











say the expressions in this dataset are either not representative of real-life expressions, or they are
exaggerated. The extended Cohn-Kanade (CK+) [58] dataset addressed the former issue by excluding

fake or unidentifiable expressions by a panel of judges, but not the latter.

Angry Sad Neutral Happy Surprised

L) )
o >

Fig. AL.6. Sample subject from the Cohn-Kanade dataset exhibiting 5 facial expressions.

Not only are the faces in Figure Al.6 exaggerated, they are all frontal poses, taken with identical
illumination, and against a neutral background. Although LFW was not the first natural dataset, it was by
far the largest at the time and spawned new excitement. Since the release of LFW, several new datasets
such as FGnet, GEMEP, Morph-1I, Cave, and PubFig all attempt to be more realistic by using

spontaneous, or non-posed imagery.

Cross Validation
Machine learning methods learn patterns from training exemplars. These developed methods are then

evaluated on test sets to determine performance. If the developed methods fail to generalize to new test
samples not in the training set, the resulting performance will be poor. To minimize the risk of over-
training and facilitate procedures for fair and equal comparison of alternate processing methods, datasets

are broken down into segments or blocks of exemplars used for training, verification, and testing.

To motivate this discussion, the following toy example consists of 19 training points which relate
the yaw of the human face to a distance scalar used in an HCI device. Given some unforeseen yaw value,
we would like to predict the scalar. A least squares regression model, hg is fit to the training data, where
0 represents the degree of the polynomial. Figure Al.7 shows the yaw on the x-axis, and HCI scalar on
the y-axis. The left most plot is a linear least-squares fit 6=1, the other three plots have 6=3, 10, and 18

going left to right. The model error can be computed as:

1 n
J(0) = ZZ(ha(xi) - y1)? (AL.1)
=1
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The resulting model error for the for 6 values [1, 3, 10, 18] is [10.9, 10.2, 3.0, and 0]. It might be
tempting to use the model with 6=18; this model exactly matches each of our training samples. Hopefully
it is readily evident that this model is fitting to measurement noise and will not generalize well to new test

samples.

Fig. AL7. Sample data fit with polynomials of order = 1, 3, 10, and 18 degrees.

The common solution is to randomly partition the given data into a training set, evaluation (or
cross validation) set, and test set. The training set generally comprises 60% of data, and the evaluation
and test sets each comprise 20% of the data. The idea is to build the model on the training set, and
optimize its performance on the evaluation set. Then, the report the final model accuracy on the test set.
To ensure fair comparison amongst independent researchers, identical dataset partitions need to be
specified. When this approach is used on this toy dataset, a polynomial degree of three gives the lowest

error on the test dataset.

Regarding over fitting of data, the terms bias and variance are used. A model that is under fit is
said to have high bias; while a model that is over fit is said to have high variance. Figure AIL.8
demonstrates the typical performance one may expect. As the model complexity increases (degree of
polynomial in our example), the training error continually decreases monotonically, but the test error has
a minimal value. The model selection process selects the model which corresponds to minimal testing

crror.
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Fig. AL.8. Typical relationship between model complexity and model error for training data (blue) and
test/evaluation data (red).

In practice, the partitioning of the dataset into training, evaluation, and testing is often simplified
to just a training and testing subset. However, neither of these methods ever utilize testing samples for
training purposes. In many studies, collection of ground truth data is labor intensive, and it seems
wasteful to not use all the data available. The solution is to adopt a cross validation strategy. In k-fold
cross-validation, the data is split into k-folds, whereby folds 2... k are used for training and fold 1 is used
for testing, then the process is repeated using folds 1,3,...% for training and fold 2 for testing, and so on.

When done, the average of the k train/test partitions is reported.

In facial analysis, a dataset may consist of p subjects exhibiting g expressions. As such, there is
often a strong correlation between identity and expression, and researchers use what is referred to as
leave-one-subject-out cross validation. This necessitates that the data be split into p folds, where partition
boundaries are done by subject. Folds 2... p (corresponding to subjects 2...p) are used for training and
fold 1 (corresponding to subject 1) is used for testing, then the process is repeated using folds 1,3,...p for

training and fold 2 for testing, and so on. When done, the average of the p train/test partitions is reported.

Cross-validation not only is necessary for benchmarking, but it also determines the appropriate
amount of model complexity or the appropriate tradeoff between bias and variance. Once the model
complexity is determined, it is often common in industry to use all training data to build one final model

at the determined complexity for implementation into say a commercial application.

Error Metrics and Confusion Matrices
For continuous regressions, Root Mean Squared Error (RMSE) error over the test set or average cross

validation sets are an obvious choice for reporting errors. For discrete problems, errors are determined by
the number of correct detections or classifications. For an object detector, say a face detector, we need to
determine how many of the potential faces were correctly classified, and how many of the faces were

missed by the classifier. Figure AIL.9 describes the possible outcomes from such a classifier.
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Predicted Class
Face Non-Face
TP FN
face (true positive) (false negative)
Actual (missed a face)
Class FP N
Non- . :
(false positive) (true negative)
face
(found non-face)

Fig. AL9. Possible outcomes for object detection such as face detection.

Referring to Figure AL9, for each face that is found, we first refer to the Face column in the
predicted class. Found faces can fall in the true positives (TP) category (faces that were correctly found)
or false positive category (the face detector is saying it found a face where there is none). Similarly, for
each face that is exists in the ground truth data set, we refer to the Face row in the actual class. Actual
faces can fall in the true positives (TP) category (actual faces that were correctly found) or false negative
category (actual faces that were missed). As such, by running our face detector over our training set, we

produce the three values of:

TP: Predicted face corresponds to an actual face;
FP: Predicted face where there is none;

FN: Actual face that was not found by the detector.

There is also a forth category of true negative, or TN. This would be non-face locations that were
(correctly) not identified as a face region by the detector. This category is ignored as its meaning carries

no significant value. The three most common metrics used for object detectors are:

P [ [ AI 3
recision: ( ) ( . )

Pl 2 = Precision * Recall ny
" (Precision + Recall) (Al.4)

Where:

Recall describes what percentages of real faces are found by the detector;
Precision states, of the detected faces, what percentage are actually real faces; and

F1 is a value that measures the classification performance in a single number.
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When performing classifications, we use a similar concept as the table in Figure AL9, but now,
for each object, we need to determine which of the & classes it belongs to. In this case, each object in our
training set has an actual or ground truth class, and a predicted class as determined by the classifier.
Figure AL.10 shows this for the case of a two-class gender detector. The values on the diagonals are
correct classifications by the gender classifier, and values off diagonals are incorrect classifications. For
example the value in the upper right corner of the confusion matrix in Figure Al.10 represents female test
subjects that were incorrectly classified as male by our gender classifier. The extension of the confusion
matrix to £>2 classes is identical. To report classification accuracy, we have:

2i Gy

2ij Cij -5

Accuracy:

Where C is the confusion matrix and the numerator in (Al.5) is the sum of the diagonal elements,

and the denominator in (AL5) is the sum of all elements.

Predicted Class
female male
female Correct Incorrect
Actual
Class
male Incorrect Correct

Fig. AL.10. A two class confusion matrix.
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Appendix II- Pixel Processing
The studies in this report utilized several types of pixel processing and normalization. Motivated by

anthropometry of the human face [30] depicted in Fig. A.Il.1, schematic bounding boxes used for the
human face used in this thesis are described in Fig. A.I.2. Typical face detectors use the square cropping
strategy shown on the left of Fig. A.I.2. For expression classification, this bounding box omitted
important mouth and chin areas, especially if the mouth is open. As such, the center bounding box is
used in this paper, but, there is no such standard. For initial studies done on age, race, and gender, the
hair is a also a critical component. As such, the right-most bounding box is used, but, once again, there is

no widely adopted standard.

0.0) A »x

]

htS h/S

Fig. A.Il.1. Anthropometry of the human face as reported by [30].
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D2=2*D1

H1=(2/3)*D1 D2=2*D1 D2=2.5*D1

H2=(4/3)*D1 D3=1.3*D2 D3=1.6*D2
H1=(2/3)*D1 H1=(4/3)*D1
H2 = (58/30)*D1 H2 = (56/30)*D1

Fig. A.Il.2. Three variants of facial bounding box. Left is for face detection, center is for expression recognition,
and right is for gender, age, race detection.
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Pixel Processing Techniques
None: Use the RGB or grayscale pixels unaltered

Luminance: Convert RGB pixels to grayscale using, lum=(0.2989*R + 0.5870*G + 0.1140*B)

Sobel: Edge detector that computes an approximation to the grayscale gradient. The following vertical
and horizontal edge detection kernels are convolved with the image:

-1 -2 -1 —1 0 +1
s,=lo o0 olf; s,=[-2 0 +2
+1 42 +1 -1 0 +1

The final image is computed by combining the two filtered images with:

I'= (I %5,)% + (I % Sp)?

Edge Magnitude: Same as Sobel filter, but each pixel in the edge image is passed through a 1/2.4 gamma
1D look-up table to make the existing range fall within 0:255.

Edge Phase: The phase of the image is computed using:

I*S,,)

0=t ‘1(
an I+s,

Where tan-1 is the quandrant specific (atan2) function. The pixels are then linearly scaled from -512:512
to 0:255.

Sharpened: CPU friendly sharpening kernel:

1 [ -8 -32 -8 ]
—|-32 224 -32
64 -8 -32 -8

LOG: Laplacian of Gaussian Filter. Look for zero order crossings of 2™ derivative calculated via the
approximation 5x5 convolution kernel of all -1’s except for a 24 in the center tap.

Canny: Canny Edge detection algorithm which 1) blurs the image; 2) computes 1D derivatives; 3) Sum
of square of derivatives; 4) Threshold image using hysteresis thresholding, where hysteresis thresholding
starts from one corner of the image, visit pixels until one exceeds an upper threshold, then follow chains
of maxima along edges until value drops below lower threshold; mark and save all visited values as a
connected contour.
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Fig. AIL.3. LBPg; conversion from a 3x3 pixel neighborhood to a single pixel value of 57.

LBP: Local Binary Patters are a family of texture extracting filters for pattern matching. The full notation
is LBPg,"* local binary pattern. The g, says we are comparing the center pixel to the 8 nearest neighbors,
radius=1. It has been shown that uniform patterns (patterns with <= 2 transitions) contain most of the
salient information. If all patterns > 2 transitions are mapped to a single code value, we can represent
LPB images in a compressed fashion. In this instance, the 256 unique LBP patterns are reduced to 56
codevalues. The " signifies converting the 256 value LBP to these 56 salient combinations.

LBP-h: Calculate the histogram of LBP values for mxn tiles across the image. The histogram of each tile
concatenated as a 1D vector is the feature space used for classification. Figure 2.6 pictorially shows an
example of a concatenated block histogram.

Gabor: Gabor banks are multi-phase, multi-frequency filtered images based upon studies of the human
visual response function. The Gabor filter is essentially a rotated sinusoid attenuated by an exponential
function. Formally, the real component of a Gabor image is filtered via a kernel described by:

2 4 72,2
_ (x5 + {95 (Zn )
Gpn(x,y) = exp< 257 )cos ” X );

Xp =xcos¢p +ysing; yy, =—xsin¢g + ycos¢

Gabor filtered images in this paper are a single channel weighted sum of four Gabor processed ¢= (0°, ©
/4° , n/2°, 3n/4°) images, all at a single frequency of = 0.3 cyc./sample. The 4 planes are summed to a
single plane by weighting the 0 and n/2 planes by 1/3, and the &t /4 and 37w /4 planes by 1/6. Figure A.Il.4
shows an input image, its 4 Gabor planes, and the final weighted output on the right.
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Fig. A.IL.4. Sample face on the left. Four Gabor planes in the center. Weighted Gabor plane on the right.

Normalization Methods
None: Use the processed pixels as is.

Norm: Calculate the mean, p and standard deviation, 6 of the image area I (for example, this can be the
entire image, the extracted face area, or a masked face region), then calculate:

I —w

——*100 +128

Norm =

Mean: Divide each pixel in an image area by the mean, p, of the entire image area.
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Appendix III- Classification Methodologies

Given a set of input observables and corresponding desired responses, linear regression models the data in
a continuous sense and logistic regression models the data in a discrete sense. As examples of each,
linear regression would be ideal to model the relationship between attributes of the face and facial pose,
while logistic regression would be more suitable to model the relationship between attributes of a face and

facial identity (a discrete classification problem).

Linear Regression
In linear regression, a function with variable parameters is fit to the data. Perhaps the simplest example is

a polynomial regression of a single variable as seen in Figure AL.7. Our model, of polynomial degree ¢

will be of the form:
C
he (x) = Z 6(i)x! (AIIL 1)
i=1

The vector @is solved in a linear least squares sense, minimizing the error function (Al.1). There
are several ways to do this, the two most common are gradient descent and direct computation. After an

initial estimate for vector @ (can be all zeros), gradient descent iteratively updates @using:
9]
0, =0, —a—J(0) (Alll.2)
00;

Where J(6) is the cost function defined in (Al.1). Gradient descent typically converges quickly, but if o
is too large, it can converge to a local minimum. The direct computation using the normal equation in
linear algebra solves y=6@x over n datapoints simultaneously. In this fashion, yeR", xeR"", and #<R".
The direct solution for @ =yx”, or more generally the pseudo inverse is used since x is not square,

OzyxT (ex” )'1 .

The gradient descent method requires the specification of a and may require many iterations, but
it works well even when n is large. The direct solution does not require the specification of any
parameters, has no iterations, but can be slow as the computation of (xx')" is slow if # is large. In general
if n < 5,000 the direct solution is preferable. There are optimized versions of gradient descent that don’t
require the specification of « and often converge faster (such as conjugate gradient, BFGS, L-BFGS), but

these methods are more complex.
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Logistic Regression
Logistic regression is suitable for classification problems, where given a set of parameters, we need to

determine which of a finite number of classes our sample belongs. In linear regression, A4x), our
estimate for y, can take on any value. Logistic regression solves a binary problem, determining for
example if a sample is male or female (or 0 or 1). Multi-class classification is done via one vs. all, where
all is the rest of the samples. If there are k classes, we generate k£ models, and assign the class to the
model with the maximum class assignment, 44/(x), where i=1...k. In logistic regression, we will assume

binary classification assignment to either class 0 or class 1 and limit 0 < /4x) < 1.

In linear regression, our model in (A.IIL.1) can be represented as &x. To limit &x , we apply a
function g(@'x) such that 0 < g(@'x) < 1. While there are a handful of functions that can do this nicely,

the sigmoid function is perhaps the most commonly found:

92 =1 = (AIl1.3)
And our logistic regression model becomes:
1

As defined, h¢x) is continuous, 0 < hgx) < 1. If for example we were trying to determine if a
face had facial hair from facial attributes, we might get s4x) = P(y=1Jx;6); or the probability that our
sample is 1, given attributes x, and model & or the probability that our face has hair, given attributes x,
and model €. Our model /4x) may return 0.75, so we can say there is a 75% chance the face has facial

hair.

Equation (AI.1) defined the cost function for linear regression, and we need to develop a similar

equation for logistic regression. The logistic regression model error starts as:

1 n
J(0) = ZZ cost(hg(x,), y:) (AIIL5)
i=1

Where:

—log(he(x))  ify=1

Alll. 6
~log(1— he() if y =0 (A6

cost(hg(x),y) = {

The intuition is straight forward if we first consider that y can only take on 0 or 1. If y=1, we

hope our model /4x) agrees with y, so we hope our model is close to 1. As such if y=1 and /4x) =1, our
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cost is 0. However, if s4x) =0, our cost must be very high, and in this case, we state our cost as infinite.

Figure A.III.1 shows this cost function on the left.

If y=0, we also hope our model % 4x) agrees with y, so we hope our model is close to 0. As such
if =0 and hgx) =0, our cost is 0. However, if z4x) =1, our cost must be very high, and in this case, we

once again state our cost as infinite. Figure A.III.1 shows this cost function on the right.
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Fig. A.IIL.1. Logistic regression cost functions for when our ground truth sample, y=1 (on left), and y=0 (on right).

Because each of our samples can only have a class assignment of 0 or 1, we can rewrite our

abstract logistic regression cost function in (AIIL.5) and (AIIL.6) as our new objective function:

1 n
J©) = == yilog(he@) + (1= ylog(1 — hy(xy) (A111.7)
i=1

Note that in (AIIL.7) only the first or second term can participate in the summation. Equation (AIIL.7)
also dropped the 2 in the denominator (for later simplification) and made the summation negative such
that this becomes our new objective function we want to minimize. As with linear regression, we need to
solve for vector 6. This can once again be done with gradient descent using (AIIL.2), and because of the
selection of (AIIL.7), the solution of which is identical to that done for linear regression, but we substitute

hix)= @'x with (AIIL4).

k-Nearest Neighbor (k-NN)

The k-nearest neighbor (k-NN) algorithm is a discrete classification scheme that classifies an input
sample to be the same class as its nearest neighbor. More generally, the algorithm computes the distance
between a test sample and all other training samples, sorts by distance, then assigns the class to the test
sample that is the mode of the top & nearest neighbors. Often a weight is applied to these neighbors,

where the weight is inversely proportional to the distance between the two samples. Further, if we are in
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a space where we can assign an importance to each dimension, a whitening operation can be performed

by scaling each dimension by the importance value (such as eigenvalue in PCA analysis).

Artificial Neural Nets
The most common type of artificial neural network (neural net for short) is the multi-layer perceptron.

Figure AIIL.2 shows a schematic of such a network. A variable number of input nodes are input into a
multi-layer formation such that the outputs of one layer feed the inputs to the next. The lines connecting
layers are weights, and a weighted linear combination of these weights forms the input to each node.
Each node applies a non-linear activation function to this input before passing it on to the next layer. This
activation function is usually the sigmoid function (AIIL.3) or the tanh() function. The output of the
network forms the final output values used to determine the class from input attributes. The final output
values can use a custom activation function, including the linear activation function, or rounded to a

binary value, where the concatenation of all output nodes forms a single binary number.

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

Fig. A.II1.2. Schematic of an artificial neural network. Along each line is weight that connects two nodes.

The decision of how many hidden layers and how many nodes per hidden layer is perhaps the
biggest drawback of neural networks. There is no robust rule of thumb that applies across varied datasets.

The training of neural nets get exponentially slower with the number of nodes.

Training of the neural net involves solving for the weights interconnecting nodes. Starting with a
random set of weights, input training samples are passed one at a time, layer to layer, until they get to the
output layer, a procedure called feed forward. Once at the output layer, the values at output nodes are
compared to the input sample ground truth values. The differences are then passed backwards through
the network, updating the weights, through a procedure called back propagation. Once arriving at the
input layer, the next sample is passed through the network, repeating the process. Each pass through all

training samples is called an epoch. Some neural networks require thousands of epochs before the
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weights settle down, taking weeks to classify. Thankfully, most neural nets of reasonable size can be

trained in only a few minutes using back propagation.

Support Vector Machines (SVMs)

Like logistic regression, support Vector Machines (SVMs) represent a set of techniques used to do binary
classification. As compared to neural networks, SVMs are easy to optimize with minimal parameter
tuning. Although the mathematical theory is complex, both the training phase and the resulting classifiers
are relatively simple to compute. During training phase, SVM discovers a separating hyperplane that
maximizes the margin between samples from two data classes. During classification, SVM predicts

which side of the hyperplane the test sample falls on.

Fig. AIIL.3. (left) Several possible separating hyperplane between our positive and negative samples. (right) SVM

discovers the separating hyperplane by maximizing margin.

The points touching this separating hyperplane are called support vectors- only they determine
the position of the hyperplane, and only they will be used during the classification of new test samples.
The mathematical derivation of SVMs is complex and out of the scope of the section, however SVMs
start with a regularized logistic regression. To circumvent non-differentiable objective function, non-
limiting constraints are introduced such that the Lagrangian duality may be used to minimize our
modified objective function. The SVM objective function reduces to:

1
0zasc Z “ EZ Z a;a;y;yjk(xi, %;) (AIlL.8)
i

i

Where «a represents the weights we are solving for, y is the ground truth classification for training points
(defined as -1 or +1), k() is a kernel function (dot product for now), and x is input attributes. The

corresponding classification is done with:
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fx) = Z a;yik(x, x;) (AII1.9)

i

Where ¢; represents the weight we solved for with x; and y; being the corresponding attributes and ground
truth classification. x is the input test sample, and 4() is once again the kernel function. If (AIIL.9) is >0,
the class is positive, otherwise it is negative. The value of (AIIL.9) can be used as confidence values as to
which class x belongs to. There are several nice properties of SVMs. The first is that a is often sparse
because the objective function is trying to pull it negative, but the constraints are forcing o, to be positive.
The net result is that many of the terms in (AIIL9) are reduced to 0, and therefore can be dropped,

simplifying the classification tremendously. As such, (AIIL9) is only summed over the z support vectors.

Another nice property of SVMs is that the k(x,x;) function can be replaced with a wide variety of
kernel functions. These kernels allow the user to define non-linear mappings of input attributes such that
linear hyperplanes can still segment our data into two classes. The default function is the linear inner
product of input sample x, with support vector training elements x;. If we treat (), as a black box
function, and if we can somehow get the inner products, we won’t need the transform the original x; data
or the test sample, x. Essentially this means that we can wrap the transformation of x and x; to a new non-
linear warping as part of our dot product function- a huge computational savings. This kernel trick allows
us to replace k() with a family of functions including polynomial functions, radial basis functions, and
Gaussian functions. Aside from the linear dot product, radial basis functions are very popular in the

machine learning community.
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Appendix IV- Software Libraries

Dimensionality reduction (LPP, LGE, LDA, PCA, NPE):

http://www.cad.zju.edu.cn/home/dengcai/Data/DimensionReduction.html

There are two variants of sparse representation software:

1a) LARS- Least Angle Regression w/ Lasso
SparselLab, version 2.1
http://sparselab.stanford.edu/

function used is: SolveLasso.m

1b) LARS w/ non-negativity matrix factorization
same as '1)', but use 'nnlasso' argument to SolveLasso.m function

2) group sparsity- attempts to group dictionary items based upon class
SLEP, version 4.0

http://www.public.asu.edu/~jye02/Software/SLEP/

function used is: SR_caller.m

K-SVD dictionary learning and optimization toolbox:

http://www.cs.technion.ac.il/~ronrubin/software.html

Label Consistent K-SVD code at:

http://www.umiacs.umd.edu/~zhuolin/projectlcksvd.html

LibSVM:

http://www.csie.ntu.edu.tw/~cjlin/libsvim/

Digitally attached with this thesis are two “hello world” examples in a file called LPP_example.zip which
utilize dimensionality reduction and sparse representations within the Matlab programming environment.
All input image data and ancillary m-files are included in the zip file. The two main examples are:

1) LPP_example.m- Contrasts the difference between PCA and LPP. This code can
reproduce the two scatter plots in Figure 3.2. The LPP code is based upon Deng Cai’s
dimensionality reduction toolkits (see above). To demonstrate classification methodologies,
LPP_example.m contains example code which sets up cross-validation experiments and the
corresponding accuracy analysis associated with confusion matrices. For classification, the
libSVM library (see above) is used with both linear and radial basis function kernels. To
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pictorially show how other dimensionality reduction methods compare to PCA and LPP, there is
sample code showing how to use LLE and Isomap to create similar scatter plots as in Figure 3.2.

2) LPP_example w SR.m- Contains code demonstrating the usage of dimensionality
reduction (both PCA and LPP) along with sparse representations for accurate sparse
representation classification. This code can reproduce the plots in Figures 6.1 and 6.2, including
the automatic overlay of image data on top of normal Matlab plots. The LPP code is based upon
Deng Cai’s dimensionality reduction toolkits (see above). The sparse representation libraries are
based on SLEP 4.0 (see above), and use the minimum reconstruction error from (5.6).
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