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2.6.1 - CUDA PROGRAMMING MODEL 

 CUDA programmers develop code for the GPU by creating C functions called kernels. 

Only one kernel can be run on the device at a time, and all configured threads execute the kernel 

in parallel. The threads are grouped into thread blocks which are then organized in a grid as seen 

in Figure 2.9 below. 

 When a kernel is launched, the blocks of the grid are distributed to multiprocessors with 

available execution capacity. The threads of a block execute concurrently on a single 

multiprocessor. As each thread block completes its work, the multiprocessors are freed, and a 

new block is launched in its place. 

 

Figure 2.9 - CUDA Grid layout. [16] 
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CUBLAS
2
 to perform dot product calculations in parallel followed by a parallel reduction to 

compute the classification sum for each test point. 

 CUSVM [25] followed GPUSVM with a similar implementation that also included 

regression and support for mixed precision arithmetic. CUSVM supports only the Gaussian 

kernel and few details on the classification implementation are provided. A speedup of 22x - 

172x over LIBSVM is reported for various datasets. 

 In order to handle greater amounts of data and exploit additional parallelism, [26] used 

CUDA to implement an incremental least squares SVM (LS-SVM) for handling billions of data 

points with high dimensionality (up to 10
3 ) . A speedup of 65x over a sequential CPU 

implementation and over 1000x over LIBSVM is reported. LS-SVM processes chunks of data 

points in parallel on the GPU using the vendor supplied CUBLAS library for matrix operations. 

The calculation results are copied back to the CPU for final classification. 

 Zhang et al. [27] also take advantage of multiple test points by using a SVM to classify 

windows, or sub-regions of an image in parallel. The GPGPU scan-window based object 

detection framework was used to detect pedestrians with a speedup of “more-than-ten-times” 

over a sequential CPU implementation. The low level GPGPU implementation process varies 

greatly from that of CUDA. 

 As with k-NN, these previous works target multiple query points as the main source of 

parallelism and design the parallel algorithms to exploit it best. This work used a previous SVM 

implementation to exploit a different source of parallelism, multiple classifiers running across 

multiple GPUs to create a multiclass SVM classifier. 

                                                 
2
 A NVIDIA supplied Basic Linear Algebra Subprogram library 
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3.3 – VIOLA & JONES OBJECT DETECTOR 

 Viola and Jones introduced their object detection algorithm in [14]. This algorithm is 

extended in [15] with the addition of rotated features and alternative boosting algorithms. This 

extended algorithm was implemented as part of the OpenCV library. The OpenCV 

implementation offers the ability to enable OpenMP to distribute strips of an image across 

multiple CPU threads. The use of OpenMP allows OpenCV to exploit parallelism, but not at the 

level of GPUs. 

 The concepts introduced by Viola and Jones are not only applicable for their object 

detector. Several phases of the object detection process have been parallelized for use in other 

projects. For example, [28] introduces a new integral image algorithm for the GPU. The 

algorithm was implemented in Brook and uses parallel prefix sum operations to compute the 

integral image in stages. A speedup of 10x over “the best available CPU implementation” was 

reported for large images. Allusse et al. [29] also implement parallel integral image generation 

but use the CUDPP
3
 library to perform the parallel sums for a speedup ranging from ~0.06x for 

128x128 images to ~3x for 2048x2048 images. 

 While no other CUDA implementations of the Haar classifier based object detector could 

be found, parallel implementations exist for other platforms. The work in [30] processes up to 

three feature classifiers in parallel using a FPGA hardware architecture for a 35x speedup over a 

similar sequential CPU implementation. 

                                                 
3
 CUDA Data Parallel Primitives Library - http://gpgpu.org/developer/cudpp 
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 An exceptional amount of knowledge can be gained from the previous work, especially 

the OpenCV implementation. However, implementing the Viola & Jones object detector on 

CUDA required a substantially different implementation process.  

 The next chapter discusses this thesis’ GPU implementation of k-Nearest Neighbor 

Classification, Multi-class Support Vector Machines and Viola and Jones Object Detection. This 

includes both the high level algorithms and data parallel primitives that are required to perform 

several common tasks.   



29 

Chapter 4 – GPU IMPLEMENTATION 

 Many computer vision tasks require fast response times. The proposed algorithms can be 

very computationally intensive, making them difficult to use for real-time tasks.  By taking 

advantage of the parallel nature of these algorithms, execution on the GPU can be done in a 

fraction of the original time.  Offloading processing to the GPU also frees the CPU for other 

tasks such as device IO, reporting or user interaction. 

4.1 - PARALLEL PRIMITIVES 

 A set of data-parallel algorithm primitives are used quite frequently to implement parts of 

larger algorithms. Fortunately, a variety of these parallel primitives have already been 

implemented in CUDA.  

 Several of these are implemented as examples in the CUDA Software Development 

Kit (SDK).  

 The CUDA Data Parallel Primitives (CUDPP) library also provides several 

implementations.  

 Thrust is an open-source library that provides a high-level interface to many of these 

parallel primitives. 

Several of these primitives are used as part of the algorithms implemented in this thesis; any 

libraries used will be detailed in later sections. 

4.1.1 – REDUCTION 

 A reduction is a method for processing a list of data elements to build up a single return 

value. In this thesis, reductions are used to find the sum and minimum value in a list of elements. 

A reduction can be viewed as a tree of operations: 
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The operation for a sum reduction would be addition and min for a minimum reduction.  

 This process maps well onto the GPU where each thread block is responsible for reducing 

a section of the data array. Each block produces a result and all of these results must then be 

combined. This is accomplished by calling the kernel an additional time to reduce these results. 
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Figure 4.1 – Reduction as a tree of operations 
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4.2 – ALGORITHM IMPLEMENTATIONS 

4.2.1 – K-NEAREST NEIGHBOR CLASSIFICATION 

 The work in [21] already provides a very fast and efficient implementation of the base k-

NN algorithm. The basic algorithm of this work is: 

 Compute the distances from all test points to all known vectors in parallel 

 Sort the distances for each test point in parallel 

 Take the square root of the closest k distances in parallel 

 Copy the results from the GPU to the CPU  

Rather than duplicating this work, this thesis focused on optimizing the implementation for two 

different cases: classifying a single test point and classifying test points when k=1. 

4.2.1.1 – Classifying a single test point 

 As the previous work focused on classifying multiple test points at a time, there was 

sufficient data to fully and efficiently utilize the GPU without utilizing the finest grain of 

parallelism. In the previous implementation, each thread was responsible for computing the 

distance from a reference point to a query point by calculating 
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 With only a single test point however, additional parallelism must be exploited to utilize 

the device fully. The new implementation breaks the distance calculation apart, making each 

thread responsible for computing only 
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Figure 4.7 - Cascade structure 

4.2.3.2 – Preprocessing 

 OpenCV is used to read and preprocess the image. The image is read in and converted to 

an 8 bits per pixel, grayscale data array. The face detection example provided with OpenCV 

performs histogram equalization over the entire image before generating the integral image. This 

step is not necessary; thus it was not implemented in CUDA. However, histogram equalization is 

a parallelizable process, making it a good candidate for a CUDA implementation. 

4.2.3.3 – Context Creation  

 A CUDA context is comparable to a CPU process. The context tracks all resources and 

actions, allowing CUDA to clean up after itself automatically. The CUDA context must be 

created for each GPU before any CUDA calls can be made in an application. To prevent the 

context from being created during the classification call, a function was written to create the 

context at application launch. 
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node (feature) is evaluated, and that result is returned as the tree value. The same concept is used 

if the right branch is taken, except the field prefixed with “right_” is inspected. As discussed in 

Section 2.6.1, this conditional branching may result in unavoidable performance degradation. 

However, very little computation is done along each branch path, increasing the possibility for 

the compiler to use branch prediction rather than branching. 

4.2.3.7 - Stage Evaluation 

 As specified above, each stage is composed of a set of trees. 

 

 

The tree values within a stage are accumulated, and that value is compared with the stage 

threshold. If the stage sum is greater than the threshold, the sub-window is classified as a face by 

the stage and passed onto the next stage for further classification. 

 OpenCV performs the complete classification of a sub-window before moving to the next 

sub-window. However, the CUDA implementation processes all sub-windows in parallel so a 

single cascade stage is run at a time. A kernel is launched for each stage in which each thread is 

<!-- stage 0 --> 

<trees> 

... 

</trees> 

<stage_threshold>0.3506923019886017</stage_threshold> 

<parent>-1</parent> 

<next>-1</next> 

 

 

<!-- stage 1 --> 

<trees> 

... 

</trees> 

<stage_threshold>3.4721779823303223</stage_threshold> 

<parent>0</parent> 

<next>-1</next> 

Figure 4.11 – Stage structure from OpenCV trained data file 
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4.2.3.11 – Function Calls 

 The k-NN and SVM work in this thesis was transparent from the outside caller. As the 

Viola & Jones work is a new implementation, new function calls must be created. In order to 

keep consistent with OpenCV, the function call was made as similar as possible. 

Read and Preprocess Image 
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Process stage 0 
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thread 0 thread N 
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Process stage 0 
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All Scales 
Processed

? 

All Scales 
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? 

No 
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No 
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Build Integral Images 

GPU 0 GPU 1 

Figure 4.14 - Parallel execution of scale iterations across multiple GPUs 
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 As discussed in Section 4.2.3.3, the context must be created at application launch via a 

call to createContext(). The primary difference in the function call is due to the cascade not 

being passed to the CUDA function because it is “hard coded” in the CUDA kernels. In addition, 

OpenCV allows a set of flags to be passed to the classifier. The flags include: 

 CV_HAAR_DO_CANNY_PRUNING – Causes Canny edge detection to be performed 

on the image before classification. Regions with too many or too few edges are rejected 

prior to running the classifier cascades. 

 CV_HAAR_SCALE_IMAGE – Causes the image to be resized rather than scaling the 

windows and features. 

 CV_HAAR_FIND_BIGGEST_OBJECT – Causes detection to find only the largest 

object in the image. 

void createContext() 

 

CvSeq* 

cvHaarDetectObjectsGPU(  

const IplImage* image,  

CvMemStorage* storage,  

const double scaleFactor,  

int min_neighbors,  

const int origWindowSize,  

const int numStages) 

 

 

CvSeq*  

cvHaarDetectObjects(  

const CvArr*  

image,CvHaarClassifierCascade*  

   cascade, 

CvMemStorage* storage, 

double scale_factor, 

int min_neighbors,  

int flags, 

CvSize min_size) 

Figure 4.15 – OpenCV detection function call Figure 4.16 – CUDA detection function call 
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 CV_HAAR_DO_ROUGH_SEARCH – Used in conjunction with 

CV_HAAR_FIND_BIGGEST_OBJECT, causes the function to dismiss candidate 

objects of a smaller size once an object is found at the current scale. This can greatly 

decrease processing time and can also decrease accuracy. 

It is anticipated that some of these features are good candidates for parallel implementations; 

however this extra functionality is left for future work.  

 The next section discusses the timing and performance benchmarks for each of the 

algorithms in this thesis. This includes analysis on each algorithm which was benchmarked 

against a similar implementation to determine any changes in execution time and accuracy.  
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Chapter 5 – RESULTS 

 This Section discusses both the classification accuracy and execution time for the 

algorithms in this thesis. For k-Nearest Neighbors classification and Viola and Jones object 

detection, the previous implementations were used to verify the classification results of the GPU 

implementations. As the previous SVM implementation was a binary classifier, the results were 

compared with the expected value and used to calculate the accuracy. This accuracy was then 

compared with other implementations to ensure the algorithm was producing correct results.  

 As discussed above, the CUDA algorithms require device memory allocation and copies 

before any processing can be performed. To compare CPU and CUDA implementations 

accurately and fairly, these processes are included in the CUDA timing. As discussed in Section 

4.2.3.3, the CUDA context must be created before any CUDA calls can be made. However, the 

context needs to be created only once at application launch and will have no effect on later 

classification calls. Because of this, the CUDA context creation time is not included in these 

results. 

 Execution times can vary across multiple application runs due to a variety of factors 

including other background processes and memory access times. In order to get an accurate 

timing, all reported times are averages of 15 application runs.  

 The benchmarks were all performed using a PC running Windows XP 32 bit. The 

machine had an AMD Athlon 64 X2 Dual Core Processor 5600+ at a speed of 2.91 GHz and 

2.75GB of RAM. Two different video cards were used for benchmarking, the first of which is a 

NVIDIA GTX 285. The GTX 285 has 240 processor cores, a 1,467 MHz processor clock, a 

1,242 MHz memory clock and 1GB of GDDR3 memory. The other card is a NVIDIA GTX 295 
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which has two GPUs in a single card. Each of the GPUs in the 295 has 240 processor cores with 

a 1,242 MHz processor clock, a 999 MHz memory clock and 896MB of GDDR3 memory. 

5.1 – K-NEAREST NEIGHBOR CLASSIFICATION 

 This work focused on extending a previous CUDA implementation that boasted a 

speedup of up to 295x over a serial implementation. Therefore, a large speedup was not 

expected. The results from the previous implementation were used to verify the resulting values 

of the new implementation. The performance metric for the k-NN results is speedup over the 

previous CUDA implementation. 

5.1.1 – CLASSIFYING A SINGLE TEST POINT 

 As seen in Figure 5.1, the optimizations for classifying a single test point provide a 

minimal speedup.  

 

Figure 5.1 – Results for k-NN single test point classification 
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The maximum speedup over the previous CUDA implementation is 1.24x. The results indicate 

that the number of dimensions has the greatest impact on the performance. As discussed in 

Section 4.2.1.1, each thread in the previous implementation was responsible for sequentially 

computing the distance from a reference point to a query point. The new implementation now 

computes the partial sums of the distance in parallel.   

 It can be seen that the speedup decreases when dealing with a greater number of 

reference points. This is expected, as with additional reference points, more threads are required 

to compute the distance between the reference points to the query point. This provides a 

sufficient amount of computation to utilize the device fully with the previous implementation. 

Computing the distance sequentially keeps the threads busy and provides computation to hide the 

memory access latencies. When dealing with a larger number of reference points, computing the 

intermediate differences in parallel takes longer than computing them sequentially.  

 

Figure 5.2 – Profiling of the k-NN CUDA implementation for 256 reference points, 1 query point and a dimension of 8192 
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 Ultimately, it would be ideal for the CUDA Viola & Jones implementation to have the 

full functionality of the OpenCV implementation. The first step to matching the functionality is 

matching the OpenCV flags discussed in Section 4.2.3.11. 

 Canny edge detection can be used to quickly eliminate sub-windows that have too many 

or too few windows. This could be implemented using existing OpenCV functionality; 

however it would be ideal to exploit the GPU for at least some of the edge detection 

computation. 

 CUDA textures and interpolation make image resizing implementations fairly 

straightforward. Once the input image is bound to a texture, threads can be launched to 

sample values at the locations between the original pixels. The texture cache will 

automatically return the interpolated value. Of course, more advanced implementations 

are possible.  

 OpenCV provides two flags that can greatly decrease processing time if only the largest 

object in the scene is important. However, these flags will require adjustments to the 

cascade kernels and their behavior must be fully understood in OpenCV in order to match 

the results in the CUDA implementation.  

 As the CUDA Viola & Jones implementation was designed for face detection, the sub-

windows were assumed to be square. This is not the case for all detectors; the body detectors for 

example are rectangular. Adding support for rectangular sub-windows should be as easy as 

replacing the window size in the data structure with height and width fields and then updating the 

references in the code. 
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 Tilted features were not supported in the original Viola & Jones implementation; 

however they are in OpenCV. Tilted features are used in the eyeglass and body detectors. 

Adding support for the tilted features will first require changes to the XML parsing script. The 

rotated integral image must also be implemented. 

 For this work, multiple GPUs worked together to process a single classifier. However, it 

should be possible to exploit multiple GPUs to process multiple classifiers in parallel. For 

example, frontal and profile face detectors could be run in parallel to detect faces at nearly any 

angle. 
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