead

lead.kx = 20

lead.ky = 20

lead.kz = 20

lead.cp = 0.031

material nickel

nickel.kx = 52

nickel.ky = 52

nickel.kz = 52

nickel.cp
= 0.1065

material silver

silver.kx = 235

silver.ky
= 235

silver.kz = 235

silver.cp
= 0.0559

Figure 4.4 (cont.) Material library program.

87

Loading the file matlib.mac causes the following to happen:

1 . The user-defined type material is added to the system.

2. The function newmat() is compiled into the system and is available to the user for adding

new materials to the library.

3. The variables steel, aluminum, copper, lead, nickel, and silver are created and assigned

values.

Once loaded, any of the material variables can be used. For example, to calculate the heat

conduction thru a plain wall, Fourier's equation is used;

Q =
-k*A*(T2-T1)/Ax

If the variables Q, A, T1 , T2, and deltax have been defined, any material can be used in the

expression for k as illustrated in the assignment statement below:

LET Q =
-steel.kx*A*(T2-T1)/deltax

To add a new material to the library, the user invokes the function newmat().

This function interactively prompts the user for 5 inputs:

Enter new material name:
_

Enter kx:
_

Enter ky:
_

Enter kz:
_

Enter cp:
_

After entering the new material name and property values, the function appends the new

material declaration and assignments to the file matlib.mac using the OPEN #, PRINT #, and

CLOSE # commands. This action alone, however, does not load the new material into the

system. To accomplish this without having to reload the file matlib.mac, the TRANSLATE

command is used. A string variable is created consisting of a declaration statement to declare

the new material variable and 4 assignment statements to assign property values to the new

material variable. This string is then processed using the TRANSLATE command and the new

material is added to the system.

This is a simple example of using the reentrant capability of the translator via the TRANSLATE

command.

88

4.1.3 Integration Solver

This example presents a simple function to perform integration using the Trapezoidal method for

approximating the area under a curve. It illustrates a more complex use of the TRANSLATE

command to compile functions passed as string variables. It will also point out the need for the

inclusion of pointer variables in the system language which, at present, is absent.

Figure 4.5 is a listing of the macro file integrat.mac. Loading the file into the system compiles

and makes available to the user a single function INTEGRATED,b,n,fx). This function will return

the result of integrating a function given:

a lower limit of integration

b upper limit of integration

n number of intervals to divide up area of integration for Trapezoidal method

fx string which is the function to be integrated

For example, to perform the integration j x2+3 dx from x= 1 to x =3 and print the result to the

screen, type the following at the command line:

com> PRINT INTEGRATE^ ,3,1 00,"xA2+3") <ENTER>

14.6668

com>_

The result yields 14.6668, a close approximation to the actual value of 14 2/3.

DEFINE FLOAT INTEGRATE(FLOAT a, FLOAT b, INTEGER n, STRING fx)
FLOAT area

STRING function, trapezoid

function = "DEFINE FLOAT x) RETURN
"+fx+" END_DEFINE"

trapezoid = "DEFINE FLOAT a, FLOAT b, INTEGER n)

FLOAT x,h,sum,area

INTEGER i

h=(b-a)/n

sum=0

x=a+h

FOR(i=2; i<=n; i=i+1)

sum=sum+_fx(x)

x=x+h

NEXT

area=h/2.0*(_fx(a)+2.0*sum+_fx(b))

RETURN area

END_DEFINE"

TRANSLATE(function)

TRANSLATEftrapezoid)

LOCAL
"INTEGRATE"

TRANSLATE("area=_INTEGRATE(a,b,n)")

GLOBAL

DELETE
"_INTEGRATE","_fx"

RETURN area

END DEFINE

Figure 4.5 Numerical integration program using the Trapezoidal method.

89

To help understand the program, a complete step by step analysis is presented below:

1 . DEFINE FLOAT INTEGRATE(FLOAT a, FLOAT b, INTEGER n, STRING fx)
Start of function definition INTEGRATE which takes as parameters 2 floating point objects, 1

integer, and 1 string and returns a floating point value.

2. FLOAT area

Declaration of local floating point variable area.

3. STRING function, trapezoid

Declaration of 2 local string variables function and trapezoid.

4. function = "DEFINE FLOAT x) RETURN
"+fx+" END_DEFINE"

String variable assignment; local string variable function is assigned the result of a string

expression involving the concatenation of the string literal "DEFINE FLOAT x)

RETURN ", the string variable fx, and the string literal
"

ENDJDEFINE".

It is important to realize that the string assigned to function is just that, a string. For the

example presented at the beginning of this section, function would be assigned the following
string:

function = "DEFINE FLOAT x) RETURN xA2+3
END_DEFINE"

This string contains a syntactically correct definition of the function to evaluate xA2+3,

but no such function exists in the system when INTEGRATEO is compiled.

5. trapezoid = "DEFINE FLOAT a, FLOAT b, INTEGER n)

FLOAT x,h,sum,area

INTEGER i

h=(b-a)/n

sum=0

x=a+h

FOR(i=2; i<=n; i=i+1)

sum=sum+_fx(x)

x=x+h

NEXT

area=h/2.0*(_fx(a)+2.0*sum+_fx(b))

RETURN area

END_DEFINE"

String variable assignment; local string variable trapezoid is assigned a string literal. Again,

as in step 4, it is important to realize that the string assigned to trapezoid is just that, a string.

The string contains a syntactically correct definition of the function JNTEGRATE, but no

such function exists in the system when INTEGRATEO is compiled. is a

function to perform integration using the trapezoidal method and integrand

90

6. TRANSLATE(function)
Call to system command TRANSLATEO. At runtime, a call to TRANSLATE(function) will

suspend the current operation of the back end interpreter, save the register contents,
preserve the stack contents, and then reenter the translator to process the contents of the

string variable function. Once this operation is complete, control returns to the back end

interpreter and execution of INTEGRATEO resumes. At this point, a new function called
_fxO

has been compiled into the system.

7. TRANSLATE(trapezoid)
Call to system command TRANSLATEO. At runtime, a call to TRANSLATEftrapezoid) will
suspend the current operation of the back end interpreter, save the register contents,
preserve the stack contents, and then reenter the translator to process the contents of the

string variable trapezoid. Once this operation is complete, control returns to the back end

interpreter and execution of INTEGRATEO resumes. At this point, a new function called

JNTEGRATEO has been compiled into the system. Note thatJNTEGRATEO contains calls

to the function
_fxO,

where
_fxO

evaluates the function that was passed as a string to

INTEGRATEO-

8. LOCAL
"INTEGRATE"

Call to system command LOCAL "function name". This command sets the symbol table

scope local to the function INTEGRATEO-

9. TRANSLATE("area=_INTEGRATE(a,b,n)")
Call to system command TRANSLATEO- At runtime, this call to TRANSLATEO will suspend

the current operation of the back end interpreter, save the register contents, preserve the

stack contents, and then reenter the translator to process the string literal "area =

Translation of this string results in a call to the function

_INTEGRATE(a,b,n)

and assignment of the result to area. Note that a, b, n, and area are all

local variables to the function INTEGRATEO- This is the reason that in step 8, the symbol

table scope was set to LOCAL. Normally, when entering the translator, symbol table scope is

global. This means that objects inside of functions are hidden, and as a result, area, a, b,
and n would not be found. The LOCAL command circumvents this problem.

Once this operation is complete, control returns to the back end interpreter and execution of

INTEGRATEO resumes. At this point, area contains the result of the integration.

10. GLOBAL

Call to system command GLOBAL. This command sets the symbol table scope back to

global, the default mode.

1 1 . DELETE
"JNTEGRATE'V.fx"

Call to system command DELETE "object name". This command deletes the functions

JNTEGRATE and from the system.

12. RETURN area

Call to system command RETURN expression. Terminates execution of the function

INTEGRATEO and returns the value of area.

13. END_DEFINE

End of function definition INTEGRATEO-

91

At present, pointers are not implemented in the language. This is the reason why most of the

code to do the integration has to be compiled each time INTEGRATEO is called. To understand

this, you must have a clear distinction between compile time and run time actions. At compile

time, a statement which includes a call to a function results in a search of the symbol table for

that function to retrieve its address. Since
_fxO

does not exist at compile time for the function

INTEGRATEO, a statement that includes a call to
_fxO

in INTEGRATEO will result in an error.

For this reason, the code steps to perform the integration cannot include a call to
_fxO

when

INTEGRATEO is compiled.

At runtime, the back end interpreter executes INTEGRATEO by stepping thru its threaded code

list. When the code to execute the TRANSLATEO command is executed, execution of

INTEGRATEO is temporarily suspended, and the translator is reentered to process the string
passed to the TRANSLATEO command.

_fxO

is compiled into the system and control returns to

resume execution of INTEGRATEO- At this point, _fxO is in the system and has a symbol table

entry, but INTEGRATEO has no knowledge of it because it didn't exist at compile time for

INTEGRATEO- The next call to TRANSLATEO processes the string defining the function

JNTEGRATEO- This function contains calls to
_fxO

which are valid because
_fxO

is a function

in the system at compile time for JNTEGRATEO-

Finally, to execute JNTEGRATEO to perform the actual integration, the TRANSLATEO
command must once more be used. Again, this is because JNTEGRATEO did not exist at

compile time for INTEGRATEO-

When pointers are finally incorporated into the language, it will be much easier and more

efficient to program using the TRANSLATEO command. Figure 4.6 shows a possible scenario for

programming the integration routine using pointers. This scenario extends the current language

to include the following:

Function pointers; [type] (*function_name)([parameter_typeJisf])

Runtime routine to get the address of an object; ADR("ob/ecf_na/ne").

In this scenario, function pointer f is declared as FLOAT (*f)(FLOAT); a pointer to a function that

takes one floating point parameter and returns a floating point value. Once declared, f can be

used anywhere in INTEGRATEO because at compile time, f exists. At runtime, a call to f will

result in the execution ofwhatever function it points to at that time.

During execution of INTEGRATEO, the call to TRANSLATEO will compile
_fxO

into the system.

After that, a call to the runtime routine ADR() will get the address of JxO and assign it to f. Since

_fxO

now exists, ADRO will find it's address when it searches the symbol table.

Note in Figure 4.6 that calls to LOCAL and GLOBAL have been eliminated. These commands

were specifically put into the language to compensate for the lack of pointers, and should be

removed from the language once pointers become available.

92

DEFINE FLOAT INTEGRATE(FLOAT a, FLOAT b, INTEGER n, STRING fx)
FLOAT x,h,sum,area,(*f)(FLOAT)

INTEGER i

TRANSLATE("DEFINE FLOAT x) RETURN
"+fx+"

ENDJDEFINE")

f=ADR("_fx")
h=(b-a)/n

sum=0

x=a+h

FOR(i=2; i<=n; i=i+1)

sum=sum+f(x)

x=x+h

NEXT

area=h/2.0*(f(a)+2.0*sum+f(b))

DELETE
"_fx"

RETURN area

END DEFINE

Figure 4.6 Hypothetical integration routine using pointers.

93

4.1.4 Fourth-OrderRunge-Kutta DEQ Solver

This example presents a program to solve a set of first-order differential equations using a

fourth-order Runge-Kutta technique. An input data file is utilized to specify run parameters and

an output file is used to store the results. The TRANSLATE command is again used to allow

specification of differential equations in the input data file. This eliminates the user's burden of

having to write and compile functions each time a new set of differential equations is analyzed as

is typical with FORTRAN or BASIC. The user only modifies the data file, not the program code.

The theory behind solutions to differential equations and the algorithm used here will not be

discussed, however, the reader is referred to Burden and
Faires.7

Problem: The flight of a rocket is governed by the second-order, nonlinear differential equation
shown below:

d2y/dt2+ g*K*(dy/dt)2/W+g-g*T/W = 0

where: y
= rocket displacement

g
= gravitational constant

T = rocket thrust force

W = weight of rocket and fuel

K = drag coefficient

Objective: Solve for the displacement, velocity, and acceleration of the rocket over the time

interval t=0 to t=60s given the following data:

g
= 32.17

ft/s2

T = 7000 lbs

W = W(t) = 3000-40t lbs

K = 0.008
lb-s2/ft2

Initial conditions for the problem are: y(t)|t=o
= 0, dy(t)/dt|t=0 = 0

Solution: This problem is easily solved using the classical 4th-order Runge-Kutta numerical

method. Figure 4.7 lists the input data file for this problem. The file format is typical for any

problem, and consists of the following sections:

DESCRIPTION

VARIABLE

INTERVAL

Comment section to write a description of the problem. This section is

optional, but highly desirable.

Section to specify dependent and independent variables used in the

problem.

Syntax:
"dependent_variable""independent_variable"

Section to specify initial and final independent variable values and number

of steps over the interval.

Syntax: intitial_value, final_value, steps

94

FUNCTION Section to define any functions required if differential equations have

variable coefficients.

Syntax: number_of_functions II specify 0 if there are no functions.
"function_definition"

II one function per line

CONSTANT Section to define any constants used in the differential equations.

Syntax: number_of_constants II specify 0 if there are no constants.

"constant_declaration constant_assignmenf

DEQ Section to specify initial values and define differential equations

Syntax: number_of_diffeqs

intitial_value,"differential_equation"

II

DESCRIPTION SECTION **************************//

// Problem: Solution of a rocket's flight.

// Equations: y"+gKy'A2/W+g-gT/W = 0

// where: y rocket displacement, ft

// g gravitational constant, 32.17 ft/s2

// T rocket thrust force, 7000 lbs

// W weight of rocket and fuel, W(t) = 3000-40t lbs

// K drag coefficient, 0.008 Ib-s2/ft2

// Intial cond: y(t=0)
= 0, dy/dt(t=0) = 0

//

// Reduction to system of first-order differential equations :

//
y'

=dy/dt =
y'

//
y"

= dy'/dt = -gKy'A2/W-g+gT/W

// ***************************
\/AD|AR|_P SECTION *****************************//

y i
*

// **** *********************** imtprv/AL SECTION *****************************//

0.0,60.0,600

II

PijMCTION SECTION

****//

1

"DEFINE FLOAT W(FLOAT t) RETURN 3000-40*t
ENDJDEFINE"

II

CONSTANT SECTION *****************************//

3

"FLOAT T
T=7000"

"FLOAT gg=32.
17"

"FLOAT K
K=0.008"

// *************************** rico QPr*TiOKl **********************************//

2
o.o,"y[i]"

//y(0),y'

0.0, "-g*K*y[1
]A2AAJ(t)-g+g*T/W(t)"

// y'(0) ,

y"

Figure 4.7 Input data file for Runge-Kutta program.

95

Figure 4.9 is a program listing for the example. Figure 4.10 is a rewrite of the program as it

would appearwhen pointers are included into the language and is shown for reference only.

To run the program, load the file rkutta.mac. Given input file rkutta.in and desired output file

rkutta.out, at the command prompt type:

com> rkutta("rkutta.in","rkutta.out") <ENTER>

The program will run and print the results to the output file.

Results: The results of the program run are plotted in Figure 4.8. See James, Smith, and

Wolford for a solution to this problem using Milne's
method.8

Flight of a Rocket

Figure 4.8 Rocket flight characteristics.

96

// Program to solve an nth-order differential equation using the classic 4th-order Runge-Kutta

// method to solve a system of first-order differential equations.

DEFINE rkutta(STRING filein, STRING fileout)
FLOAT a,b,y[0:9]
INTEGER m,n,i,nofuncs,nostmts

STRING dif[0:9],s,dep,indep,func,stmt

/***

Open input file and read in problem parameters. Also compile any supporting functions that

are required if variable coefficients are present in the differential equations ***/

OPEN #1 ,"r",filein // open input data file

INPUT #1
,dep,indep

// read in dependent and independent variables

INPUT #1 ,a,b,n // read interval start and ending values, number of interval steps

INPUT #1 ,nofuncs // read in number of variable coefficient functions required

FOR(i=1 ;i<=nofuncs;i=i+1) // read in variable coefficient functions and compile into system

INPUT #1,func // read function

TRANSLATE(func) // compile function

NEXT

/***

Build string to define routine to evaluate the first-order differential equation set ***/

s="DEFINE FLOAT G(INTEGER J.FLOAT "+dep+"Q,FLOAT "+indep+")
"

INPUT #1 ,nostmts // read in number of supporting constants for problem

FOR(i=1 ;i<=nostmts;i=i+1) // read in constant declarations and assignments

INPUT #1 .stmt
s=s+" "+stmt+" "

NEXT

INPUT #1 ,m // read in number of first-order differential equations

FOR(i=0;i<m;i=i+1) // read in initial values and differential equations

INPUT #1,y[i],dif[i]
NEXT

CLOSE #1

s=s+"SWITCH(J)
"

II bui'd switch block to evaluate differential equations

FOR(i=0;i<m;i=i+1)
s=s+"CASE("+FTOA(i)+")"+"

RETURN
"+dif[i]+" "

NEXT

s=s+"ENDSWITCH
ENDJDEFINE"

/***

Translate string to compile the routine to evaluate the first-order differential equation set ***/

TRANSLATE

Figure 4.9 Program to implement 4th-order Runge-Kutta DEQ solver.

97

/***

String defining the Runge-Kutta routine ***/

s="DEFINE solver(STRING fileout, FLOAT a.FLOAT b.lNTEGER n.lNTEGER m.FLOAT u[])
INTEGER i,j,L,p
FLOAT x,h,t,k[0:9,4],z[0:9]
OPEN #1 ,""w"",fileout

h=(b-a)/n

x=a

PRINT #1 ,x,"","",u[0],"","",u[1],"","",G(m-1
,u[],x)

FOR(i=1;i<=n;i=i+1)

FOR(L=1;L<=4;L=L+1)
FOR(j=0;j<m;j=j+1)
SWITCH(L)

CASE(1)
t=x

FOR(p=0; p<m; p=p+1)

z[p]=u[p]

NEXT

BREAK

CASE(2)
t=x+h/2.0

FOR(p=0; p<m; p=p+1)
z[p]=u[p]+k[p,1]/2.0

NEXT

BREAK

CASE(3)
t=x+h/2.0

FOR(p=0; p<m; p=p+1)
z[p]=u[p]+k[p,2]/2.0

NEXT

BREAK

CASE(4)
t=x+h

FOR(p=0; p<m; p=p+1)

z[p]=u[p]+k[p,3]

NEXT

BREAK

ENDSWITCH

kU,L]=h*G0,z[],x)
NEXT

NEXT

FOR(j=0;j<m;j=j+1)
u[j]=u[j]+(k[j,1]+2.0*ku,2]+2.0*k[j,3]+k[j,4])/6.0

NEXT

PRINT #1 ,x+h,"","",u[0],"","",u[1],"","",G(m-1,z[],x+h)

x=a+i*h

NEXT

CLOSE #1

END
DEFINE"

Figure 4.9 (cont.) Program to implement 4th-order Runge-Kutta DEQ solver.

98

/***

Translate string to compile the Runge-Kutta routine ***/

TRANSLATED)

/***

Solve the set of differential equations ***/

LOCAL
"rkutta"

TRANSLATE("solver(fileout,a,b,n,m,y[])")
GLOBAL

DELETE
"G","solver"

END DEFINE

Figure 4.9 (cont.) Program to implement 4th-order Runge-Kutta DEQ solver.

99

DEFINE solver(STRING fileout, FLOAT a.FLOAT b.lNTEGER n.lNTEGER m.FLOAT uQ)

INTEGER i,j,L,p
FLOAT x,h,t,k[0:9,4],z[0:9],rg)(INTEGER,FLOAT,FLOAT)

g=ADR("G")

OPEN#1,""w"",fileout

h=(b-a)/n

x=a

PRINT #1,x,"","",u[0],"","",u[1],"","",g(m-1,uD,x)
FOR(i=1;i<=n;i=i+1)

FOR(L=1;L<=4;L=L+1)
FOR(j=0;j<m;j=j+1)
SWITCH(L)

CASE(1)
t=x

FOR(p=0; p<m; p=p+1)

z[p]=u[p]

NEXT

BREAK

CASE(2)
t=x+h/2.0

FOR(p=0; p<m; p=p+1)
z[p]=u[p]+k[p,1]/2.0

NEXT

BREAK

CASE(3)
t=x+h/2.0

FOR(p=0; p<m; p=p+1)
z[p]=u[p]+k[p,2]/2.0

NEXT

BREAK

CASE(4)
t=x+h

FOR(p=0; p<m; p=p+1)

z[p]=u[p]+k[p,3]

NEXT

BREAK

ENDSWITCH

kD,L]=h*ga,zD,x)
NEXT

NEXT

FOR(j=0;j<m;j=j+1)
u[J]=u[J]+(k[i.1]+2.0*k[j,2]+2.0*k[j,3]+k[j,4])/6.0

NEXT

PRINT #1,x+h,"","",u[0],"","",u[1],"","",g(m-1,zD,x+h)
x=a+i*h

NEXT

CLOSE #1

END DEFINE

Figure 4.10 Hypothetical Runge-Kutta solver using pointers.

100

DEFINE rkutta(STRING filein, STRING fileout)
FLOAT a,b,y[0:9]

INTEGER m,n,i,nofuncs,nostmts

STRING dif[0:9],s,dep,indep,func,stmt

/***

Open input file and read in problem parameters. Also compile any supporting functions that

are required if variable coefficients are present in the differential equations ***/

OPEN #1 ,"r",filein // open input data file

INPUT #1
,dep,indep

// read in dependent and independent variables

INPUT #1 ,a,b,n // read interval start and ending values, number of interval steps

INPUT #1 .nofuncs // read in number of variable coefficient functions required

FOR(i=1 ;i<=nofuncs;i=i+1) // read in variable coefficient functions and compile into system

INPUT #1,func // read function

TRANSLATE(func) // compile function

NEXT

/***
Build string to define routine to evaluate the first-order differential equation set ***/

s="DEFINE FLOAT G(INTEGER J.FLOAT "+dep+"D,FLOAT "+indep+")
"

INPUT #1 .nostmts // read in number of supporting constants for problem

FOR(i=1 ;i<=nostmts;i=i+1) // read in constant declarations and assignments

INPUT #1 .stmt
s=s+" "+stmt+" "

NEXT

INPUT #1 ,m // read in number of first-order differential equations

FOR(i=0;i<m;i=i+1) // read in initial values and differential equations

INPUT #1,y[i],dif[i]
NEXT

CLOSE #1

s=s+"SWITCH(J)
"

// build switch block to evaluate differential equations

FOR(i=0;i<m;i=i+1)
s=s+"CASE("+FTOA(i)+")"+"

RETURN
"+dif[i]+" "

NEXT

s=s+"ENDSWITCH
ENDJDEFINE"

/***
Translate string to compile the routine to evaluate the first-order differential equation set ***/

TRANSLATE

/***

Solve the set of differential equations ***/

solver(fileout,a,b,n,m,yQ)

/***

Delete the function created to evaluate the differential equations ***/

DELETE
"G"

END DEFINE

Figure 4.10 (cont.) Hypothetical Runge-Kutta solver using pointers.

101

4.1.5 Convolution Integral

This example presents a general program to solve for the response of a linear system subjected

to an arbitrary forcing function using the convolution integral. As with the previous example, an

input data file is utilized to specify run parameters and an output file is used to store the results.

The TRANSLATE command is used to allow specification of equations in the input data file; the

user only modifies the data file, not the program code.

Problem: Solve for the response of a 2nd-order system with an equation of motion given by:

d2y/dt2

+ 2<>ody/dt + co02y = m"1/(t) where: co0 = [k/m]1/2, r = c*wo/(2*k)

The unit impulse response for the system is:

h(t) = [mcoo(1<2)1/2]"1*e-n0^*sin[(1<2)1/2a)ot] for C < 1

Given a series of pulses with period 7 and duration dur, the forcing function /(t) is piecewise

defined as follows:

/(t) =
0.25(t/20)2

* Z [u(t-n*T)*u(n*T+dur-t)] ; 0 < t < 20
n=0

00

/(t) = 0.25 * L [u(t-n*T)*u(n*T+dur-t)] ; 20 < t < 40
n=0

/(t) = 0 ; 40 < t < 60

Parameters:

m =1.0 slug

co0
= 1 .0 rad/s

C, =0.2

T =1.0s

dur = 0.5 s

t0 = 0.0 s

tf = 60.0 s

Theory: The response of a linear system to any arbitrary input can be found by considering the

input to be a series of impulses and superimposing the individual responses for each impulse.

This procedure is called convolution and is represented by the integral shown in Equation 4.2.

x(t)= j F(T)*h(t-r)dx Equation 4.2

102

Solution: This problem is easily solved using the convolution integral. Figure 4.1 1 lists the input

data file for this problem. The input file format is typical for any problem, and consists of the

following sections:

TIME STEP Integration step size to use for Trapezoidal integration routine.

Syntax: time_step

SOLUTION STEP Solution step size for x(t); must be a multiple of integration step size.

Syntax: solution_step

CONSTANTS Section to define any floating point constants used in the equations; C is

required.

Syntax: "constant #1, constant #2, constant #3,

ASSIGNMENTS Section to assign values to constants; C is required even if C = 1 .

Syntax: "constant #1=value, constant #2=value, constant #3=value,

UNIT IMPULSE Section to define system response to unit impulse, h(t-s)
RESPONSE Syntax:

"h(t-s)"

FORCING Section to define piecewise forcing function F(s).

FUNCTION Syntax: number_of_functions

interval_startjnterval_end,"F(s)"

II Convolution Integral to solve for the response x(t) to a linear system excited by an arbitrary
// forcing function F(t).

// x(t)
= C*INTEGRAL(0,t,F(s)*h(t-s)ds)

//

TIME STEP

//

0.1 // integration time step for Trapezoidal method

//

SOLUTION STEP

//

0.2 // solution step size for x(t) (multiple of integration time step)

//

CONSTANTS

//
"Fo,m,wn,zeta,C"

// Constant declarations; C is required

//

ASSIGNMENTS

//

Fo=1 ,m=1 ,wn=1 // Assignments; C is required

//

UNIT IMPULSE RESPONSE

//

"EXP(-zeta*wn*(t-s))*SIN(SQRT(1 // h(t-s)

//

FORCING FUNCTION

//

3
0.0,20.0,"(s/20)A2*PULSE(0.25,0.5,1.0,s)"

20.0,40.0,"PULSE(0.25,0.5,1.0,S)"

40.0,60.0,"0.0"

Figure 4.11 Input data file for Convolution Integral program.

103

Figure 4.13 is a program listing for the example.

To run the program, load the file convolut.mac. Given input file convolut.in and desired output

file convolut.out, at the command prompt type:

com> CON("convolut.in","convolut.out") <ENTER>

The program will run and print the results to the output file.

Results: The solution for the problem is graphed in Figure 4.12.

Response of a second-order system to a parabolic ramped pulse

generator

0.3 T

0.25-

-0.1

t-0.3

0.25

5 10 15 20 25 30 35 40

-0.1

Time t (sec)

Figure 4.12 Response of 2nd-order system using the Convolution Integral.

104

// User defined type to store piecewise components of F(s); interval start, end, forcing function
TYPEDEF FS {FLOAT t1 .FLOAT t2, STRING func}

II

pU|se generator function

//

DEFINE FLOAT PULSE(FLOAT mag.FLOAT dur.FLOAT freq.FLOAT s)
FLOAT threshold.w

w=pi*freq // make frequency of cosine function 1/2 frequency of pulse

threshold=COS(w*dur/2.0) // calculate threshold value to turn pulse on

IF(ABS(COS(w*s-dur/2.0))>=threshold)
RETURN mag // pulse on

ENDIF

RETURN 0 // pulse off

ENDJDEFINE

//

Convolution Integral function ***//

DEFINE FLOAT CON(STRING filein.STRING fileout)
FLOAT a,b,step,xstep,area

INTEGER fsnum.i

STRING s,dec,asn,hts

FS fs[1 0] // array to store piecewise functions and intervals

OPEN #1 ,"r",filein // open the input data file

OPEN #2,"w",fileout // open the output data file

INPUT #1
,step

// read in integration time step

INPUT #1
,xstep

// read in solution step size for x(t)

INPUT #1 ,dec // read in constant declaration list

dec = "FLOAT "+dec // prefix constant declaration list with FLOAT type specifier

INPUT #1 ,asn // read in constant assignment list

INPUT #1 ,hts // read in unit input response function h(t-s)
INPUT #1 ,fsnum // read in number of piecewise forcing functions

FOR(i=1;i<=fsnum;i=i+1) // read in piecewise forcing functions defining F(s)
INPUT #1 ,fs[i].t1 ,fs[i].t2,fs[i].func // interval start, interval end, F(s) over interval

NEXT

CLOSE #1 // close the input data file

a=fs[1].t1 // start of solution interval

b=fs[fsnum].t2 // end of solution interval

TRANSLATE(dec) // translate constant declarations into the system

TRANSLATE(asn) // translate constant assignments into the system

// Build string defining function FsO to evaluate piecewise functions for F(s)
s="DEFINE FLOAT Fs(FLOAT s) "+"EXTERN

"+dec+" "

s=s+"IF(s>="+FTOA(fs[1].t1)+"

AND s<="+FTOA(fs[1].t2)+") RETURN
"+fs[1].func+" "

FOR(i=2;i<=fsnum;i=i+1)
s=s+"ELSEIF(s>="+FTOA(fs[i].t1)+"

AND s<="+FTOA(fs[i].t2)+") RETURN
"+fs[i].func+" "

NEXT

S=S+"ELSE RETURN
0.0"

s=s+"

ENDIF
ENDJOEFINE"

Figure 4.13 Convolution Integral program.

105

// Compile FsO into the system

TRANSLATE(S)

// Build string defining function HtsO to evaluate h(t-s); compile HtsO into the system

TRANSLATE("DEFINE FLOAT Hts(FLOAT s,FLOAT t) "+"EXTERN
"+dec+"

RETURN
"+hts+"

ENDJDEFINE")

// Build string defining function JNTEGRATEO to perform integration using Trapezoidal
// method; compile JNTEGRATEO into the system

TRANSLATE("DEFINE FLOAT JNTEGRATE(FLOAT a, FLOAT b, FLOAT step.FLOAT xstep)
EXTERN

"+dec+"

FLOAT s,sum,area,count

count=xstep
PRINT #2,a,"","",Fs(a),"","",0

WHILE(xstep<=b)
sum=0.0

s=a+step

PRINT
b,'

,xstep

WHILE(s<=xstep)

sum=sum+Fs(s)*Hts(s,xstep)

s=s+step

ENDWHILE

area=C*step/2.0*(Fs(a)*Hts(a,xstep)+2.0*sum+Fs(xstep)*Hts(xstep,xstep))
PRINT #2,xstep,"","",Fs(s-step),"","",area

xstep=xstep+count

ENDWHILE

RETURN area

ENDJDEFINE")

// Translate expression to do integration

LOCAL
"CON"

TRANSLATE("area=JNTEGRATE(a,b,step,xstep)")
GLOBAL

DELETE
"JNTEGRATE","Fs","Hts"

// delete functions

CLOSE #2 // close the output data file

RETURN area // return result of integration

ENDJDEFINE

// To solve for response x(t), execute function CONO
// CON("input_filename","outputJilename")

Figure 4.13 (cont.) Convolution Integral program.

106

4.2 Performance Evaluation

Translator performance is effected by several factors. Excluding any effects attributable to the
user's choice of source code constructs or algorithms, the following factors effect compilation
and execution:

Compilation speed is dependent on:

Design and efficiency of the front end translator algorithms and data structures.

Efficient symbol table routines, in particular, search algorithms and memory allocation

routines.

Design and efficiency of the back end threaded interpreter algorithms and data structures, in

particular, the TIL dictionary and supporting search and insertion routines, and stack and

register usage.

Size of symbol table and TIL dictionary at the start of compilation

Execution speed is dependent on:

Design and efficiency of the threaded interpreter algorithms, especially the inner interpreter

routines and stack and register usage.

Efficiency of primitive source code algorithms.

Number of primitives.

The single-pass compiler used in the translator is relatively fast when compiling simple macro

files. Approximate compilation times for the examples presented earlier are tabulated in Table

4.1 . The files were compiled on a 486/33 MHz PC.

Macro File Name

Compilation

Time (sec)

4bar.mac 0.11

matlib.mac 0.17

integrat.mac 0.05

rkutta.mac 0.11

convolut.mac 0.16

Table 4.1 Compilation times for a few selected macro files.

107

The more significant improvements that would contribute to increases in compilation speed are:

Change the parser design. The current recursive-descent parser relies heavily on recursive

function calls which are time consuming processes.

Use hashing in the symbol table; currently using a linked list with linear searching.

Purchase a third-party memory management library for the C/C++ compiler. There are more

efficient memory allocation routines than are supplied with a standard C/C++ compiler.

Improve the design, algorithms, and data structures currently implemented in the translator.

Code critical routines in assembler.

Execution speed is critical for any type of algorithmic programming. A typical TIL written in

assembler produces executable code relatively slow compared to optimal assembled code;

approximately 100%
inefficient.9

A TIL written in a high-level language increases this inefficiency
significantly. The TIL used in this design was written in C/C++ to make the job of development

easier and allow portability to different platforms. For these reasons, execution speed is

relatively slow compared to a TIL written in assembler.

To gain some insight into actual execution speed, a simple test was done running similar code

on this translator, MS-DOS Qbasic, and C/C++. The code executes a while loop 10000 times,

performing floating point division, multiplication, and addition during each iteration. Table 4.2

lists the source code for the test.

C/C++ Source Code Translator Source Code Qbasic Source Code

void mainO DEFINE testO DEFDBL A-C

{ INTEGER i i% = 0

int i; FLOAT a.b.c A =1.5

double a.b.c; i=0 B = 2.5

i=0; a=1.5,b=2.5 WHILE i%< 10000

a=1.5,b=2.5; WHILE(i<10000) i% = i% + 1

while(i<10000) i=i+1 C=A/B+A*B

{ c=a/b+a*b WEND

i=i+1; ENDWHILE

c=a/b+a*b;

}

}

END_DEFINE

Table 4.2 Source code for performance test.

108

Table 4.3 shows the execution times for the test. The threaded code executed roughly 5.6 times

faster than MS-DOS Qbasic but 4 times slower than code compiled with Semantec C/C++. The

code was executed on a 486/33 MHz PC.

Execution

Time (sec)

C/C++ 0.11

TIL 0.44

Qbasic 2.47

Table 4.3 Test execution times.

The more significant improvements that would contribute to increases in execution speed are:

Improve the design, algorithms, and data structures currently implemented in the translator.

Code critical routines in assembler, in particular, the TIL inner interpreter routines and

system primitives.

Exploit the instruction set and architecture of the host machine to optimize routines, register

and stack usage, and primitives.

Increase the number of system primitives.

109

4.3 Language Extensions

4.3.1 User-Defined Extensions

No single system can be designed to satisfy all the requirements of all the possible users that will

ever come in contact with it. To this end, user-defined language extensions are the key to a

powerful and flexible system that allows a user to customize an environment particular to their

needs. Libraries of user-defined macros can transform a general purpose system into a

specialized computing environment. For example, the mechanical engineer might develop the

following libraries:

Stress analysis, kinematics and dynamics, heat transfer, fluid mechanics

Specialized mathematics

Engineering economics

Databases; e.g., material properties, engineering and scientific constants, etc.

Parts; parametrically driven geometrical parts database

When an application is eventually incorporated into the system, user-defined macros will provide

a powerful mechanism to support and drive the application.

4.3.2 System Extensions

System extensions are absolutely necessary to expand the current language and incorporate an

application command set at some future point in time. The translatorwas designed to be easily

extensible by using the following language, translator, and development schemes:

Context-free grammar specification

Recursive descent parser with syntax-directed translation scheme

C/C++ development language

Modular design

110

4.4 Application Integration

Integrating an application into the system will bring to bear the full power of the translator as it

serves as a core engine for the entire application. Presently, the system is suitable for integration

into a wide variety of engineering applications. To this end, the following sections explore some
possible design integration schemes.

4.4.1 Simulation Modeler

A simulation package is an excellent candidate for an application that can be incorporated into

the system in a minimal amount of time. The familiar CSMP (Continuous System Modeling
Program) developed by IBM is a good example of such a system. CSMP is itself an application-

oriented programming language incorporating the FORTRAN language and an application-

oriented command set tailored towards solving ordinary differential equations and block diagram

simulations.

An actual CSMP program is shown in Figure 4.14. Programs are typically structured into three

segments; Initial, Dynamic, and
Terminal.10

The Initial segment is primarily for defining
constants, initial conditions for integration, and one-time calculations. The Dynamic segment
contains all the simulation statements relative to solving the problem. This segment is iterative

and is executed each time step during the integration. The Terminal segment contains any
calculations or actions required after the simulation is completed such as plotting the results.

Similar to FORTRAN subroutines, Functional Blocks are special CSMP functions. These

functions consist of mathematical functions, system macros, switching functions, function

generators, signal sources, logic functions, and FORTRAN functions.

Conceptually, CSMP can be viewed as a FORTRAN translator with application-oriented

language extensions and a modified language syntax. In actuality, it's a front-end translator that

takes as input CSMP statements and produces as output a FORTRAN source language

subroutine. This subroutine is then compiled with an integration routine using a standard

FORTRAN compiler and then
executed.11

Functional blocks would be supplied FORTRAN

subroutines that come with the CSMP package.

Developing a similar system around the translator presented in this paper should be a relatively

easy task once pointers are included in the language. The examples presented earlier for the

Convolution Integral and Runge-Kutta DEQ solvers were themselves attempts by the user to
create application-specific environments for solving simulation problems. User-written solvers

and function generators were compiled into the language. Structured input files provided a

programming environment tailored towards solving the simulation problem and removed the

heavy burden of programming from the user. However, these examples were user-defined

extensions to the language. A true application environment must incorporate system extensions

into the language.

Ill

INITIAL

CONSTANTW=10.0, C=.00259, A=-0.6, B=1.0, K1=.255, K2=1.025

INCON X0=0.0, XDOT0=8.0

M=W/386.

COEF=C/M

DYNAMIC

NOSORT

IF(X.GE.O.) GO TO 2

FOFX=K1*DEADSP(A,0.,X)
GO TO 3

2 FOFX=K2*DEADSP(0.,B,X)
3 CONTINUE

SORT

XDDOT=-COEF*XDOT-FOFX/M

XDOT=INTGRL(XDOT0,XDDOT)
X=INTGRL(X0,XDOT)

TERMINAL

KE=0.5*M*XDOT**2

WRITE(6,4) KE

4
FORMAT('

\E16.7)
TIMER DELT=.05, OUTDEL=0.2,FINTIM=60.

METHOD RKSFX

LABEL SPRING MASS VISCOUSLY DAMPED WITH DEADSPACE

PRTPLOT XDOT.X.FOFX

END

STOP

ENDJOB

Figure 4.14 A typical CSMP program.

-+X

I

f k1

I
m

() : o

rl

k2

Figure 4.15 Viscously damped spring mass system.

112

The CSMP program shown in Figure 4.14 is taken from James, Smith, and
Wolford.12

The

program models a viscously damped spring mass system as depicted in Figure 4.15. The mass

slides on a frictionless surface while oscillating between two springs. A deadspace exists such

that the mass is free to slide over a portion of its travel with no contact with either spring.

A possible translator scheme is presented below to implement a simulation package similar to

CSMP. Much of the detail is left out for now, but an attempt is made to describe the major steps

and translator modifications required to build a simulator package.

The proposed input deck for the simulator is shown in Figure 4.16.

CONTROL

METHOD RKSFX

TIMER DELT=0.05,OUTDEL=0.2,FINTIM=60.0

LABEL "Spring mass viscously damped with
deadspace"

PRTPLOT xdot.x.fofx

INITIAL

FLOATw.c.a.b.kl ,k2,m,coef,fofx,ke,x0,xdot0

FLOAT x.xdot.xddot

w=10.0, c=0.00259, a=-0.6, b=1.0, k1 =0.255, k2=1.025

x0=0.0, xdot0=8.0

m=w/386.0, coef=c/m

DYNAMIC

IF(x<0)

fofx=k1*deadsp(a,0,x)
ELSE

fofx=k2*deadsp(0,b,x)
ENDIF

xddot=-coef*xdot-fofx/m

xdot=INTGRL(xdotO,xddot)

x=INTGRL(xO,xdot)

TERMINAL

ke=0.5*m*xdotA2

PRINT ke

ENDJOB

Figure 4.16 Simulator input deck.

113

This scheme segments the input data file much the same as CSMP The sections consist of the

following:

Control Execution and output control parameters such as integration step size, integration

method, plot parameters, etc.

Initial Defined constants, initial conditions for integration, and one-time calculations.

Dynamic Iterative section to specify simulation statements relative to solving the problem.

Terminal Calculations or actions required after the simulation is completed.

To support a simulation environment, the translator would have to be modified to support the

following items:

System Variables

Simulation Statements

Simulation Functions

Global system variables accessible to the user and integration

routines.

JVIETHOD, _TIME, J3TARTIM, _FINTIM,_DELT,J-ABEL, etc

Extensions to the system grammar, parser routines, and runtime

code to support a simulation command set.

CONTROL, METHOD integrationJd>, PRTPLOT <plotJist>,

TERMINAL, etc.

Extensions to the system grammar, parser routines, and runtime

code to support a simulation function set.

INTGRL(), DERIV(), PULSE(), RAMP(), STEP(), DEADSP(), etc.

Translation of the input deck would require the following actions to be produced by the translator:

1 . Declaration and assignment of default values to global system variables.

FLOAT JVIETHOD, _TIME, J3TARTIM, J=INTIM, _DELT, J-ABEL, _PRTPLOT, etc

_METHOD=1,
_STARTIM=0,

etc

2. Translation of any user-defined functions created in the input deck. Any user-defined

functions would precede the CONTROL block in the data deck.

3. Translation of CONTROL statements.

METHOD RKSFX

TIMER DELT=0.05,OUTDEL=0.2,FINTIM=60.0

LABEL "Spring mass viscously damped with
deadspace"

PRTPLOT xdot,x,fofx

114

4. Translation of INITIAL, DYNAMIC, and TERMINAL statements. The translator will actually

build a function called updateO as shown below, embed appropriate statements as required,

and then compile the function.

DEFINE update()

EXTERN FLOAT
_TIME, J5TARTIM, J=INTIM, _DELT, etc

FLOAT w,c,a,b,k1 ,k2,m,coef,fofx,ke,x0,xdot0

FLOAT x.xdot.xddot

w=10.0, c=0.00259, a=-0.6, b=1.0, k1 =0.255, k2=1.025

x0=0.0, xdot0=8.0

m=w/386.0, coef=c/m

FOR(_TIME=_STARTIM; JTIME<=FINTIM; _TIME=JTIME+DELT)

IF(x<0)

fofx=k1*DEADSP(a,0,x)
ELSE

fofx=k2*DEADSP(0,b,x)
ENDIF

xddot=-coef*xdot-fofx/m

xdot=INTGRL(xdotO,xddot)

x=INTGRL(x0,xdot)

WRITE()
NEXT

PLOT()
ke=0.5*m*xdotA2

PRINT ke

ENDJDEFINE

5. Generate a function call to execute the simulation: update()

6. Generate a call to exit the translator and end the simulator run: exit

The translation steps presented above are summarized below:

1 . Declaration and assignment of global system variables.

2. Translation of user-defined functions.

3. Translation of Control statements.

4. Parse Initial, Dynamic, and Terminal statements; construct and compile simulation routine

updateO.

5. Execute updateO to run the simulation.

6. Exit the translator to end the simulation run.

115

4.4.2 Finite Element Analysis

Building a Finite Element Analysis package with interactive pre and post processing is a very

large project. A truly professional package must provide support for the following:

Interactive graphics with a modern user interface including menus, forms, and command line

input.

A solid modeler for geometry construction.

Robust element library.

Meshers.

Material, property, load, and boundary condition specification.

Numerical solvers.

Post-processing support for viewing, manipulation, and plotting of results.

A command language to interface with the system.

No attempt will be made here to look at specific translator modifications to build an FEA

application. Instead, a general outline for an FEA system will be presented where the translator

serves as a central engine to drive the entire system as shown in Figure 4.17.

System Managers

Menus

Forms

Windows +

Graphics *

Command Line *

Base

System

Routines

Events

Mouse, keyboard,

spaceball, tablet,

and other input

devices

Controlling
Executive

Translator

FEA

Application

Routines

Actions

Execute system
~*

command or

compile a function

definition

User

Defined

Routines

Figure 4.17 Translator as a central engine for an FEA system.

116

One possible design to build a graphics-oriented, interactive software system around the

translator can be accomplished using the following:

Controlling Executive

System Managers; menus, forms, windows, graphics, and command line

Translator

Application Routines

The Controlling Executive serves the purpose of overseeing all system events and executing the

appropriate routines to manage those events. After system startup and initialization, program

control is passed to the controlling executive. The controlling executive will then monitor events,

pass program control to system managers based on the type of event and current status of the

managers, acknowledge and act upon registered requests from system managers, and execute

appropriate routines or pass control to the translator. Program control always returns to the

controlling executive.

System Managers are specialized routines designed to manage the different areas of the

Graphical User Interface (GUI). A modern GUI must support and manage menus, forms,

command line input, graphics windows, etc. Details aside, managers serve the function of

processing user inputs and generating actions based on those inputs. Managers work with the

controlling executive and amongst themselves to effectively service the application.

The Translator is the core engine that generates the actions to drive the application. Almost all

application actions occur by processing a command stream thru the translator. The system

language will have specific extensions to access most all of the applications routines. In addition,

extensions to access system routines will be highly desirable for the user to customize menus,

forms, etc.

Application Routines encompass all the routines specific to the application. For an FEA system,

typical application routines would be solvers, mesh generators, solid geometry modelers, post

processing routines, etc.

As an example, assume system startup and initialization has occurred and program control is

passed to the controlling executive. The controlling executive will then go into a loop polling for

an event such as a keystroke or mouse movement. If the event is a keystroke and no manager is

active, control is passed to the command line manager to service the event. The command line

managerwould register itself as active, fetch the keystroke, and copy the character to command

stream buffer. Control would then pass back to the controlling executive to resume event polling.

The next keystroke would trigger the same process but in this case control is passed to the

command line manager because it is the active manager. The concept of active manager is

necessary because, say for example, the forms manager is active and the user is typing in an

entry on the form. The controlling executive must in this case pass control to the forms manager

when a keystroke event occurs, not the command line manager. The forms manager would then

call the command line manager to process the keystroke. Anyways, assume the process

continues until <ENTER> is pressed on keyboard. At this point, the command line manager

recognizes that input from the keyboard is finished. The command line manager will then null

terminate the command stream buffer, register itself as inactive, register a request to call the

translator, and return control to the controlling executive. The controlling executive will then pass

control to the translator. At this point, the translator processes the input command stream.

117

In the example above, if the event had been a mouse click on a menu, control would have been

passed to the menu manager. The menu manager would then determine which menu item was

clicked, copy the command string associated with that item to the command stream buffer,

register a request to call the translator, and return control to the controlling executive. The

controlling executive would then pass control to the translator. At this point, the translator

processes the input command stream.

Many different designs are plausible and the brief description given here is by no means the

best. The main point to this design is the central role the translator would serve. By driving an

application thru the translator, the user will be given access to almost the entire application

command set, system routines, and the base translator language. The flexibility and power to

drive the application is greatly enhanced for the user and to this end, so is the ability to solve the

most demanding engineering problems faced today. Software sales probably won't hurt either!

118

5. RESULTS

Efforts put into the project resulted in the following major achievements:

Complete theory and design details for all phases of the translator and language.

CP.EXE - An executable translator program that creates a programming and command

interpreter environment. The program includes an integrated application shell to provide the

user with an interactive command line environment.

A complete Language and Compiler Guide.

A set of diagnostic tools to aid the developer.

Example code solving engineering problems; Four-Bar Crank Mechanism, Material Library,

Integration Solver, Runge-Kutta DEQ Solver, and Convolution Integral.

Performance evaluation including a comparison against C/C++ and MS-DOS QBasic.

Exploration in application integration for a simulation package similar to CSMP.

Translator

The translator developed for the project is both an interpreter and compiler. Input is in the form

of a command stream which is composed of two types of objects; command statements and

function definitions. The translator correspondingly has two modes of operation; a command or

interpreter mode that executes command statements, and a compile mode that compiles

functions into threaded code to become new commands in the system. See Figure 5.1 .

command stream Translator

-* execute

-+ compile

Figure 5.1 Basic translator operation.

A command statement is any valid statement that appears outside of a function definition; e.g.,

declaration, assignment, function call, etc. A function definition is a collection of valid statements

that define and make up a function. Function definitions start with the keyword DEFINE and end

with the keyword ENDJDEFINE. Command statements and function definitions together

comprise the language of the translator. A typical command stream is shown in Figure 5.2.

command statement

function definition

command statement

command statement

FLOAT x,y

DEFINE FLOAT sqr(FLOAT val)

RETURN valA2.0

END_DEFINE

x = 3.0

y
=
sqr(x)

Figure 5.2 Typical command stream.

119

The translator is actually comprised of two subsystems; a front end translator incorporating a

recursive descent parser and a back end translator consisting of a threaded code interpreter very

similar to a FORTH interpreter. See Figure 5.3. The front end handles the tasks of lexical,

syntax, and semantic analysis, type checking, intermediate code generation, and symbol table

management. The back end consists of a threaded code interpreter and compiler. The threaded

interpreter consists of a keyword dictionary for storing system primitives and user defined

secondaries, stacks, registers, and a software interpreter routine that mechanizes the language.

Front End

Back End

Source Language

1 >

Lexical Analysis

1

Symbol Table

ManagerSyntax Analysis

1 '

Semantic Analysis

' '

Type Checker

i

Intermediate Code

Generator

Intermediate Error

ManagerLanguage

TIL

Interpreter

TIL Code

Generator

1

*

Execute Compile

Figure 5.3 Translator design.

The front end parser and back end threaded code interpreter are nearly independent of one

another. In fact, during the early development stages of the project, a threaded code interpreter

was developed first. This resulted in a translatorwhich operated very much the same way as a

programmable RPN calculator. This type of system uses a stack for storing operands and

results. Operands are first pushed onto the stack, then the operation is performed. Calculations

using RPN is very efficient and preferred by many engineers. However, writing all but the

simplest programs in RPN is quite cumbersome, much the same as coding in assembler. To

serve as a core engine for an application, a modern procedural language similar to FORTRAN or

BASIC is much more desirable. To accomplish this, a front end translatorwas designed and

120

constructed to process a high-level procedural language. To utilize the existing threaded code

interpreter, an RPN intermediate language form was chosen. Early work on the front end

translatorwas independent of the back end. For a period of time during development, the front

end translator and back end threaded code interpreter existed as two separate programs. Output

from the front end was piped to a file which in turn became input for the back end. Eventually the

two systems were physically integrated into one program, but the design and source code

modules remain distinct. As a development tool, current provisions in the translator allow the

developer to view intermediate language generation, threaded code generation, and totally
bypass the front end and work directly with the back end threaded interpreter.

The main features of the translator are listed below.

The front end translator:

Takes as input a fully structured source language very similar to BASIC or FORTRAN.

A top down recursive descent parsing technique is used to implement a syntax-directed

translation scheme for infix to postfix notation with embedded semantic actions.

Type checking and implicit casting are integrated into the parser.

A separate lexical analyzer handles the task of token construction, classification, and

attribute binding.

All storage is static; symbol table management and memory allocation tasks are handled by
the front end.

Extensive error checking is performed during all phases of translation.

Produces as output an intermediate language in postfix notation, type checked, and

syntactically correct in form.

The back end threaded interpreter/compiler:

A threaded code interpreter very similar to a FORTH compiler that takes as input a postfix

language consisting of numbers, addresses, and keywords.

Two modes of operation; an interpreter mode and a compile mode. In compile mode,

keyword definitions are compiled into threaded code to become new keywords in the

language. In interpreter mode, keywords are executed immediately.

A software interpreter very similar to the actual hardware interpreter in a computer is

mechanized to execute the threaded code.

Floating point exceptions and runtime array bounds checking are supported.

Ease of extensibility for development and application integration was a primary concern in the

design of the translator. Major design features implemented to accomplish this were:

Context-free grammar.

Syntax directed translation scheme.

Recursive descent parser.

Modular design of translator.

Portable to other hardware platforms; the entire system was written in C/C++.

121

Language

A high-level procedural language similar to FORTRAN or BASIC was integrated into the

translator. The language supports modern programming constructs such as user-defined types or

records, variables, multi-dimensional arrays, functions, and program flow control statements.

The ability to write functions or macros allows the user to extend the language command set,

customize the environment, develop specialized libraries of routines, and write programs to drive

an application. For instance, a collection of routines to calculate beam deflections can be written

and stored to disk. When the user needs to do this type of analysis, simply loading the macro file

will transform the system into a specialized computing environment for analyzing beam

problems. Additional routines can be added as needed. The Material Library example presented

earlier in this paper adds a material database to the system. Once loaded, material properties

can be used in calculations, passed as parameters to other routines, etc. When an application is

incorporated into the system, user-defined macros will provide a powerful mechanism to support

and drive the application. Macros can be loaded at the beginning of a session to customize an

environment tailored to the user's needs. Menu layouts, viewport configurations, default settings,

and other items can be configured at system startup. For a system such as an FEA modeler,

macros can be developed to generate geometry, define complex load and boundary conditions,

maintain a material and property database, control multiple runs, post process results, etc.

Additions to the language and modification of source code is a relatively easy task once the

developer familiarizes themselves with the grammar, source code, and program structure.

Simple constructs can be added to the system in minutes, however, more complex additions

may involve hours for design and integration. For example, to add a construct to convert an

integer to an ascii string would probably take under 10 minutes in total time because a library
function in C exists to do this. If an FEA application is being written, adding a construct to call a

mesher routine would probably involve 30 minutes or so assuming the mesher routine exists. At

the other extreme, adding pointer variables to the existing system language would probably

involve weeks ofwork.

The major features of the language include:

Free format of source language text.

Symbolic constants.

Variables and multidimensional arrays.

User-defined types or records.

User-defined functions that take parameters and return values.

Program flow control constructs; e.g., IF, SWITCH, FOR, REPEAT, WHILE, etc.

Local, global, and external objects.

Mathematical functions; e.g., SIN(x), ABS(x), COSH(x), LN(x), etc.

Complex arithmetic expressions; e.g., x
= EXP(-zeta*wn*(t-s))*SIN(SQRT(1.0-

zetaA2.0)*wn*(t-s)).

Screen and disk I/O functions; e.g., OPEN, CLOSE, PRINT, PRINT #, INPUT, INPUT #, etc.

The reader is referred to the Language and Compiler guide included in the Appendix for a

complete description of the language.

122

Major language constructs are summarized in Table 5.1; operators, precedence, and

associativity in Table 5.2; and the entire language token set in Table 5.3. A complete grammar

specification for the entire language is given in Section 3.7.

CONSTRUCT EXAMPLE/DESCRIPTION

Base Types FLOAT, INTEGER, and STRING

User-Defined Types or Records TYPEDEF POINT {FLOAT mag, FLOAT ang}

POINT r

r.mag = 5.5, r.ang = 30.0

Variables and Multi-Dimensional

Arrays

FLOAT vector, cam[-2:3,3]

vector = 4.0, cam[-1 ,2] = vector

Functions DEFINE FLOAT sqr(FLOAT val)

RETURN valA2

END_DEFINE

x =
sqr(5)

Conditional Statements IF.. .ELSEIF.. .ELSE.. .ENDIF

SWITCH.. .CASE...DEFAULT.. .ENDSWITCH

Iterative Statements FOR.. .NEXT

WHILE...ENDWHILE

REPEAT.. .UNTIL

Symbolic Constants SYMBOL pi
"3.141592654"

x = pi/180

Mathematical Functions SIN(x), ABS(x), COSH(x), LN(x), etc.

I/O OPEN, CLOSE, INPUT, PRINT, LOAD

Table 5.1 Language constructs.

Operator Operation Associativity

()[]{}: Expression L>R

+ -NOT Unary L>R

A Exponentiation R>L

*/ Multiplicative L>R

+ - Additive L>R

<<=>>= Relational L>R

= <> Equality L>R

AND Logical L>R

OR Logical L>R

= Assignment R>L

Sequencing L>R

Table 5.2 Operators, precedence, and associativity.

123

E m
i i

m

& () []

{ } = <> <

<= > >= +
-

*

/ A OR AND

NOT LET TYPEDEF DEFINE END.DEFINE

RETURN FOR NEXT GLOBAL LOCAL

IF ELSEIF ELSE ENDIF EXTERN

SWITCH CASE DEFAULT ENDSWITCH BREAK

WHILE ENDWHILE REPEAT UNTIL TRANSLATE

FLOAT INTEGER STRING INPUT PRINT

OPEN CLOSE LOAD FTOA DELETE

SYMBOL SYSTEM SIN COS TAN

ASIN ACOS ATAN SINH COSH

TANH ABS SQRT LOG LN

EXP identifier string unsigned real
unsigned

integer

user defined

type

Table 5.3 Language token set.

124

CP.EXE Program

An application shell was written to provide the user with an interactive command line

environment for using the translator. The shell and translator comprise a single executable

program: cp.exe. After system startup and initialization, a startup screen appears as shown in

Figure 5.4. A title banner is displayed showing the current version and release date of the

system. The command line prompt is displayed and the system is ready for user input. At this

point, a programming and command interpreter environment is created that lasts for the duration

of the application session. Objects such as variables, arrays, symbolic constants, and
user-

defined functions can be created. Once created, objects exist for the entire application session

and can be used in expressions, as parameters for commands, or as functions to perform

calculations or drive the application. Actions are generated by processing commands thru the

translator. The user generates commands by entering input at the keyboard or loading prewritten

macro files from disk.

The Language and Compiler guide included in the Appendix contains a complete operations

guide and tutorial on how to run the translator program cp.exe.

Command Processor/Macro Compiler Version 1.0 12/03/94

com>

Figure 5.4 Translator startup screen.

125

Language and Compiler Guide

A complete Language and Compiler Guide was written and included in the Appendix. This guide

describes the entire language in detail and presents several examples. An operations guide and

tutorial is included to instruct the reader on how to run the program and also describes the use of

the diagnostic tools included for the developer. A complete list of system error messages is also

included.

Diagnostic Tools

To help aid the application developer, a set of diagnostics tools was incorporated into the

ranslator design. These tools allow the developer to:

Display the contents of the symbol table.

Display intermediate language output generated by the front end parser.

Display compiled threaded code generated by the back end compiler.

Bypass the front end parser and work directly with the back end threaded

interpreter/compiler.

Display destructor actions of symbol table objects.

Error Management

Error management was given special emphasis from the very start of the project, right down to

the choice of compilers for development. The Zortech C++ compiler included the latest

extensions underdevelopment by NCEG, the Numerical C Extensions Group. These extensions

provide support for floating point entities such as infinity, +0 and -0, and nans. Infinity results

when 1/0 is evaluated. Unless special precautions are taken, most programs crash under this

condition. Implementing NCEG extensions, the result of this operation yields INFINITY which is a

nan (not a number.) Nans can be carried thru calculations just like any other floating point

number except the result is always a nan. This allows a routine to carry out a numerical

algorithm to completion and afterwards check for the presence of a nan in the result. This would

indicate an error has occurred and appropriate action could be implemented to handle it.

Comprehensive error checking during all phases of translation and runtime execution was

designed into the translator. An error management module services all the system routines.

When an error occurs, translation stops and the translator is reset to recover from the error. An

error message is displayed to the user including the source text line containing the error and the

offending tokens are highlighted. If the source text originated from a file, the file name and line

number are also displayed. Error management currently stops translation at the first occurrence

of an error. However, the system is designed to handle multiple error registrations if future

translator development provides for continued translation after one or more errors has occurred.

Most compilers incorporate this feature and even allow the user to specify how many errors can

occur before translation terminates.

126

Engineering Application

The paper presented several engineering examples to illustrate the current capabilities of the

translator; a Four-Bar Crank Mechanism, Material Library, Integration Solver, Fourth-Order

Runge-Kutta DEQ Solver, and Convolution Integral. The examples clearly demonstrated the

programming capabilities of the current language and performance of the translator. In addition,

the reentrant capabilities of the translatorwere exploited using the TRANSLATEO command. At

runtime, a call to TRANSLATEO will suspend the current operation of the back end interpreter,
save the register contents, preserve the stack contents, and then reenter the translator to

process a command stream passed as a string variable. After the stream is processed, control

returns back to the routine that issued the call to TRANSLATEO and continues execution of that

routine. Basically, this feature allows a running program to suspend itself, reenter the translator

to process commands and compile new functions into the system, and then return and continue

program execution. This capability allows the user to specify constants, variables, and functions

in a data file and let the program handle the job of compiling the objects into the system. For

example, the Runge-Kutta DEQ Solver presented earlier in this paper is designed to read an

input data file which contains the differential equations to be solved. This eliminates the user's

burden of having to write and compile functions each time a new set of differential equations is

analyzed as is typical with FORTRAN or BASIC. The user only modifies the data file, not the

program code. To my knowledge, this reentrant capability is unique to this translator, and at

present, its implications have not yet been explored in much detail.

The following engineering examples were presented to explore the capabilities of the translator.

1 . Four-Bar Crank Mechanism - Solution to output angles for a four-bar crank mechanism. The

solution involved solving Freudenstein's equation using the interative Newton-Raphson

method. The purpose of this example was primarily to illustrate the source language and

writing a function.

2. Material Library - Adding a material library into an application environment. Example

presents a user-written macro that maintains a material database and includes a routine for

adding additional materials during an application session.

3. Integration Solver- Integration routine using the Trapezoidal method. Example presents a

user-written macro that adds an integration function to the language. What is unique about

this routine is the fact that any single valued, continuous function can be passed to the

integration routine as a string variable. The integration routine will then compile the function

into the system, perform the integration, delete the function, and then return the result.

For example, to perform the integration J x2+3 dx from x= 1 to x =3 using 100 steps and print

the result to the screen, all the user has to do is type the following at the command line:

com> PRINT INTEGRATEO ,3,1 00,"xA2+3") <ENTER>

The result of the integration is then printed to the screen. This example demonstrates the

reentrant capabilities of the translator using the TRANSLATEO command.

127

4. Fourth-Order Runge-Kutta DEQ Solver - General routine to solve a system of first order

differential equations using the fourth-order Runge-Kutta method. Example presents a
user-

written macro to solve a system of first-order differential equations, in particular, the solution

to the flight of a rocket with variable weight is analyzed. This routine uses an input data file

for complete specification of the entire problem. The user only prepares an input data file for

each problem, no code has to be written. Constants, functions, and differential equations are

specified in the data file; the solver routine handles the task of compiling the objects into the

system using the TRANSLATEO command.

5. Convolution Integral - General routine to solve for the response of a system using

convolution. Example presents a user-written macro to solve for the response of a system

using convolution, in particular, the solution to an underdamped, second order system

subjected to a pulse generator forcing function is analyzed. This routine uses an input data

file for complete specification of the entire problem. The user only prepares an input data file

for each problem, no code has to be written. Constants, unit impulse response, and

piecewise forcing functions are specified in the data file; the solver routine handles the task

of compiling the objects into the system using the TRANSLATEO command.

Performance

Overall, translator performance was very acceptable considering the fact that the translatorwas

written entirely in C/C++ and designed to be portable to different platforms. Compile times for

numerical routines such as the Runge-Kutta DEQ solver or Convolution Integral presented

earlier in this paper were under 0.2 sec. Approximate compilation times for the examples

presented earlier are tabulated in Table 4.1 . The files were compiled on a 486/33 MHz PC.

Macro File Name

Compilation

Time (sec)

4bar.mac 0.11

matlib.mac 0.17

integrat.mac 0.05

rkutta.mac 0.11

convolut.mac 0.16

Table 5.1 Compilation times for a few selected macro files.

Execution speed was also good. A simple test program to perform floating point arithmeticwas

developed and run using C/C++, TIL, and MS-DOS Qbasic. Table 4.2 lists the source code for

the test.

128

C/C++ Source Code Translator Source Code Qbasic Source Code

void mainO DEFINE testO DEFDBL A-C

{ INTEGER i i% = 0

int i; FLOAT a,b,c A=1.5

double a,b,c; i=0 B = 2.5

i=0; a=1.5,b=2.5 WHILE i%< 10000

a=1.5,b=2.5; WHILE(i<10000) i% = i% + 1

while(i<10000) i=i+1 C=A/B+A*B

{ c=a/b+a*b WEND

i=i+1; ENDWHILE

c=a/b+a*b;

}

}

ENDJDEFINE

Table 5.2 Source code for performance test.

Table 4.3 shows the execution times for the test. The threaded code executed roughly 5.6 times

faster than MS-DOS Qbasic but 4 times slower than code compiled with Semantec C/C++. The

code was executed on a 486/33 MHz PC.

Execution

Time (sec)

C/C++ 0.11

TIL 0.44

Qbasic 2.47

Table 5.3 Test execution times.

Issues surrounding translator performance were covered with respect to compilation and

execution. Compilation speed is mainly dependent on the design and efficiency of the parsing

method, search algorithms, memory allocation routines, stack and register usage, and dictionary
management routines. The recursive-descent parser currently implemented in the translator

relies heavily on recursive function calls which are time consuming processes. Redesigning the

parser to implement a bottom up method could substantially increase performance but would

require a tremendous effort. The current symbol table and TIL dictionary routines use linear

search algorithms to lookup objects. Implementing a hashing scheme would significantly improve

search times when the application environment becomes large.

129

Execution speed is mainly dependent on the design and efficiency of the threaded interpreter

algorithms, stacks and register usage, and primitive source code algorithms. The threaded

interpreter routines and primitives are critical to execution speed. These routines comprise the

instruction set and software interpreter that make up and mechanize the language. Every effort

must be made to maximize the speed and efficiency of these routines. If a particular target

machine is to be used exclusively, it would be well worth the effort to recode these routines in

assembler to maximize performance.

Application Integration

Application integration was investigated for a simulation package similar to CSMP and is

presented in Section 4.4.1. Developing a similar system around the translator presented in this

paper should be a relatively easy task once pointers are included in the language. Translator

modifications to develop a simulation package would require the addition of global system

variables and extensions to the system grammar, parser routines, and runtime code to support a

simulation command set. Excluding postprocessing routines, a basic simulator system could

probably be developed in a month or so. Equivalent input decks for a CSMP program and a

proposed simulator program are shown in Table 5.4.

CSMP INPUT DECK SIMULATOR INPUT DECK

INITIAL CONTROL

CONSTANTW=10.0, C=.00259, A=-0.6, B=1.0, K1=255, K2=1.025 METHOD RKSFX

INCON X0=0.0, XDOT0=8.0 TIMER DELT=0.05,OUTDEL=0.2,FINTIM=60.0

M=W/386. LABEL "Spring mass viscously damped with
deadspace"

COEF=C/M PRTPLOT xdot.x.fofx

DYNAMIC INITIAL

NOSORT FLOAT w,c,a,b,k1 ,k2,m,coef,fofx,ke,x0,xdot0

IF(X.GE.0.) GO TO 2 FLOAT x,xdot,xddot

FOFX=K1*DEADSP(A,0.,X) w=10.0, c=0.00259, a=-0.6, b=1.0, k1 =0.255, k2=1.025

GO TO 3 x0=0.0, xdot0=8.0

2 FOFX=K2*DEADSP(0.,B,X) m=w/386.0, coef=c/m

3 CONTINUE DYNAMIC

SORT IF(x<0)
XDDOT=-COEF*XDOT-FOFX/M fofx=k1 *deadsp(a,0,x)

XDOT=INTGRL(XDOT0,XDDOT) ELSE

X=INTGRL(X0,XDOT) fofx=k2*deadsp(0,b,x)
TERMINAL ENDIF

KE=0.5*M*XDOT"2 xddot=-coef*xdot-fofx/m

WRITE(6,4) KE xdot=INTGRL(xdotO,xddot)

4 F0RMAT(",E16.7) x=INTGRL(xO,xdot)

TIMER DELT=.05, OUTDEL=0.2,FINTIM=60. TERMINAL

METHOD RKSFX ke=0.5*m*xdotA2

LABEL SPRING MASS VISCOUSLY DAMPED WITH DEADSPACE PRINT ke

PRTPLOT XDOT.X.FOFX ENDJOB

END

STOP

ENDJOB

Table 5.4 Equivalent simulator input decks.

A general discussion on integrating an FEA application was also presented in Section 4.4.2.

130

6. CONCLUSIONS

The translator, language, and application shell developed for the project should provide the

developerwith a solid foundation and framework to integrate an engineering application. The

translator is modular, easily extensible, and written entirely in C/C++. The actual development of

the translator and language was an evolutionary process and is testament to the ease of

extensibility designed into the system. Portability to another platform other than DOS should be

quite easy. The diagnostic tools integrated into the translator are a valuable asset to the

developer and should assist greatly in future development efforts. Intermediate and threaded

code display proved to be very important tools for debugging front and back end translator

routines during development. The current language gives the user a high-level procedural

language capable of solving very complex engineering problems quite readily. When an

application is integrated, the language will provide the user with a powerful means to interface

with and drive the application.

In its present form, the translator, language, and command line shell can be used for several

purposes:

Use it like a FORTRAN or BASIC compiler to compile and run numerical programs.

Use it as an interactive computing environment to perform specialized computations. Create

libraries of macros to perform special calculations such as stress analysis, kinematics and

dynamics, heat transfer, fluid mechanics, advanced mathematics, and engineering

economics.

Use it to develop and maintain databases of materials and other objects.

Use it as an application-specific solver as was done for the Runge-Kutta DEQ and

Convolution Integral solvers presented earlier in this paper. Supporting programs can be

developed in C/C++, FORTRAN, or BASIC to add additional capabilities to the system such

as postprocessing and graphical display of results.

Ultimately, an entire application can be developed and integrated into the language, translator,

and application shell.

As with all projects, time and other constraints force compromises in design. The translator and

language both have room for improvements; some recommendations for future additions are

summarized below:

Translator:

Add dynamic memory allocation. Currently, all storage is static and allocated at compile

time. This is advantageous when an algorithm repetitively calls a function, but seldom called

routines would be better off using dynamic storage and releasing memory when not being
used.

Add a string space manager to the system. String literals are currently lost on heap and

memory is not released. For example, s
= "Hello

"
+
"World"

assigns "Hello
World"

to s, but

the string literals "Hello
"

and
"World"

are lost on the heap.

Add code optimization to the system.

Add dynamic memory allocation for TIL dictionary entries. Currently a large block of fixed

size is allocated at system startup.

131

Implement C/C++ stream I/O.

Integrate a debugger.

Language:

Initialization during declaration; e.g., FLOAT mag
= 5.0.

Right to left assignment; e.g., LET a=b=c=3.14.

Base type CHAR and operators to support character manipulation.

Addition of pointers, especially pointers to functions for use with the TRANSLATEO
command.

Expand operator set for manipulating strings.

Expand operations allowed on user defined types.

Base type COMPLEX and operators to support it.

Explicit cast functions such as FTOIO; float to integer conversion.

Addition of CONTINUE statement for iterative flow constructs.

Objections aside, addition of GOTO and LABEL statements.

Permit objects local to a function to have the same name as a symbolic constant.

As a final note, much of the early work on the project was due to inspiration from a single source

written by R. G. Loeliger, "Threaded Interpretive Languages". Laterwork on the front end

translator was greatly influenced by Aho ,Sethi, and Ullman, "Compilers: Principles, Techniques,
and Tools". These books are highly recommended to anyone wishing to learn about translators,
and especially to anyone who might be interested in developing this project further.

132

7. REFERENCES

1
P. M. Lewis II, D. J. Rosenkrantz, and R. E. Stearns, Compiler Design Theory

(Reading, Mass.: Addison-Wesley, 1976), pp. 135-143!

2
Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Compilers: Principles
Techniques, and Tools (Reading, Mass.: Addison-Wesley, 1986), pp. 176-178.

3

Ibid., pp. 279-342.

4

Ibid., pp. 585-722.

5

Ibid., pp. 513-584.

6
M. L. James, G. M. Smith, and J. C. Wolford, Applied Numerical Methods For

pigitalComputation (New York, NY: Harper & Row, Publishers, Inc., 1985), pp.
94-105.

7
Richard L. Burden and J. Douglas Faires, Numerical Analysis (Boston, MA:

Prindle, Weber, and Schmidt, 1985), pp. 261-265.

8

James, Smith, and Wolford, pp. 479-487.

9
R. G. Loeliger, Threaded Interpretive Languages (Peterborough, NH: Byte

Publications, Inc., 1981), p. 6.

10
Frank H. Speckhart and Walter L. Green, A Guide To Using CSMP - The

Continuous System Modeling Program (Englewood Cliffs, NJ: Prentice-Hall,

Inc., 1976), p. 6.

11

James, Smith, and Wolford, p. 631.

12

Ibid., pp. 631-635.

133

APPENDIX A: ZORTECH/SYMANTEC C++ COMPILER

The Zortech C/C++ Science and Engineering Edition was chosen as the development system for this

project. The system was clearly superior to Microsoft and Borland C/C++ products at the time it was

selected. The Zortech C/C++ system included the following:

The Zortech C++ Workbench; a DOS based program editor and productivity tool.

Royalty free 32 bit DOSX extender to provide a 4Gb flat address memory model.

Flash Graphics Library that supplies graphics routines and video support for SVGA, VESA, 8514a,
and TIGA.

M++ Library that supplies classes and functions to create and manipulate arrays and matrices,

perform linear algebra, eigensystem analysis, and more.

IEEE and NECG compliant.

Support for interfacing to FORTRAN routines.

A C++ toolkit featuring link lists, queues and stacks, hashed search tables, etc.

A C++ video course was available for purchase from Zortech.

During the development of this project, the Zortech C/C++ system became obsolete and no longer

commercially available. The Symantec C++ Professional system replaced Zortech and the project was

finished using the new system. Flash Graphics and M++ libraries are not bundled with the new system,

but they are still available commercially.

134

APPENDIX B: SOURCE CODE MODULES

The entire project was written in C/C++. Source code modules for the translator are supplied on disk and

include the following:

Header files:

cp.h, compiler.h, scanner.h, til.h, symtable.h, error.h, buffer.h, coleman.h

Source files:

cp.cpp Program mainO and application shell.

rdparser.cpp Recursive-descent parser routines.

scanner.cpp Lexical analysis routines.

til.cpp Threaded code interpreter routines.

symtable.cpp General purpose symbol table routines.

typetbl.cpp Symbol table routines for base and user-defined types.

vartbl.cpp Symbol table routines for variables.

arraytbl.cpp Symbol table routines for arrays.

functbl.cpp Symbol table routines for functions.

resrvtbl.cpp Symbol table routines for reserved words.

deftbl.cpp Symbol table routines for symbolic constants.

error.cpp Error management routines.

buffer.cpp Buffer management routines.

coleman.cpp Miscellaneous general purpose routines.

A makefile is also supplied for use with the Symantec C/C++ compiler. In addition, the file opt.bat is

included. This is a small batch file that simply executes the Symantec compiler sc.exe and passes the

appropriate file names and command switches.

135

APPENDIX C: LANGUAGE AND COMPILER GUIDE

C1. Introduction

C1.1 The Command Processor

Since the command processor was developed to serve as an engine for an application, there is no

explicit structure that defines a program in the usual sense. With this in mind, a better way to

conceptualize the system is to view it as a processor that consumes command streams and produces

actions.

A command stream is composed of two types of objects; command statements and function definitions.

The processor correspondingly has two modes of operation; a command or interpreter mode that

executes command statements, and a compile mode that compiles functions into new commands. See

Figure C.1.

command stream Command Processor

-? execute

-? compile

Figure C.1: Command processor.

A command statement is any valid statement that appears outside of a function definition; e.g.,

declaration, assignment, system command, function call, etc.

A function definition is a collection of valid statements that define and make up a function. Function

definitions start with the keyword DEFINE and end with the keyword END_DEFINE.

For example, consider the command stream shown in Figure C.2.

FLOAT x,y

DEFINE FLOAT sqr(FLOAT x)

RETURN XA2.0

END_DEFINE

LET X = 3.0

LET y
=
sqr(x)

Figure C.2: Typical command stream.

136

Processing of the stream objects and resulting actions is described in detail below.

FLOAT x,y

Object: Declaration statement outside of a function definition. The statement is processed in

command or interpreter mode and executed.

Action: Two external floating point variables are created, x and y.

DEFINE FLOAT sqr(FLOAT x)

RETURN xA2.0

END_DEFINE

Object: A function definition. The function definition is processed in compile mode.

Action: The function sqr is compiled into the system but not executed.

LET x = 3.0

Object: Assignment statement outside of a function definition. The statement is processed in

command or interpreter mode and executed.

Action: External floating point variable x is assigned value of 3.0.

LET y
=
sqr(x)

Object: Assignment statement outside of a function definition. The statement is processed in

command or interpreter mode and executed.

Action: External floating point variable y is assigned return value of 9.0 from function call to sqr(x).

Although the previous example was very simple, it should clarify the dual role of the processor as an

interpreter and compiler in an application environment.

Command streams are source independent as far as the processor is concerned. Central to an

application, the processor would service inputs from:

Menus, forms, and screen managers

Command line input

Disk files

Actions produced would range from changing a simple system setting to:

Customizing the startup environment; settings, menus, viewports, etc.

Loading and compiling libraries of special functions into the system

Processing a session file and recreating a previous application session.

Running a complex user defined program

C1.2 Uses and Limitations

At present, the full potential of the processor cannot be
realized because no application has been

integrated. However, the current system does provide the following:

a programming and command interpreter environment

a language comparable to BASIC or FORTRAN

a set of system diagnostic and utility commands

With no application to drive, the processor is best suited to compile and execute functions for numerical

computations. Programs or macros can be structured by grouping function definitions and command

statements together in a file. One function in the group can serve as a main() or controlling executive,

and a call to that function will initiate a program run.

137

C2. Program Structure

C2.1 Translation Units

A translation unit defines a set of objects that are translated as a group by the processor. A translation

unit is composed of the entire contents of a command stream. The current system defines and supports

streams in the form of:

a single line of input entered at the command line

multiple line contents of a disk file

Typically, single line streams generated at the command line would be input by the user to issue

commands as they interact with the system. Disk files would usually contain function definitions and

command statements to structure programs, form libraries, define startup environments, etc.

C2.2 Lifetime

Lifetime defines the duration or existence of an object. Lifetime can be classified as global or local.

Objects with global lifetime exist for the entire duration of the application.

Objects with local lifetime exist only during the lifetime of the object they occur in. Systems with

dynamic storage allocation allocate and deallocate memory each time a function is called.

Parameters, local variables, and local arrays would have local lifetimes.

The system currently does not support any objects with local lifetime. All storage is static in class; once

an object has been created, it exists until the main application program is exited.

C2.3 Scope

Scope defines the visibility of an object; the environment space where it can be referenced from. Scope

can be classified as global, external, or local.

Functions and user defined types are global in scope. Objects with global scope can be referenced

inside a function definition in compile mode or externally in command mode.

Variables and arrays declared outside of a function are external in scope. Objects with external

scope have no scope within a function. The EXTERN keyword is provided to explicitly declare an

object within a function as being external, thus making it accessible to the function.

Variables and arrays declared within a function definition are local in scope. Objects with local scope

have scope only within the function they are declared in.

C2.4 Linkage

Linkage defines the uniqueness of an object with respect to translation units. Linkage can be classified as

external, internal, and none.

Objects with external or global scope have external linkage with respect to translation units.

References to an object with external linkage from different translation units refers to the same

object.

Objects with internal linkage are unique to the translation unit they were created in. References to an

object with internal linkage from different translation units refer to different objects. The system

currently does not support internal linkage.

Objects with local scope have no linkage. References to an object with no linkage can occur only in a

function block and refer to the object declared in that function block.

138

C3. Language Elements

C3.1 Tokens

Tokens are the smallest language elements discernible to the system. Tokens are identifiers, numbers,

operators, special characters, etc. The lexical analysis phase of the compiler has the job of constructing

valid language tokens from the source text stream.

C3.2 Comments

Single and multiple line comments are supported using standard C/C++ conventions. Single line

comments start with a
7/"

and continue to the end of the line. Multiple line comments start with
T"

and

end with T. Comments are ignored by the compiler and stripped from the source text stream during
lexical analysis.

Example: FLOAT x,y,z // This is a single line comment

/*

This is a multiple

line comment 7

C3.3 Keywords

The language has a set of reserved keywords that cannot be used as names for identifiers. These words

are case sensitive so, for example, integer would be a valid identifier name, INTEGER would be illegal

since it is a reserved word. Listed below are the reserved keywords. Lowercase keywords are diagnostic

and utility commands used for development.

ABS ACOS AND ASIN ATAN BREAK CASE

CLOSE COS COSH DEFAULT DEFINE DELETE ELSE

ELSEIF END DEFINE ENDIF ENDSWITCH ENDWHILE EXP EXTERN

FLOAT FOR FTOA GLOBAL IF INPUT INTEGER

LET LN LOAD LOCAL LOG NEXT NOT

OPEN OR PRINT REPEAT RETURN SIN SINH

SQRT STRING SWITCH SYMBOL SYSTEM TAN TANH

TRANSLATE TYPEDEF UNTIL WHILE ansi clock destruct

dump dumpt exit mem outbuf scroll til

C3.4 Identifiers

Identifiers are names, or lexemes, given to variables, arrays, functions, or user defined types. A valid

name can be any combination of letters, digits, and underscores, but must begin with a letter or

underscore and cannot duplicate a system keyword or previously defined identifier. Identifiers are case

sensitive. There is no restriction on name length.

Example: FLOAT forcel // FLOAT variable declaration with identifier name forcel

INTEGER element_no // INTEGER variable declaration with identifier name element_no

DEFINE FLOAT sqr(FLOAT x) // function definition with identifier name sqr and parameter

RETURN xA2 // identifier name x

END DEFINE

TYPEDEF POINT {FLOAT x, FLOAT y} // user defined type with identifier name POINT

II and member identifier names x and y

139

C3.5 Constants

A constant is a number or string literal. String literals must be enclosed within quotes and cannot contain

a quote as part of the string. Spaces are treated as characters in a string literal.

Example: FLOAT x,y,z

INTEGER i

STRING s1

LETx=3.14159

LET y=0.455E-2

LETz=1.5e3

LET i=1234

LET s1="Load case
1"

LET x = 3.5*SIN(0.7)

// assignment of floating point number 3.141 59 to FLOAT variable x

// assignment of floating point number 0.455E-2 to FLOAT variable y

// assignment of floating point number 1 .5e3 to FLOAT variable z

// assignment of integer number 1234 to INTEGER variable i

// assignment of string literal "Load case
1"

to STRING variable s1

// floating point number constants 3.5 and 0.7 used in an expression

C3.6 Operators

Operators are special tokens in the language used to perform mathematical or special operations on

values, identifiers, or expressions. Table C.1 lists the system operators and associativity. Precedence

relates directly to row position in the table. The first row has the highest precedence; the last row has the

lowest. Operators in the same row have the same precedence.

Operator Operation Associativity
()[]{}: Expression L>R

+ -NOT Unary L>R

A Exponentiation R>L

*/ Multiplicative L>R

+ - Additive L>R

<<=>>= Relational L>R

= <> Equality L>R

AND Logical L>R

OR Logical L>R

= Assignment R>L

i
Sequencing L>R

Table C.1: Operators and precedence.

140

C4. TypesAndDeclarations

C4.1 Base Types

Three base data types are provided in the language:

FLOAT double precision floating point number, e.g. 3.14159, -2.5E-2.0

INTEGER integer number, e.g. 1024, -32

STRING character string, e.g., "Hello
world"

FLOAT and INTEGER data types are direct equivalents of the 'C language data types double and int.

Range limits are compiler dependent but guaranteed to be at least [1 E-37,1 E37] for double and

[-32767,32767] for int.

STRING data type has no direct 'C language equivalent. There is no limit on character string length.

However, since the maximum token size allowed by the system is 256 characters, string literals are

restricted to this length. Concatenation of string variables is a way around this limit using the overloaded

operator "+".

C4.2 User Defined Types

The TYPEDEF statement allows the creation of user defined types similar to structures in 'C or records

in other languages. A user defined type forms a structure used to allocate, division, and access a storage

area where one or more pieces of data are stored as a set. Each set member is given a type and name.

An object declared with a user defined type is actually a set. Access is accomplished using the
"dot"

operator as in 'C.

For example, suppose a variable r is declared as type POINT; POINT r. If type POINT contains as

members two floating point data types with names x and y, then access to either one is accomplished by
r.x or r.y.

Once defined, variables and arrays can be declared using the new type just as if it were a base type

provided in the language. A user defined type may contain members of previously defined user defined

types. The assignment operator is overloaded to allow simple assignment of variables or array elements

of the same user defined type. All other operators must be applied to a member that is a base type.

Functions may return a user defined type for a return value; and in addition, a function may be called

using the dot operator to access a member of the function's return value.

Syntax: TYPEDEF identifier { type identifier [{, fype identifier}] }

Example: TYPEDEF POINT { FLOAT x, FLOAT y} // defining the type POINT with members

// FLOAT x and FLOAT y

TYPEDEF LINE { POINT a, POINT b } // defining the type LINE with members

// POINT a and POINT b

FLOAT s,t // declaration of FLOAT variables s and t

POINT p1
,p2,p3[5]

// declaration of POINT variables p1
,p2, array p3

LINE L1 // declaration of LINE variable L1

LET p1 .x=1 .0, p1 .y=2.5 // assignment of values to p1 and p2

LET p2.x=5.25, p2.y=1 1 .3 // members

LET L1 .a=p1 ,
L1 .b=p2 // assignment of values to L1 members

LET s=p1
.y,

t=L1
.a.y

// assignment of values to s and t

LET p3[5]=p1 // assignment of values to p3[5] members

LET p3[5]=p1 *2.0 // ERROR: attempt to apply multiplication operator to a user
// defined type

141

LET p3[5].x=p1 .x*2.0 // OK: apply multiplication operator to members that are
base

LET p3[5].y=p1 .y*2.0 // types

LET p1 =funcO // assignment of function that returns a POINT value to POINT

// variable p1

LET s=func().x // assignment of function return value member FLOAT x to

// FLOAT variable s

C4.3 Declarations

The declaration statement reserves storage for a new variable or array and creates a symbol table entry

for it. All variables and arrays must be declared before using them. Multiple declarations of the same

type are allowed following the type specifier provided the identifiers are separated by commas. A

variable or array cannot be initialized in its declaration.

Function declarations are part of the function definition; no separate declaration is required as is the case

with variables and arrays.

Syntax: type identifier [{.identifier}]

Example: FLOAT x,y[3],z[2,4] // FLOAT variable and array declarations

INTEGER i,j,k // INTEGER variable declarations

STRING s1 ,s2,s3 // STRING variable declarations

TYPEDEF POINT {FLOAT x, FLOAT y}

POINT p1 [3],p2[4] // POINT array declarations

FLOAT mag
= 3.25 // ERROR: Attempt to initialize a variable during declaration

FLOAT mag // OK: declaration first, then assignment to initialize the variable

LET mag
= 3.25

C4.4 Initialization

Any object that requires storage is initialized when the storage is created. This includes local and

external variables and arrays, function parameters and return values.

FLOAT storage initialized to nans

INTEGER storage initialized to 0

STRING storage initialized to null

C4.5 Storage

All storage is static in class and exists for the duration of the application. Function parameters, local

variables, and local arrays within functions will retain their storage and values after the function is exited.

142

C5. Variables AndArrays

A variable or array is a reference to an area in memory where data is stored and retrieved. Associated

with each variable or array is an address and value. Address refers to the starting point in memory where

the data is stored and value refers to what is actually stored in memory.

Base type variables reference a single piece of data. Base type arrays reference a set of data and

access set members using the array operator "[]".

User defined type variables reference a set of data and access set members using the dot operator ".".

User defined type arrays reference sets of data and access sets using the array operator "[
]"

and set

members using the dot operator ".".

Variables and arrays must be declared before using them in an expression or attempting to assign a

value to them. A valid name can be any combination of letters, digits, and underscores, but must begin

with a letter or underscore and cannot duplicate a system keyword or previously declared identifier.

There is no restriction on name length.

C5.1 Variables

Syntax: identifier

Example: TYPEDEF POINT { FLOAT x, FLOAT y} // defining the type POINT with members

FLOAT xcoor, ycoor

POINT vector

INTEGER i1,i2

STRING
_my_string

LET xcoor = 2.5

LET ycoor = xcoorA2

LET vector.x = xcoor

LET vector.y
= ycoor

// FLOAT x and y

// declaration of FLOAT variables xcoor and ycoor

// declaration of POINT variable vector

// declaration of INTEGER variables i1 and i2

// declaration of STRING variable
_my_string

// assignment of floating point number constant 2.5 to FLOAT

// variable xcoor

// assignment of floating point expression result to FLOAT variable

// ycoor

// assignment of floating point values to POINT variable vector's

// members

// FLOAT x and FLOAT y

C5.2 Arrays

Single and multidimensional arrays are supported up to a maximum of 10 dimensions. By default, lower

array indices implicitly start at 1 . However, explicit declaration of the lower indice using the colon

operator
":"

will override the default. Array indices must be specified using integer constants during
declaration. Once declared, any expression returning an integer can be used to specify an indice.

Initialization of array elements with a user specified value is currently not supported in the language.

Runtime indice calculation and array bounds checking are supported by the compiler.

Syntax:

Syntax:

identifier[[integer:]integer[{,[integer:]integer}]] // declaration syntax

identifierfjnteger expression[{,integer expression}]]

identifier

// assignment or expression syntax form

// omission of the array operator []
// causes the compiler to treat an array
// as a variable and access is restricted

// to the first element of the array

143

Example: FLOAT x[3],y[3] // declaration of 1x3 FLOAT arrays x and y with indice range 1-3

FLOAT point[3,2] // declaration of 3x2 FLOAT array point with indice ranges 1-3,1-2

FLOAT temp[-5:5,0:1 0] // declaration of 1 1x1 1 FLOAT array temp with indice ranges

// -5-5,0-10

STRING tags[0:5] // declaration of 1x6 STRING array tags with indice range 0-5

INTEGER i,j
LET i=-3, j=7

LET x[2]
= 5.25

LET temp[i,j] = x[2] // assignment of FLOAT value 5.25 to FLOAT array temp[-3,7]
LET x =

x[2] // assignment of contents of x[2] to x[1] omitting the array operator []

144

C6. Assignments, Operators, and Expressions

C6.1 Assignments

The assignment statement assigns the resulting value of an expression to a variable or array element.

The keyword LET is optional. Multiple assignment statements are allowed on the same line separated by
commas. However, due to the free format of the language, omission of the comma separators will still

produce the desired result.

Multiple assignment (not multiple assignment statements) is currently not supported by the compiler; For

example, LET x=y=z=3.0. The compiler will evaluate this expression, however, the first
"="

is interpreted

as the assignment operator, the remaining are interpreted as equality operators; e.g., x
= ((y=z)=3.0)

resulting in x=0.

Syntax: [LET] identifier=expression [{,identifier=expression}]

Example: x=5.0, y[2]=xA2, z[1,1]=(xA2+y[2]A2)A0.5

LET s1="Hello ", s2="world", s3=s1+s2

LETp1[2].x=2.0*pi

x=sqrt(45.0)

C6.2 Operators

The operators supported by the language are shown in Table C.2.

Arithmetic Relational Equality Logical

+ addition/positive < less than = equal to not logical NOT

subtraction/negative <= less than or equal to <> not equal to and logical AND

/ division > greater than or logical OR

*
multiplication >= greater than or equal to

A
exponentiation

Expression String Sequencing

() expression/function

[] array

{ } type member set

. member access

: lower array indice

= assignment

+ concatenation
, sequencing

Table C.2: Operators.

145

C6.3 Expressions

Expressions formulate a sequence of operators and operands that when evaluated, return a result.

Although expressions are normally associated with assignment statements, they occur throughout the

language in many places:

assignment statements

array indice specification

function parameters

conditional statements

iterative statements

function return values

Expression operands include constants, variables, arrays, system and user defined functions. Operators

include arithmetic, relational, equality, logical, expression, and string.

Example: LET x = COS(2*w) - LN(x) // assignment expression

LET y
=
cam[i+j] // assignment expression with an array indice integer expression

curve(x,SIN(x)) // function call with parameter expressions

IF(x<y) // boolean expression in the conditional IF statement

ENDIF

WHILE(x<y) // boolean expression in the iterative WHILE statement

ENDWHILE

DEFINE FLOAT sqr(FLOAT x)

RETURN xA2 // floating point expression used to return a function value

END_DEFINE

C6.4 Type Conversion

Type conversion is implicitly supported by the compiler to cast integer values to floating point values

during assignments and expression evaluation. Assignment conversion occurs when an integer value is

assigned to a floating point variable, array, or function parameter. Expression conversion occurs during
the evaluation of expressions involving integers and floats. Binary operations involving one float and one
integer will cast the integer to a float and then perform the operation. Integer division and exponentiation

are undefined in the current system so integers used in these operations are cast to floats.

Implicit casting requires an additional operation and should be avoided in compiled functions where

speed is critical.

There is no implicit conversion of floats to integers and currently no explicit casting function is

provided in the system to do this.

Example: FLOAT x,y

INTEGER i

LET x = 5 // INTEGER constant 5 is implicitly cast to a FLOAT and assigned to FLOAT

// variable x

LET y
= 5.0 // FLOAT constant 5.0 is assigned to FLOAT variable y, no cast required

LET i = 2 // INTEGER constant 2 is assigned to INTEGER variable i, no cast required
LET x = i // value of INTEGER variable i is implicitly cast to FLOAT and assigned to

// FLOAT variable x

LET i = x // ERROR: attempt to assign a FLOAT value to an INTEGER variable

LET x = i/2 // division operator causes cast of value of INTEGER variable i and

// INTEGER constant 2 to FLOATS before division operation is performed

146

C7. Program Control Flow Statements

Structured programming is fully supported in the language using conditional and iterative control

statements (looping and branching). The system supports the following control statements:

Conditional: Iterative:

IF Statement FOR Statement

SWITCH Statement WHILE Statement

REPEAT Statement

Control statements can be nested to any level.

Control statements are valid in compile mode only.

The BREAK statement is supported to allow an immediate exit from an iterative or SWITCH block.

C7.1 Conditional Statements

Conditional or branching statements alter program flow based on whether a condition or set of conditions

is true or false, or equivalent.

C7.1.1 IF Statement

The IF statement forms a structure where sets of statements can be grouped and a means to branch to a

particular set based on a conditional test.

Syntax: IF(expression) statementjist [{ELSEIF(expression) statementjist}] [ELSE statementjist]
ENDIF

In its simplest form, the IF.. .ENDIF statement evaluates an expression and executes the enclosed

statement list if the expression is true (nonzero). If the expression is false (zero), program control

transfers to the first statement following the ENDIF keyword.

Example: angle=ATAN(y/x)

IF(x<0 AND y>0)

angle=angle+pi

quadrant=2

ENDIF

More than one conditional test can be made using the form IF. ..ELSEIF. ..ENDIF. If the IF expression is

false, program control transfers to the first ELSEIF and evaluates its expression. If the ELSEIF

expression is false, program control transfers to the next ELSEIF and evaluates its expression, and so

on. A sequential evaluation of expressions is performed until an expression yields true or the block is

terminated by the ENDIF. Once an expression yields true, the enclosed statement list is executed, then

program control transfers to the first statement following the ENDIF keyword.

Example: angle=ATAN(y/x)

IF(x<0 AND y>0)

angle=angle+pi

quadrant=2

ELSEIF(x<0 AND y<0)

angle=angle+pi

quadrant=3

ELSEIF(x>0 AND y<0)

quadrant=4

ENDIF

147

The ELSE keyword provides unconditional execution of a set of statements to occur if no preceding IF or

ELSEIF expression yielded true. Forms are IF.. .ELSE.. .ENDIF and IF.. .ELSEIF.. .ELSE.. .ENDIF.

Example: angle=ATAN(y/x)

IF(x<0 AND y>0)

angle=angle+pi

quadrant=2

ELSEIF(x<0 AND y<0)

angle=angle+pi

quadrant=3

ELSEIF(x>0 AND y<0)

quadrant=4

ELSE

quadrant=1

ENDIF

C7.1.2 SWITCH Statement

The SWITCH statement forms a structure where sets of statements can be grouped and a means to

branch to a particular set based on an equivalence test. A SWITCH statement evaluates a single

SWITCH expression, then sequentially evaluates a list of CASE expressions until the result of a CASE

expression exactly matches the result of the SWITCH expression. Program control then transfers to the

first statement of the statement set enclosed by the matching CASE. Once a CASE expression match is

found, no further CASE expressions are evaluated. If no CASE match is found, program control transfers

to the first statement following the ENDSWITCH keyword or, optionally, a DEFAULT case can be

specified that will be unconditionally executed if no CASE matches occur.

The BREAK statement is used to cause an immediate exit from a SWITCH statement and transfer

program control to the first statement following the ENDSWITCH keyword. The BREAK statement is

normally included as the last statement in a CASE statement set. If omitted, program control will transfer

to the first statement of the next CASE statement set which may or may not be desirable. Omission of

statement sets is commonly used to group multiple CASE'S togetherwhich share a common statement

set.

CASE expressions are not limited to constants as is the case in the 'C language.

Syntax: SWITCH(expression) CASE(expression) statementjist [BREAK] [CASE(expression)
statementjist [BREAK]] [DEFAULT statementjist [BREAK]] ENDSWITCH

148

Example: DEFINE INTEGER days(INTEGER month)

INTEGER numdays

SWITCH(month)

CASE(1) // "fall
through"

of CASE statements to reach a common statement set

CASE(3)

CASE(5)

CASE(7)

CASE(8)

CASE(10)

CASE(12)
numdays = 31

BREAK // using BREAK command to exit SWITCH statement

CASE(4)

CASE(6)

CASE(9)

CASE(11)
numdays = 30

RETURN numdays // using RETURN statement to exit function from within SWITCH

CASE(2) // statement

RETURN 28 II

DEFAULT

numdays = 0

BREAK II BREAK is

ENDSWITCH

RETURN numdays

END DEFINE

// BREAK is redundant for DEFAULT case, can be omitted

149

C7.2 Iterative Statements

Iterative or looping statements allow repeated execution of statement sets based on whether a condition

or set of conditions is true or false.

C7.2.1 FOR Statement

The FOR statement forms a structure where a set of statements can be grouped and repeatedly

executed based on a conditional test. Normally, the FOR statement is used to execute a loop a specified

number of times. Loop variable initialization and incrementing are supported by the structure to

accomplish this.

Syntax: FOR(assignmentJist ; expression ; assignmentjist) statementjist NEXT

where assignmentjist is of the form:

identifier=expression [{,identifier=expression}]

The first parameter of the FOR statement is an assignment list that's executed only once prior to

evaluating the loop. This assignment list is usually where loop variables are initialized, but other

assignments are also permissible.

The second parameter of the FOR statement is the conditional expression. This expression is evaluated

and if true, the enclosed statement list is executed. If the expression is false, program control transfers to

the first statement following the NEXT keyword. The conditional expression is evaluated at the start of

each iteration of the loop.

The third parameter of the FOR statement is an assignment list that's executed after each iteration of the

loop. This assignment list is usually where loop variables are incremented, but other assignments are

permissible. After execution of the assignment list, program control transfers back to the conditional test

to start the next iteration.

The BREAK statement can be used to cause an immediate exit from a FOR statement and transfer

program control to the first statement following the NEXT keyword.

Example: DEFINE FLOAT test(INTEGER max, INTEGER iinc, INTEGER jinc)
INTEGER i,j
FLOAT x

FOR(x=0,i=1 ,j=1 ;i+j<=max;i=i+iinc,j=j+jinc)

LET x=x+1

NEXT

RETURN x

END DEFINE

150

C7.2.2 WHILE Statement

The WHILE statement forms a structure where a set of statements can be grouped and repeatedly

executed based on a conditional test. The WHILE statement evaluates an expression and executes the

enclosed statement list if the expression is true. After execution of the statement set, program control

transfers back to the conditional test to start the next iteration. If the expression is false, program control

transfers to the first statement following the ENDWHILE keyword.

The BREAK statement can be used to cause an immediate exit from a WHILE statement and transfer

program control to the first statement following the ENDWHILE keyword.

Syntax: WHILE(expression) statementjist ENDWHILE

Example: DEFINE fillarray(FLOAT arrayQ, INTEGER n, INTEGER m, FLOAT t)
INTEGER i,j
LET i = 1

WHILE(i<=n)
LETj=1

WHILE(j<=m)
LET array[i,j]

= t

LETj = j+1

ENDWHILE

LET i = i+1

ENDWHILE

ENDJDEFINE

C7.2.3 REPEAT Statement

The REPEAT statement forms a structure where a set of statements can be grouped and repeatedly
executed based on a conditional test. The REPEAT statement is similar to the WHILE statement except

that the conditional expression is evaluated after the enclosed statement list is executed. The REPEAT

statement first executes the enclosed statement list and then evaluates the conditional expression. If the

expression is false, program control transfers back to the first statement of the statement list to start the

next iteration. If the expression is true, program control transfers to the first statement following the

UNTIL keyword.

The BREAK statement can be used to cause an immediate exit from a REPEAT statement and transfer

program control to the first statement following the UNTIL keyword.

Syntax: REPEAT statementjist UNTIL(expression)

Example: DEFINE fillarray(FLOAT arrayQ, INTEGER n, INTEGER m, FLOAT t)
INTEGER i,j
LET i = 1

WHILE(i<=n)
LETj=1

REPEAT

LET array[i,j]
= t

LETj=j+1

UNTIL(j>m)
LET i = i+1

ENDWHILE

END DEFINE

151

C7.3 BREAK Statement

The BREAK statement is used to cause an immediate exit from an iterative or SWITCH block and

transfer program control to the first statement following the block terminator (NEXT, UNTIL, etc.).

In nested blocks, the BREAK statement exits only the block it appears in.

Syntax: BREAK

Example: DEFINE fillarray(FLOAT arrayQ, INTEGER n, INTEGER m, FLOAT t)
INTEGER i,j
LET i = 1

WHILE(1)
LETj=1

REPEAT

LET array[i,j]
= t

LETj = j+1

UNTILG>m)
LET i = i+1

IF(i>n)

BREAK; // Break causes an immediate exit from WHILE loop
ENDIF

ENDWHILE

END DEFINE

152

C8. Functions

A function or macro forms a structure where statements can be grouped together and executed by

referencing the function by name. Functions can access most system commands, call other functions, be

used in expressions to return a value, and be called as a command to execute some task.

Functions can return a single value of any type; base or user defined.

Parameters can be passed as "call by
value"

or "call by reference".

Variables and arrays declared in functions are by default local to the function.

The EXTERN keyword is available to access an external variable or array.

The RETURN statement is supported to allow an immediate exit from a function and transfer

program control back to the first statement following the statement that called the function.

Recursion is not currently supported, so a function cannot call itselfwithin the body of the function.

You can, however, call a function and use that same function in its parameter list; e.g.,

SQRT(SQRT(16)).

Functions cannot be defined within functions.

Functions are compiled into fully analyzed threaded code so no extensive interpretation is required at

runtime. Test code has shown execution speeds roughly 3 times faster than equivalent code run in

Microsoft QuickBasic.

C8.1 Definition

A function definition declares and defines a function.

A function definition includes:

the DEFINE keyword

an optional return type specifier if the function is to return a value

a function identifier name

an optional parameter list

the statement list or body of the function

the ENDJDEFINE keyword

Syntax: DEFINE [type] identified ([fype identifier [{ ,type identifier }]])] statementjist

END DEFINE

Example: TYPEDEF POINT {FLOAT mag, FLOAT ang}

DEFINE POINT polar(FLOAT x, FLOAT y) // function definition with identifier name polar,

POINT r1 // return type specifier POINT, and parameters

r1 .mag=SQRT(xA2+yA2) // FLOAT x and FLOAT y

r1
.ang=ATAN2(x,y)

RETURN r1

ENDJDEFINE

DEFINE FLOAT pi()

RETURN 3.14159

ENDJDEFINE

DEFINE FLOAT pi

RETURN 3.14159

END DEFINE

// function that takes no parameters but returns a value

// same function but with parenthesis omitted; no parameters

153

DEFINE pause // function that takes no parameters and returns no value

INTEGER i

FOR(i=0;i<10000;i=i+1)
NEXT

ENDJ3EFINE

C8.2 Parameters, Local Variables and Arrays

Function parameters are declared in the function definition parameter list.

Each parameter must have a type and unique identifier

A parameter identifier is local to the function

A variable or array may be passed as a parameter to a function

Arrays are always passed as "call by
reference"

Variables are passed either as "call by
reference"

or "call by
value"

Call by value passes the function a copy of a value and has no effect outside of the function. Call by
reference passes the address of an external variable or array to a function and the function operates on

the external variable or array.

To declare a parameter variable as "call by reference", prefix the identifier with
"&"

in the parameter list.

Since arrays are always passed as "call by reference", the
"&"

is optional. Array parameters can be

declared with or without the "[
]"

operator in the parameter list.

Example: // Function definition with two array parameters and one reference variable. Note optional

// omission of "[
]"

operator for array parameter a2.

DEFINE FLOAT test(point a1[], INTEGER &m, STRING a2)

ENDJDEFINE

Function variables and arrays are declared in the body of the function.

Variables and arrays are by default local to the function

The EXTERN keyword is used to declare a function variable or array as external

Variable and array identifiers must be unique within the function and cannot duplicate the function's

parameter identifiers, a system keyword, or a base or user defined type.

A variable or array identifier may duplicate a function name.

To declare a variable or array in a function as external, prefix the declaration of the identifier with the

keyword EXTERN. For example, EXTERN FLOAT x declares x to be an external floating point variable.

EXTERN STRING list[] declares list to be and external array of string variables.

Example: TYPEDEF point { FLOAT x, FLOAT y }
point x[2,3], y[3]

STRING s[4,2]

INTEGER j

DEFINE FLOAT piO

RETURN 3.14159265358979323846

END DEFINE

154

DEFINE FLOAT sqr(FLOAT x)

RETURN xA2.0

ENDJDEFINE

// Function with reference and local parameters, external and local declarations

// Also case of a local variable overriding a function name

DEFINE FLOAT test(point a1Q, INTEGER &m, STRING a2Q)
EXTERN point yQ // declaration of external point array yQ using EXTERN keyword

FLOAT cam[1
,2,3]

// declaration of local FLOAT array cam[1 ,2,3]
INTEGER i,j,k // declaration of local INTEGER variables i, j, and k

LET i=1 ,j=2,k=3 // assignment of integer constants to local INTEGER variables i,j,k

LETy[i].x=1.1,y[i].y=1.2

LETy[j].x=2.1,y[j].y=2.2

LETy[i+j].x=3.1, y[i+j].y=3.2

LETa1[2,2].x=2.21

LET a2[2,2]="Test
string"

LET m=37

// assignment or values to external array yQ

// assignment of value to external array x[2,2]
// assignment of value to external array s[2,2]
// assignment of value to external variable j

FLOAT pi LET pi=5

RETURN sqr(pi)

END DEFINE

// Declaring a local variable
"pi"

with same name as

// function pi'O- Local variable has scope from this point

// on until end of function block.

// function returns value of 25.0, not 9.869604401

test(x,j,s) // call function passing parameters x,j,s

C8.3 RETURN Statement

The RETURN statement is used to cause an immediate exit from a function and transfer program control

back to the point where the function was called from. An optional return expression will be evaluated and

the result returned from the function call.

Any number of RETURN statements may appear in a function body
A RETURN statement is optional for a function that returns no value and cannot include a return

expression

A RETURN statement is mandatory for a function that returns a value and must include a return

expression

Syntax: RETURN [expression]

Example: DEFINE FLOAT abs(FLOAT x) // function to calculate absolute value

IF(x<=0)
RETURN -x // x is negative; return -x

ENDIF

RETURN x // x is positive; return x

END DEFINE

155

C8.4 Invocation

Functions can be used in expressions and are treated just as if they were a variable being used in the

expression. A function is executed and its return value is used in the expression for calculation as well as

the return value type for type checking and implicit type conversion. Functions that have no return value

are implicitly typed VOID and will generate a type mismatch error if used in an expression. Functions

returning a user defined type can be invoked using the dot operator to access a member of the return

value.

Functions do not have to be used in expressions and can be called as stand alone commands. Any
return value will be ignored by the system in this case.

Syntax: identifier! ([expression [{ .expression }]])]

Example: TYPEDEF POINT {FLOAT mag, FLOAT ang}

POINT pcoor

FLOAT x1
,x2,

magnitude

x1 = 1.5

x2 = 3.25

pcoor = polar(x1
,x2)

// call to function to calculate polar coordinates

magnitude = polar(x1
,x2).mag

// call to function using dot operator to access mag value

pause // calling a function as a command outside of an expression

156

C9. Symbolic Constants

Symbolic constants are user defined tokens that have a replacement string associated with them. During

translation, any occurrence of a symbolic constant results in a direct substitution of the replacement

string defined for that constant.

Syntax: SYMBOL identifier stringjiteral

Example: SYMBOL pi
"3.14159"

//defines a symbolic constant named pi with replacement string

//
"3.14159"

x = 2
*

pi // symbolic constant used in an expression

157

C10. Miscellaneous Commands

C10.1.1 SYSTEM Statement

The SYSTEM command allows the user to shell out of the translator and execute another program.

Syntax: SYSTEM string_expression

Example: SYSTEM
"dir"

// shells out to the DOS command line and executes a directory listing

C10.1.2 DELETE Statement

The DELETE command allows the user to delete variables, arrays, functions, symbolic constants, and

user defined types.

Syntax: DELETE string_expressionJist

Example: DELETE
"x","y"

// delete the objects x and y

C10.1.3 LOCAL Statement

The LOCAL command sets the scope of the symbol table search routines local to a function with respect

to variables and arrays. This command is used in conjunction with the TRANSLATE command as a

temporary solution to the absence of pointers in the current language.

Syntax: LOCAL string_expression

Example: LOCAL
"myfunc"

// sets symbol table routines local to function
"myfunc"

C10.1.4 GLOBAL Statement

The GLOBAL command restores the scope of the symbol table search routines with respect to variables

and arrays. This command is used in conjunction with the TRANSLATE command as a temporary
solution to the absence of pointers in the current language.

Syntax: GLOBAL

C10.1.5 TRANSLATE Statement

The TRANSLATE command exploits the reentrant capabilities of the translator. At runtime, a call to

TRANSLATE(string_expression) will suspend the current operation of the translator and then reenter the

translator to process the contents of the string_expression. Once this operation is complete, control

returns to continue execution of the program that issued the TRANSLATE call.

Syntax: TRANSLATE(string_expression)

Example: STRING s

s = "DEFINE sqr(FLOAT x) RETURN xA2
ENDJDEFINE"

PRINT sqr(4)

TRANSLATE(S)

PRINT sqr(4)

// string variable containing a

// function definition

// ERROR! No function sqrfj exists at this point

// process string s to compile new function sqrO into system

// call new fuction sqrQ to calculate and print 4A2

158

C11. Specialized Command Sets

C11.1 Mathematical

The language supports a core set of mathematical functions summarized below:

SIN(x) sine of x

COS(x) cosine of x

TAN(x) tangent of x

ASIN(x) inverse sine of x -1 <x< 1 -it/2 < f(x) ^ it/2

ACOS(X) inverse cosine of x -1X<1 0 < f(x) < it

ATAN(x) inverse tangent of x -71 < f(X) < 71

SINH(x) hyperbolic sine of x

COSH(x) hyperbolic cosine of x

TANH(x) hyperbolic tangent of x

ABS(x) absolute value | x

SQRT(x) square root of x x>0 f(X) > 0

LOG(x) base 10 logarithm of x x> 0

LN(x) natural logarithm of x x> 0

EXP(x) exponential function
ex

x used above represents any expression that returns a floating point value.

All the mathematical functions return a floating point value and can be used in any expression just the

same as a user defined function.

Syntax: identifier(expression)

Example: FLOAT y,Xo,s,w,t,phi

LET y
= Xo*EXP(-s*w*t)*SIN(SQRT(1-sA2)*w*t+phi) // expression using system functions

// EXPO, SINO, and SQRTO

FLOAT x,y

LET y
=
myfunc(SIN(x)+xA2) // function call using the system function SINO in a

// parameter expression

C11.2 Utility

Utility functions are summarized below:

FTOA(x) convert floating point number x to a string and return the string

159

C11.3 I/O

C11.3.1 LOAD Statement

The LOAD command reads a file from disk into the system command stream being processed by the

compiler. It's normally invoked from the command line; however, it can be included in a macro file to

facilitate chaining of files during loading. The LOAD command cannot be used in a function.

Syntax: LOAD "[drive][path]filename"

Example: LOAD
"C:\macros\custom.mac"

// loads and processes the macro file custom.mac

// located in the macros directory on drive C:

LOAD
"tools.mac"

// loads and processes the macro file tools.mac located

// in the current working directory

C11.3.2 OPEN Statement

The OPEN statement is used to open a disk file for input or output.

Syntax: OPEN #channel, mode, filename

channel Integer expression in range 1 to 255.

mode String expression specifying read, write, or append mode (r, w, or a.)
filename String expression specifying filename and optional drive/path.

Example: OPEN #1 ,"w","test1 // opens file testl .txt in write mode and assigns file to channel 1

INTEGER channel

STRING mode, file

channel =10

mode =
"r"

file =
"c:\user\test2.txt"

OPEN #channel,mode,file // opens file c:\user\test2.txt in read mode and assigns file to

//channel 10

C11.3.3 CLOSE Statement

The CLOSE statement is used to close files that were previously opened with the OPEN command.

Syntax: CLOSE #channel

CLOSE

channel Integer expression in range 1 to 255.

Example: CLOSE #3 // closes the file assigned to channel 3

CLOSE // closes all open files

160

C11.3.4 INPUTStatement

The INPUT statement reads input from the keyboard or disk. Input values must be separated with

commas.

Syntax: INPUT prompt, variablejist

INPUT #channel,variablejist

prompt String expression used to display a user-defined prompt to the screen.
channel Integer expression in range 1 to 255.

variablejist List of variables to assign input values to.

Example: INPUT "Enter x,i,s: ",x,i,s // displays the prompt "Enter x.i.s:
"

to the screen and waits for

// the user to key in values for x, i, and s

INPUT #1 ,x1 ,i1 ,s1 // reads input from the currently open file assigned to channel 1

// and assigns the input values to variables x1 , i1 ,
and s1

C11.3.5 PRINT Statement

The PRINT statement writes output to the screen or disk. Output expressions must be separated with

commas.

Syntax: PRINT expressionjist

PRINT #channel,expressionjist

expressionjist List of expressions to print.

channel Integer expression in range 1 to 255.

Example: FLOAT x

x=1.0

PRINT "The sine of
",x,"

= ",SIN(x) // prints "The sine of 1 =
0.841471"

to the screen

PRINT #2,"The sine of
",x,"

= ",SIN(x) // prints "The sine of 1 =
0.841471"

to the currently
// open file assigned to channel 2

161

C11.4 Diagnostic

A set of diagnostic and utility tools necessarily evolved during the development of the compiler. Although

not intended for inclusion in the final application, the tools are documented here and retained in the

current system for use in future development.

dump Toggle display of entire symbol table to the screen on or off.

dump xxxxxx Display sections of the symbol table to the screen. From left to right, x corresponds to

variable list, array list, function list, reserved word list, symbolic list, and type list. For

example:

dump 111111 display entire symbol table

dump 000000 turn off entire symbol table

dump 1 10001 display variable, array, and type lists

dump 001 000 display function list

dump 000001 display type list

scroll

outbuf

dumpt

til

destruct

ansi

mem

clock

exit

Toggle scrolling of output on or off

Toggle display of intermediate language output from parser on or off

Toggle display of threaded code during function compilation on or off

Toggle between front and back end compiler environments.

Toggle display of symbol table object destructors on or off.

Toggle ansi display on or off (use if ANSI.SYS driver is present)

Displays the TIL dictionary size, bytes used, and bytes free.

Toggles a timer on and off. This command is called twice; the first call starts the clock, the

second call stops the clock and displays the elapsed time to the nearest 1/100 sec. Useful for

timing routines during development optimization. For example:

com> clock myfuncO clock <ENTER>

Elapsed Time: 1 .65 sec

com>

The function myfuncO took 1 .65 sec to execute.

Exit the command processor

162

C12. Operations Guide

C12.1 System Requirements

IBM or 100% compatible computer running MS-DOS 3.3 or above

80386 or higher processor with math coprocessor

One megabyte of RAM or more

One floppy disk drive; program supplied in 3.5 and 5.25 inch formats

C12.2 System Configuration

Recommend installing the ANSI.SYS driver to enable color output of the Symbol Table listings. Include

the following statement in the config.sys file (or similar if [drive:][path] is different):

DEVICE=C:\DOS\ANSI.SYS

C12.3 Running the Command Processor

From the DOS prompt, type:

[drive:][path]cp [[drive:][path]filename]

where filename is an optional macro file that will be loaded and processed by the compiler at startup.

If no macro file is loaded, the initial startup screen appears as shown below:

Command Processor/Macro Compiler Version 1.0 12/03/94

com>

163

A title banner is displayed showing the current version and release date of the system.

The command line prompt is displayed and the system is ready for user input.

Pressing <ENTER> at this point will clear the startup screen and display a full Symbol Table Listing
above the command line as shown below. This listing reflects the starting state of the compiler's symbol

table; reserved words and base types, no variables, arrays, functions, symbolic constants, or user

defined types.

SYMBOL TABLE LISTING:

[Variable List]

[Array List]
[Function List]
[Reserved List]
LET TYPEDEF DEFINE END DEFINE RETURN EXTERN

IF ELSEIF ELSE ENDIF FOR NEXT

WHILE ENDWHILE REPEAT UNTIL SWITCH CASE

DEFAULT ENDSWITCH BREAK INPUT PRINT OPEN

CLOSE LOAD FTOA TRANSLATE DELETE SYMBOL

SYSTEM NOT AND OR SIN COS

TAN ASIN ACOS ATAN SINH COSH

TANH ABS SQRT LOG LN EXP

LOCAL GLOBAL dump scroll outbuf dumpt

til ansi destruct clock mem exit

[Symbolic List]
[Type List]
FLOAT t:337 su:008

INTEGER t:336 su:004

STRING t:335 su:004

com>
_

Entering a command string and pressing <ENTER> or loading a macro file would generate a similar

listing that included any updates to the symbol table; variables, arrays, functions, symbolic constants,
and user defined types.

164

To enable color highlighting of the Symbol Table Listing (ANSI.SYS driver must be present), type:

com> ansi <ENTER>

SYMBOL TABLE LISTING:

[Variable List]
[Array List]
[Function List]
[Reserved List]
LET TYPEDEF DEFINE ENDJDEFINE RETURN EXTERN

IF ELSEIF ELSE ENDIF FOR NEXT

WHILE ENDWHILE REPEAT UNTIL SWITCH CASE

DEFAULT ENDSWITCH BREAK INPUT PRINT OPEN

CLOSE LOAD FTOA TRANSLATE DELETE SYMBOL

SYSTEM NOT AND OR SIN COS

TAN ASIN ACOS ATAN SINH COSH

TANH ABS SQRT LOG LN EXP

LOCAL GLOBAL dump scroll outbuf dumpt

til ansi destruct clock mem exit

[Symbolic List]
[Type List]
FLOAT t:337 su:008

INTEGER t:336 su:004

STRING t:335 su:004

com>_

The Symbol Table Listing is updated each time a command stream is processed. For example, suppose

the following code is stored in a macro file called list.mac in the current working directory:

TYPEDEF POLAR {FLOAT mag, FLOAT ang}

DEFINE FLOAT piO

RETURN 3.14159265358979323846

ENDJDEFINE

DEFINE POLAR RecToPolar(FLOAT x, FLOAT y)

POLAR r1

M.mag = SQRT(xA2+yA2)
r1
.ang

= ATAN(y/x)

IF(x<0)

rl.ang
= r1.ang+pi

ENDIF

RETURN r1

ENDJDEFINE

POLAR r

FLOAT x1
, x2, vect[3,2]

165

At the command line, enter:

com> LOAD
"list.mac"

<ENTER>

Processing the above macro file generates the Symbol Table Listing shown below. Note that a portion of

the listing has scrolled off the screen.

SYMBOL TABLE LISTING:

[Variable List]
x2

x1

r t:338 &v:276992 v: <nans> <nans>

[Array List]

t:337 &v:277088 v: <nans>

t:337 &v:277044 v: <nans>

t:338 &v:276992 v: <nans>

vect t:337&v:2771 56 [1:3,1:2]

[1,1] <nans>

[1,2] <nans>

[2,1] <nans>

[2,2] <nans>

[3,1] <nans>

[3,2] <nans>

[Function List]
RecToPolar t:338 &v:276808 v: <nans> <nans> (x:337,y:337)
Pi t:337 &v:276572 v: <nans> ()
[Reserved List]
LET TYPEDEF DEFINE ENDJDEFINE RETURN EXTERN

IF ELSEIF ELSE ENDIF FOR NEXT

WHILE ENDWHILE REPEAT UNTIL SWITCH CASE

DEFAULT ENDSWITCH BREAK INPUT PRINT OPEN

CLOSE LOAD FTOA TRANSLATE DELETE SYMBOL

SYSTEM NOT AND OR SIN COS

TAN ASIN ACOS ATAN SINH COSH

TANH ABS SQRT LOG LN EXP

LOCAL GLOBAL dump scroll outbuf dumpt

til ansi destruct clock mem exit

[Symbolic List]
[Type List]
POLAR t:338 su:016 {mag:337,ang:337}

FLOAT t:337 su:008

INTEGER t:336 su:004

STRING t:335 su:004

com>_

166

Once a user becomes familiar with the systems reserved words, turning off the Reserved List is desirable

to prevent the screen from scrolling as the symbol table grows with entries.

At the command line, enter:

com> dump 111011 <ENTER>

The Reserved List is turned off and the Symbol Table Listing generated is shown below.

SYMBOL TABLE LISTING:

[Variable List]
x2 t:337 &v:277088 v: <nans>

x1 t:337 &v:277044 v: <nans>

r t:338 &v:276992 v: <nans> <nans>

[Array List]
vect t:337&v:2771 56 [1:3,1:2]

[1,1] <nans>

[1
,2]

<nans>

[2,1] <nans>

[2,2] <nans>

[3,1] <nans>

[3,2] <nans>

[Function List]
RecToPolar t:338 &v:276808 v: <nans> <nans> (x:337,y:337)
P" t:337 &v:276572 v: <nans> ()
[Symbolic List]
[Type List]
POLAR t:338 su:016 {mag:337,ang:337}
FLOAT t:337 su:008

INTEGER t:336 su:004

STRING t:335 su:004

com>_

Eventually the symbol table will grow to the point where scrolling is inevitable. Hitting the <PAUSE> key
will freeze a listing temporarily and may be useful. To capture a full listing for detailed examination, run
the program with the macro file as a parameter and pipe the output to a file. Then exit the program and

examine the file.

Example: At the DOS prompt, run the program cp with the macro file list.mac as a parameter and pipe

the output to a file named output.txt.

cp list.maooutput.txt

Then type exit <ENTER> to exit the program and return to the DOS prompt to examine the

file.

Piping output to a text file can also be used to capture intermediate language output from the parser and

threaded code during function compilations when using the outbuf and dumpt diagnostic tools.

167

The scroll command will not prevent a large listing from scrolling. This command toggles a clear screen

operation on or off before displaying a Symbol Table Listing. If scroll is off, the screen is cleared each

and every time the Symbol Table Listing is displayed. If scroll is on, no clear screen operation is

performed and the new listing scrolls up under the old.

scroll should be turned on to observe command lines entered and intermediate language output,
threaded code generation, and object destructor listings using the outbuf, dumpt, and del diagnostic
tools.

At the command line, enter:

com> scroll <ENTER>

Scrolling is enabled and the Symbol Table Listing generated is shown below. Note that the listing has
scrolled up under the last listing and the previous command line is still visible.

STRING t:335 su:004

com> scroll

SYMBOL TABLE LISTING:

[Variable List]
x2 t:337 &v:277088 v: <nans>

x1 t:337 &v:277044 v: <nans>

r t:338 &v:276992 v: <nans> <nans>

[Array List]
vect t:337&v:2771 56 [1:3,1:2]

[1,1] <nans>

[1
,2]

<nans>

[2,1] <nans>

[2,2] <nans>

[3,1]<nans>

[3,2] <nans>

[Function List]
RecToPolar t:338 &v:276808 v: <nans> <nans> (x:337,y:337)
Pi t:337 &v:276572 v: <nans> ()
[Symbolic List]
[Type List]
POLAR t:338 su:016 {mag:337,ang:337}
FLOAT t:337 su:008

INTEGER t:336 su:004

STRING t:335 su:004

com>_

To disable scrolling, reenter:

com> scroll <ENTER>

168

To dynamically observe the contents of variables and arrays, enter the following statements at the
command line:

com> x1 =
-1.0 <ENTER>

com> x2 =
-2.0 <ENTER>

com> r = RecToPolar(x1,x2) <ENTER>
com> vect[1,1]

=
r.mag <ENTER>

com> vect[1,2]
=
r.ang <ENTER>

The final Symbol Table listing is shown below.

SYMBOL TABLE LISTING:

[Variable List]
x2 t:337 &v:277088 v: <-2>

x1 t:337 &v:277044 v: <-1>

r t:338 &v:276992 v: <2.23607> <4.24874>

[Array List]
vect t:337&v:2771 56 [1:3,1:2]
[1,1]<2.23607>

[1
,2]

<4.24874>

[2,1] <nans>

[2,2] <nans>

[3,1] <nans>

[3,2] <nans>

[Function List]
RecToPolar t:338 &v:276808 v: <2.23607> <4.24874> (x:337,y:337)
Pi t:337 &v:276572 v: <3.14159> ()
[Symbolic List]
[Type List]
POLAR t:338 su:016 {mag:337,ang:337}
FLOAT t:337 su:008

INTEGER t:336 su:004

STRING t:335 su:004

com>_

169

The Symbol Table Listing can be set to display a single function's local variables and arrays.

To observe the local variables and arrays in the function RecToPolar, enter:

com> LOCAL
"RecToPolar"

<ENTER>

The Variable and Array Lists are set locally to the function RecToPolar and the Symbol Table Listing
generated is shown below.

SYMBOL TABLE LISTING:

[RecToPolar local Variable List]
r1 t:338 &v:276860 v: <2.23607> <4.24874>

X t:337 &v:276796 v: <-1>

y t:337 &v:276752 v: <-2>

[RecToPolar local Array List]
[Function List]
RecToPolar t:338 &v:276808 v: <2.23607> <4.24874> (x:337,y:337)
Pi t:337 &v:276572 v: <3.14159>()
[Symbolic List]
[Type List]
POLAR t:338 su:016 {mag:337,ang:337}
FLOAT t:337 su:008

INTEGER t:336 su:004

STRING t:335 su:004

com>_

To exit local display mode, enter:

com> GLOBAL <ENTER>

170

C12.4 Interpreting the Symbol Table Listing
The Symbol Table Listing is a tool to view the current state of the system's symbol table. Variables,

arrays, functions, reserved words, symbolic constants, and user defined types are all managed by the

symbol table routines. The tool displays variable and array lexemes, types, storage addresses and

contents. Function lexemes, return types and storage addresses and contents, parameter lexemes and

types, local variables and arrays. The systems reserved word list and symbolic constants. Base and user

defined types, type codes, storage requirements, member lexemes and types.

[Variable List]
The Variable List is a display of all the variables defined in the system. The listing shows a variable's

name, typecode, storage address, and storage contents.

Format: variable_name V.typecode &v:storage_address v: {<storage_contents>}

Example: x1 t:337 &v:277044 v: <-1>

Variable x1 is type FLOAT with starting storage address at 277044 and contents -1 .

r t:338 &v:276992 v: <2.23607> <4.24874>

Variable r is type POINT with starting storage address at 276992 and contents 2.23607,

4.24874.

[Array List]
The Array List is a display of all the arrays defined in the system. The listing shows an array's name,

typecode, storage address, indice range, and storage contents.

Format: arrayjname V.typecode &v:storage_address

[i,j...] <storage_contents>

[i,j+1...] <storage_contents>

[i,j+2...] <storage_contents>

[m,n...] <storage_contents>

[indice:indice{,indice:indice}]

Example: vect t:337&v:2771 56 [1:3,1:2]
[1,1]<2.23607>

[1,2]<4.24874>

[2,1] <nans>

[2,2] <nans>

[3,1] <nans>

[3,2] <nans>

Array vect is type FLOAT with starting storage address at 277156. The array has 2

dimensions with indice ranges 1:3 and 1:2. Array elements [1,1] and [1,2] contain

values 2.23607, 4.24874; the remaining have never been assigned a value yet and contain

nans.

171

[Function List]
The Function List is a display of all the functions defined in the system. The listing shows a function's

name, typecode, storage address, return storage contents, and parameter list.

Format: function_name V.typecode &v:storage_address v: {<storage_contents>}

([parameter_name:typecode{,parameter_name:typecode}])

Example: RecToPolar t:338 &v:276808 v: <2.23607> <4.24874> (x:337,y:337)

Function RecToPolar is type POINT with return value starting storage address at

276808. The function has been called and the return storage contains values

2.23607, 4.24874. The function has two parameters; FLOAT variable x

and FLOAT variable y.

[Reserved List]
The Reserved List is a display of all the reserved keywords in the system except base types. Base types

are listed separately in the Type List.

Format: reserved_word

Example: LET

Reserved word LET.

[Symbolic List]
The Symbolic List is a display of all the symbolic constants defined types in the system.

Format: symbolic_name replacement_string

Example: pi
"3.14159"

[Type List]
The Type List is a display of all the base and user defined types in the system. The listing shows a

types'

name, typecode, storage requirements in bytes, and member names and typecodes.

Format: type_name V.typecode su:storage_units [{member_name:typecode}]

Example: FLOAT t:337 su:008

Base type FLOAT is typecode 337 and requires 8 bytes of storage.

POLAR t:338 su:016 {mag:337,ang:337}

User defined type POLAR is typecode 328 and requires 16 bytes of storage. Type has

two members; FLOAT member mag and FLOAT member ang.

172

C12.5 Customizing the Startup Environment

A customized startup environment can easily be accomplished by loading a macro file at startup that

includes any special settings the userwants, function definitions, etc. The translator automatically
searches the current working directory at startup for a macro named

"startup.mac."

Example: To start the system with the Reserved List off, ansi display on, and custom function library
custom.mac loaded; create the following macro file startup.mac:

STARTUP.MAC: dump 11101 ansi LOAD "custom.
mac"

CUSTOM.MAC TYPEDEF POLAR {FLOAT mag, FLOAT ang}

DEFINE FLOAT piO

RETURN 3.14159265358979323846

ENDJDEFINE

DEFINE POLAR RecToPolar(FLOAT x, FLOAT y)

POLAR r1

rl.mag
= SQRT(xA2+yA2)

r1
.ang

= ATAN(y/x)

!F(x<0)
r1
.ang

= M .ang+pi

ENDIF

RETURN r1

ENDJDEFINE

At the DOS prompt, run the program cp with the macro file
"startup.mac"

in the same directory.

SYMBOL TABLE LISTING:

[Variable List]

[Array List]
[Function List]
RecToPolar t:338 &v:276808 v: <nans> <nans> (x:337,y:337)

Pi t:337 &v:276572 v: <nans> ()

[Symbolic List]
[Type List]
POLAR t:338 su:016 {mag:337,ang:337}

FLOAT t:337 su:008

INTEGER t:336 su:004

STRING t:335 su:004

com>_

173

C13. Example Code

An example programming problem is presented in this section. Source code is included on disk in file
"4bar.mac."

C13.1 Four bar crank mechanism

Program to calculate output crank angles in a four-bar mechanism using the Newton-Raphson method to

solve Freudenstein's equation.

Example: Run the command processor and at the command line, enter:

com> LOAD
"4bar.mac"

<ENTER>

To execute the function, enter:

com> bar4() <ENTER>

Results of calculations are printed to the screen.

// Program to calculate output crank angles in a four-bar mechanism using the

// Newton-Raphson method to solve Freudenstein's equation.

//

// a length of input crank, in

length of coupler link, in

length of output link, in

length of fixed link, in

increment of input angle, deg
value of input angle, deg
maximum value of input angle, deg
constants calculated from link lengths

value of output angle, deg and radians

improved value of output angle, deg and radians

f(phi)=R1*cos(theta)-R2*cos(phi)+R3-cos(theta-phi)

f(phi)=R2*sin(phi)-sin(theta-phi)

accuracy check value, radians

//b

//c

//d

// deltaJheta

// theta

// theta_max

//R1.R2.R3

//phi

// new_phi

//f1

//fO

// epsilon

DEFINE bar40
FLOAT a,b,c,d

FLOAT deltajheta,theta,theta_max

FLOAT R1,R2,R3,phi,new_phi

FLOAT f1 ,fO,epsilon

INTEGER i

a = 1.0, b = 2.0, c = 2.0, d = 2.0

deltaJheta = 5.0

theta = 0.0

theta_max = 360.0

phi = 41.0

epsilon = 0.00001

R1 = d/c

R3 = (dA2.0+aA2.0-bA2.0+cA2.0)/(2.0*c*a)

theta = theta*0.01 745329

theta max = theta_max*0.01 745329

// variable declarations

//

II

II

II

II variable initializations

II

II

II

II

II

II constant calculatons

II

II convert angles to radians

II

174

phi = phi*0.01 745329 //

deltaJheta = deltaJheta*0.01 745329 //

FOR(i=1; theta<=theta_max ; i=i+1, theta=theta+deltajheta)
f1 = R1*COS(theta)-R2*COS(phi)+R3-COS(theta-phi) // calc Freudenstein eq

fO = R2*SIN(phi)-SIN(theta-phi) // calc derivative

new_phi = phi-f1 /fO // calc improved phi val

WHILE((ABS(new_phi-phi)-epsilon) > 0) // iterate calcs until phi converges

phi = new_phi // with accuracy specified

f1 = R1*COS(theta)-R2*COS(phi)+R3-COS(theta-phi)
fO = R2*SIN(phi)-SIN(theta-phi)
new_phi = phi-f1/fO

ENDWHILE

PRINT theta/0.01745329,",",new_phi/0.01745329

phi = new_phi // approximate next output angle

NEXT

END DEFINE

175

C14. Advanced Diagnostics

The advanced diagnostic tools include:

outbuf Toggle display of intermediate language output from parser on or off

dumpt Toggle display of threaded code during function compilation on or off

til Toggle between front and back end compiler environments.

del identifier Delete a variable, array, function, or user defined type

These tools allow the developer to analyze the intermediate language output from the front end parser,

study the compiled threaded code generated by the back end compiler, bypass the front end parser and

work directly with the back end threaded interpreter/compiler, and observe destructor actions of symbol

table objects.

C14.1 Intermediate Language Output

The front end recursive descent parser generates an intermediate language that's piped into the back

end threaded interpreter/compiler. The outbuf command toggles on or off the display of the intermediate

language that's generated.

Example: Set the system to ansi, dump 001000, scroll, outbuf, and load the file sqr.mac

SQR.MAC DEFINE FLOAT sqr(FLOAT x)

RETURN xA2.0

ENDJDEFINE

Run the program cp and at the command line enter:

com> ansi dump 001000 scroll outbuf LOAD
"sqr.mac"

<ENTER>

Command Processor/Macro Compiler Version 1.0 12/03/94

com> ansi dump 001000 scroll outbuf LOAD
"sqr.mac"

Output =

Output =

Output = : sqr & 258516 & 258504 @f f 2.0 yAx !f rtn rtn? ;

SYMBOL TABLE LISTING:

[Function List]
sqr t:337 &v:258516 v: <nans> (x:337)
com>

176

The intermediate language output from the parser is displayed.

Output =

Output =

Output = : sqr & 258516 & 258504 @f f 2.0 yAx If rtn rtn? ;

Each command and function definition that's processed generates an output listing of the form:

Output = intermediate language stream

Some commands are totally processed by the front end parser and generate no intermediate language

stream. The first two output listings correspond to the outbuf and LOAD commands which are of this

type.

The last output listing corresponds to the function definition sqr. All function definitions generate an

intermediate language stream.

The intermediate language stream for the function definition can now be analyzed and interpreted as

listed below:

: set threaded interpreter to compile mode

sqr keyword name

& set number mode to address

258516 address of return value; push to address stack

& set number mode to address

258504 address of parameter x; push to address stack

@f pop address stack, fetch floating point value at that address and push to data stack

f set number mode to floating point

2.0 floating point number; push to data stack

yAx raise second data stack entry to power in first stack entry, pop pop data stack, push value to

data stack

if store floating point number on data stack at address on address stack, pop data and address

stacks

rtn function return

rtn? check function has a return

; terminate keyword definition; set threaded interpreter to execute mode

Note: The Symbol Table Listing can be set to local mode to verify the address of parameter x using the

LOCAL command.

C14.2 Threaded Code Generation

The back end threaded interpreter/compiler processes the intermediate language stream piped to it by
the front end recursive descent parser. Commands are interpreted and executed and produce no

threaded code. Functions are compiled and produce a fully analyzed threaded code. The dumpt

command toggles on or off the display of the threaded code that's generated when a function is

compiled.

Example: Set the system to ansi, dump 001000, scroll, dumpt, outbuf, and load the file sqr.mac

SQR.MAC DEFINE FLOAT sqr(FLOAT x)

RETURN xA2.0

END DEFINE

177

Run the program cp and at the command line enter:

com> ansi dump 001000 scroll dumpt outbuf LOAD
"sqr.mac"

<ENTER>

The threaded code produced by the front end compiler is displayed as shown below.

Command Processor/Macro Compiler Version 1.0 12/03/94

com> ansi dump 001000 scroll dumpt outbuf LOAD
"sqr.mac"

Output =

Output =

Output = : sqr & 258516 & 258504 @f f 2.0 yAx !f rtn rtn? ;

[172676] 258528 <sqr>

[172680] 172664

[172684] 3534

[172688] 171312 <adr lh>

[172692] 258516

[172696] 171312 <adr lh>

[172700] 258504

[172704] 171772 <@f>

[172708] 171300 <float lh>

[172712] 258536

[172716] 172672 <yAx>

[172720] 171820 <!f>

[172724] 171296 <semi>

SYMBOL TABLE LISTING:

[Function List]
sqr t:337&v:258516 v:nans (x:337)

com>_

The threaded code listing can now be analyzed and interpreted as listed below:

[172676] 258528 <sqr> address of keyword lexeme
"sqr"

[1 72680] 1 72664 link address of next keyword in dictionary

[1 72684] 3534 address of inner interpreter routine
"colon"

[172688] 171312 <adrjh> address of address literal handler

[172692] 258516 address of function return value

[172696] 171312 <adrjh> address of address literal handler

[1 72700] 258504 address of parameter
"x"

[1 72704] 1 71 772 <@f> address of floating point fetch operator

[1 72708] 1 71 300 <floatJh> address of floating point literal handler

[1 7271 2] 258536 address of floating point constant 2.0

[1 7271 6] 1 72672 <yAx> address of routine
"yAx"

[172720] 171820 <!f> address of floating point store operator

[1 72724] 1 71 296 <semi> address of inner interpreter routine
"semi"

The addresses in brackets are actual memory addresses where the threaded code is stored. The

threaded code is actually a list of addresses. The mnemonic to the right of the threaded code entries

identify the routines associated with the addresses.

Note: The Symbol Table Listing can be set to local mode to verify the address of parameter x using the

LOCAL command.

178

C14.3 Back End Threaded Interpreter/Compiler

The back end threaded interpreter/compiler environment can be entered bypassing the front end
recursive decent parser by using the command til. This command toggles between environments.

Example: Run the program cp and at the command line enter:

com> LOAD
"sqr.mac"

<ENTER>

com> til <ENTER>

The system is now in the back end compiler environment. At the command line enter:

com> list <ENTER>

list is a keyword in the threaded interpreter/compiler language that lists the TIL system dictionary to the
screen as shown below.

com> lislt

rriDC v/h^abi u adv

$sqr global local del sys trans ftoa inps inpi inpf

input closea close open cprt fprt fprts fprti fprtf prt

pits prti prtf mem yAx abs sqrt log In exp
tanh cosh sinh atan acos asin tan cos sin Y|X

y|x Y&X y&x Y<>X y<>x Y=X y=x Y>=X y>=x Y>X

y>x Y<=X y<=x Y<X y<x !X !x x<>0 NEG neg
s+ i- i+ i*

- + /
*

acpy OF+

of+ aiof aof @&vd @&va !&v !&S+ !&S !&s+ !&s

@&S+ @&S @&s+ @&s !l+ II !i+ Ii @l+ @l

@i+ @i !F+ IF !f+ If @F+ @F @f+ @f

i2>f i>f list

IMMEniATP \/nrari 11 apv .

&v &s f

1 1VIIVII_

ii i & rtn? rtn dump
COMD" ^f \/rrari n aov

cjmp default SEND

WNmTIVI

send CASE3 case3 case2 CASE1 easel SWTCH

swtch setbrk break next for2 fori for until repeat wend

while jmp endif elseif if
i

com>_

Note the function sqr that was compiled earlier is now a new keyword in the language and appears as

the first entry in the CORE VOCABULARY section of the listing as $sqr.

179

At this point, the developer can interact with the TIL but must have knowledge of storage addresses to do

anything useful. Toggling back to the front end parser, addresses can be retrieved from the Symbol

Table Listing.

Example: To call the function sqr with a parameter value of 6.0 and return value address of 258504, at
the command line enter:

com> & 258504 f 6.0 If $sqr <ENTER>

Now toggle back to the front end parser and inspect the contents of the return value for the

function sqr.

At the command line enter:

com> til <ENTER>

Hit <ENTER> again to display the Symbol Table Listing shown below. Note the current

return value of the function sqr is equal to 36.0.

SYMBOL TABLE LISTING:

[Variable List]

[Array List]
[Function List]
sqr t:337 &v:258504 v: <36> (x:337)
[Reserved List

LET TYPEDEF DEFINE END DEFINE RETURN EXTERN

IF ELSEIF ELSE ENDIF FOR NEXT

WHILE ENDWHILE REPEAT UNTIL SWITCH CASE

DEFAULT ENDSWITCH BREAK INPUT PRINT OPEN

CLOSE LOAD FTOA TRANSLATE DELETE SYMBOL

SYSTEM NOT AND OR SIN COS

TAN ASIN ACOS ATAN SINH COSH

TANH ABS SQRT LOG LN EXP

LOCAL GLOBAL dump scroll outbuf dumpt

til ansi destruct clock mem exit

[Symbolic List]
[Type List]
FLOAT t:337 su:008

INTEGER t:336 su:004

STRING t:335 su:004

com>_

180

C14.4 Symbol Table Object Destructors

Symbol Table records are actually
"C++"

objects with constructors and destructors. To insure that

destructors release allocated memory, deletion messages are currently listed to the screen whenever an

object is deleted. The DELETE command is used to delete a variable, array, function, symbolic constant,

or user defined type.

Syntax: DELETE
"identifier-

Example: Run the program cp and at the command line enter:

com> ansi dump 000001 scroll <ENTER>

com> TYPEDEF POINT { FLOAT x, FLOAT y } <ENTER>

com> scroll <ENTER>

Now delete the user defined type POINT by entering the following:

com> DELETE
"POINT"

<ENTER>

The type object destructor messages appear as shown below:

com> TYPEDEF POINT { FLOAT x, FLOAT y }
SYMBOL TABLE LISTING:

[Type List]
POINT t:338su:016{x:337,y:337}
FLOAT t:337 su:008

INTEGER t:336 su:004

STRING t:335 su:004

com> DELETE
"POINT"

Deleting type record POINT

...deleting
lexeme string

...deleting
storage offset list

...deleting
subtype list

Deleting subtype record y

...deleting
lexeme string

Deletion complete

Deleting subtype record x

...deleting
lexeme string

Deletion complete

Deletion complete

SYMBOL TABLE LISTING:

[Type List]
FLOAT t:337 su:008

INTEGER t:336 su:004

STRING t:335 su:004

com>

Note: If a user defined type is deleted when an identifier of that type exists, a system crash will occur.

Delete all identifiers of a specific user defined type before deleting the type. If a function exists

that uses the type, delete the function first.

181

C15. ErrorMessages

C15.1 Lexical

End of stream reached before comment block was closed

A comment block was started with
"/*"

but never closed with "*/".

End of stream reached before string literal block was closed

A string literal was started with
"""

but never closed with """.

Illegal character in ASCII range 128-255

Command stream contained an illegal character; any character above ASCI1 127 is illegal.

Missing exponent in number

Floating point number is missing exponent, e.g.,
3.5E- or 3.5E+.

Token exceeds maximum character length ofMaxTokenSize = integer value

A token was entered that exceeds the maximum system token size.

C15.2 Parser

5 digit binary number expected

System expected a 5 digit binary number composed of O's and 1's; e.g., 00101

Array index is not an INTEGER

Expression or value used to specify an array indice was not an INTEGER.

Array parameter missing closing]
An array parameter in a function definition is missing a closing]; e.g., DEFINE test(FLOAT vect[).

Attempt to assign a value to a function

Function was used as a lvalue in an assignment statement; e.g., myfunc0=3. This type of error

usually generates the error message "Syntax error in COMMAND module", so this message may

never appear.

Attempt to use a function that has no return value in an expression.

A function with no return value was used in an expression expecting a value.

BREAK statement cannot be used outside of a FOR, WHILE, REPEAT, or SWITCH block

A BREAK statement occurred outside of an iterative or SWITCH block.

Cannot open file

File could not be opened using the LOAD command.

Cannot open startup file

File could not be opened when starting program from DOS prompt with a file parameter.

CASE expression type mismatch

CASE expression type is not the same as SWITCH expression and could not be implicitly cast to

match

Function does not exist

Attempt to set the Symbol Table Listing to local mode for a function that does not exist.

Function has no return value

A function was defined to return a value but did not include a RETURN value statement in the

function body.

Identifier has not been declared

Attempt to use an identifier that was never declared.

Illegal CASE expression type

A CASE expression returns a type that is not allowed in a SWITCH or CASE expression.

Illegal filename

An illegal filename was used with the LOAD command.

Illegal ormissing identifier

Syntax was expecting a valid identifier.

182

Illegal ormissing macro identifier

Attempt to define a function with an illegal or missing function identifier.

Illegal parameter identifier

An illegal identifier was used in naming a function parameter.

Illegal reference parameter

A function was called with an illegal reference parameter.

Illegal SWITCH expression type

A SWITCH expression returns a type that is not allowed in a SWITCH or CASE expression.

Incorrect number of array indices specified

An array used in an assignment or expression does not have the correct number of indices to match

its dimensions.

Incorrect number of function parameters

Attempt to call a function with an incorrect number of parameters.

Number of array dimensions exceeds maximum limit of MaxArrayDims = integer value

Attempt to declare a multidimensional array that exceeds the system dimension limit.

Operator
*
undefined for current operand(s) type

Operator + undefined for current operand(s) type

Operator - undefined for current operand(s) type

Operator / undefined for current operand(s) type

Operator < undefined for current operand(s) type

Operator <= undefined for current operand(s) type

Operator <> undefined for current operand(s) type

Operator = undefined for current operand(s) type

Operator > undefined for current operand(s) type

Operator >= undefined for current operand(s) type

Operator
A
undefined for current operand(s) type

Operator AND undefined for current operand(s) type

Operator OR undefined for current operand(s) type

Operator unary + undefined for current operand type

Operator unary
- undefined for current operand type

Operator unary NOT undefined for current operand type

Attempt to use an operator that is not defined for the operand(s) type; e.g., applying the unary - to a

string variable.

Parametermismatch

Attempt to call a function with a parameter that does not match the function's parameter type.

Parameter previously declared

Attempt to use a duplicate parameter identifier in a function definition.

Subidentifier does not exist

Attempt to access a nonexistent member of a user defined type.

Subidentifier previously declared

Attempt to duplicate a member identifier in a TYPEDEF statement.

SWITCH statement must have at least one CASE statement

A SWITCH statement requires at least one CASE statement.

Syntax error in COMMAND module

Command syntax error. Syntax was expecting the start of a declaration, assignment, or typedef

statement or a function call.

Syntax error in MATCH module

Grammatical syntax error. Most general syntax error that occurs when an expected element of the

grammar is missing; e.g., An expected matching operator such as], }, or) or keyword such as

UNTIL, NEXT, ENDWHILE, ENDJDEFINE, etc. Missing an = operator in an assignment expression.

Missing a (or { in a function or typedef definition, etc.

Syntax error in PRIMARY module

Expression syntax error. Syntax was expecting a valid expression operand, system function

identifier, or parenthesis.

183

Token is not a legal subidentifier

Attempt to use an illegal identifier to access a member of a user defined type.

Token is not a legal subtype identifier

Attempt to use an illegal member identifier in a TYPEDEF statement.

Unknown type specifier

Attempt to apply an undefined type specifier on a member in a TYPEDEF statement.

Unknown/missing parameter type specifier

Missing or undefined type specifier in function definition parameter list.
Upper array index must be >= to lower array index

Attempt to declare an array with a starting indice value higher than its ending indice value; e.g.,

FLOAT array[3:2].

C15.3 Symbol Table

Attempt to delete a base type

Base types cannot be deleted.

Attempt to delete a reserved word

Reserved words cannot be deleted.

Attempt to delete unknown record type

Attempt to delete something that is not a symbol table record; e.g., trying to delete a number or

nonexistent identifier.

External array does not exist

Attempt to declare a nonexistent EXTERN array in a function definition.

External variable does not exist

Attempt to declare a nonexistent EXTERN variable in a function definition.

Memory allocation failure

Probable attempt by system to allocate memory for a new symbol table entry has failed. Memory
available to the system is low or a large request was made; e.g., declaring a very large array. The

system also temporarily allocates memory in many different areas and a failure would generate this

error message. Also, the system would generate this message at startup if insufficient memory

existed to initialize the system.

Type mismatch

An assignment or expression involving incompatible types.

Type records can only be deleted LIFO

Type records must be deleted in order starting with the last record created. This prevents a user

defined type from being deleted that's a member's type of another user defined type.

C15.4 Compiler

TIL dictionary space is full

There is not enough room left in the TIL dictionary space to compile the current function. Once the

dictionary becomes full, no more functions can be compiled. Exit and restart the command processor

to purge the dictionary; reload only necessary functions to reduce dictionary space required.

184

C15.5 Runtime

Array bounds exceeded

Attempt to access an array outside of its dimension bounds.

Floating Point Exception

Floating point exception error has occurred; e.g., division by 0.

Function structure caused a return with no value

A function that returns a value was executed but did not return a value. This happens when a

function's structure is such that it can execute to completion but bypass all its RETURN statements.

Incorrect number of array indices specified

An array was passed to a function that does not have the correct number of indices.

C15.6 System

System errors are generated to trap system programming errors and help the developer locate and

debug program code where the error originated. The user cannot resolve these types or errors; the

problem is in the system code. Hopefully, no system errors will ever be generated. However, if a system

error does occur, it should be reported to the developer.

Array parameters cannot be call by value

Symbol table attempted to create an array function parameter as call by value.

Emitter error

Emitter module could not recognize the type of token sent to it to emit.

Illegal base type in storage offset list

Emitter module retrieved a storage offset list from the symbol table that contained a nonbase type.

Illegal/unknown parameter record type

Symbol table failed to recognize a parameter record type when attempting to insert a parameter in

the symbol table.

Parameter record not found

Symbol table failed to locate a function parameter record.

Scope resolution error

Symbol table failed to set scope of variable or array Symbol Table Listing when using local or global

command.

Stack Underflow

A stack underflow has occurred in the back end compiler.

Type stack under/over flow

A type stack underflow or overflow has occurred in the parser.

Unknown BASE data type detected

Symbol table detected an unknown base data type when retrieving an address contents for display
in the Symbol Table Listing.

Unknown BASE data type detected during storage initialization

Symbol table detected an unknown base data type when initializing a storage block.

Unknown parameter record

The parser failed to retrieve a function's parameter record from the symbol table during the

parameter assignment phase of a function call.

Unknown record scope

Symbol table attempted to insert or return a record with an unknown scope.

Unknown storage TYPE

Symbol table failed to allocate storage for an entity because its type record could not be found.

Unknown token class detected in scanner module

State table in scanner module failed to classify a token.

185

BIBLIOGRAPHY

Aho, Alfred V., John E. Hopcroft, and Jeffery D. Ullman [1974]. The Design andAnalysis of

ComputerAlgorithms, Addison-Wesley, Reading, Mass.

Aho, Alfred V., Ravi Sethi, and Jeffery D. Ullman [1986]. Compilers: Principles, Techniques, and

Tools, Addison-Wesley, Reading, Mass.

Akin, J. Ed [1990]. Computer-AssistedMechanical Design, Prentice Hall, Englewood Cliffs, NJ.

Burden, Richard L., and J. Douglas Faires [1985]. NumericalAnalysis, Prindle, Weber, and

Schmidt, Boston.

Calingaert, Peter [1979]. Assemblers, Compilers, and Program Translation, Computer Science

Press, Inc., Rockville, MD.

Cannon Jr., Robert H. [1967]. Dynamics ofPhysical Systems, McGraw-Hill, Inc., New York, NY.

Coan, James S. [1978]. Basic BASIC: An Introduction to Computer Programming in BASIC

Language, Hayden Book Company, Inc., Rochelle Park, NJ.

Ellis, T. M. R. [1982]. A StructuredApproach to Fortran 77 Programming, Addison-Wesley
Publishers Limited, London.

Hewlett-Packard [1989]. ME10d Mechanical Engineering CAD System - WritingMacrosManual,

Federal Republic of Germany.

Horowitz, Ellis [1984]. Fundamentals ofProgramming Languages, Computer Science Press, Inc.,

Rockville, MD.

James, M. L., G. M. Smith, and J. C. Wolford [1985]. Applied NumericalMethods For Digital

Computation, Harper & Row, Publishers, Inc., New York, NY.

Kemighan, Brian W., and Dennis M. Ritchie [1988]. The C Programming Language, Prentice

Hall, Englewood Cliffs, NJ.

Lewis, P. M., II, D. J. Rosenkrantz, and R. E. Stearns [1976]. CompilerDesign Theory, Addison-

Wesley, Reading, Mass.

Loeliger, R. G. [1981]. Threaded Interpretive Languages, Byte Publications, Inc., Peterborough,

NH.

Microsoft [1991]. C Language Reference, Microsoft Corporation, Redmond, WA.

Microsoft [1991]. C++ Language Reference, Microsoft Corporation, Redmond, WA.

Microsoft [1991]. C++ Tutorial, Microsoft Corporation, Redmond, WA.

Purdum, Jack J. [1985]. C Programming Guide, Que Corporation, Indianapolis, IN.

Schildt, Herbert [1992]. Teach Yourself C++, McGraw-Hill, Inc., Berkeley, CA.

Speckhart, Frank H., and Walter L. Green [1976]. A Guide To Using CSMP - The Continuous

System Modeling Program, Prentice-Hall, Inc., Englewood Cliffs, NJ.

Stroustrup, Bjarne [1986]. The C++ Programming Language, Addison-Wesley, Reading, Mass.

186

Symantec [1991]. C++ Video Course, Symantec Corporation, Cupertino, CA.

Symantec [1991]. Zortech C++ Compiler Guide, Symantec Corporation, Cupertino, CA.

Symantec [1991]. Zortech C++ Function Reference, Symantec Corporation, Cupertino, CA.

Symantec [1991]. Zortech C++ Numerics Programming Guide, Symantec Corporation,

Cupertino, CA.

Symantec [1993]. Symantec C++ Professional Compiler and Tools Guide, Symantec

Corporation, Cupertino, CA.

Symantec [1993]. Symantec C++ Run-Time Library Reference, Symantec Corporation,

Cupertino, CA.

Symantec [1993]. Symantec C++ User's Guide and Reference, Symantec Corporation,

Cupertino, CA.

Thomson, William T. [1981]. Theory of Vibration with Applications, Prentice Hall, Englewood

Cliffs, NJ.

187

	The Design, construction, and implementation of an engineering software command processor and macro compiler
	Recommended Citation

