
vi

TABLE OF CONTENTS

Chapter 1 – Introduction ... 1

Chapter 2 – Background ... 3

2.1 - k-Nearest Neighbor Classification.. 3

2.2 - Support Vector Machines ... 5

2.2.1 - Binary Support Vector Machines .. 5

2.2.2 - Multiclass Support Vector Machines .. 7

2.3 - Viola & Jones Object Detection ... 8

2.3.1 - Cascade of Weak Classifiers ... 8

2.3.2 - Integral Image .. 9

2.4 - Graphics Processing Unit (GPU) .. 10

2.5 GPGPU Programming Frameworks ... 12

2.5.1 – Legacy Environments ... 12

2.5.2 – Sh and Brook for GPUs .. 13

2.5.3 - NVIDIA CUDA ... 13

2.5.4 - ATI Stream .. 14

2.5.5 – OpenCL ... 14

2.6 NVIDIA CUDA .. 14

2.6.1 - CUDA Programming Model ... 15

2.6.2 – CUDA Program Flow ... 17

15

2.6.1 - CUDA PROGRAMMING MODEL

 CUDA programmers develop code for the GPU by creating C functions called kernels.

Only one kernel can be run on the device at a time, and all configured threads execute the kernel

in parallel. The threads are grouped into thread blocks which are then organized in a grid as seen

in Figure 2.9 below.

 When a kernel is launched, the blocks of the grid are distributed to multiprocessors with

available execution capacity. The threads of a block execute concurrently on a single

multiprocessor. As each thread block completes its work, the multiprocessors are freed, and a

new block is launched in its place.

Figure 2.9 - CUDA Grid layout. [16]

26

CUBLAS
2
 to perform dot product calculations in parallel followed by a parallel reduction to

compute the classification sum for each test point.

 CUSVM [25] followed GPUSVM with a similar implementation that also included

regression and support for mixed precision arithmetic. CUSVM supports only the Gaussian

kernel and few details on the classification implementation are provided. A speedup of 22x -

172x over LIBSVM is reported for various datasets.

 In order to handle greater amounts of data and exploit additional parallelism, [26] used

CUDA to implement an incremental least squares SVM (LS-SVM) for handling billions of data

points with high dimensionality (up to 10
3) . A speedup of 65x over a sequential CPU

implementation and over 1000x over LIBSVM is reported. LS-SVM processes chunks of data

points in parallel on the GPU using the vendor supplied CUBLAS library for matrix operations.

The calculation results are copied back to the CPU for final classification.

 Zhang et al. [27] also take advantage of multiple test points by using a SVM to classify

windows, or sub-regions of an image in parallel. The GPGPU scan-window based object

detection framework was used to detect pedestrians with a speedup of “more-than-ten-times”

over a sequential CPU implementation. The low level GPGPU implementation process varies

greatly from that of CUDA.

 As with k-NN, these previous works target multiple query points as the main source of

parallelism and design the parallel algorithms to exploit it best. This work used a previous SVM

implementation to exploit a different source of parallelism, multiple classifiers running across

multiple GPUs to create a multiclass SVM classifier.

2
 A NVIDIA supplied Basic Linear Algebra Subprogram library

27

3.3 – VIOLA & JONES OBJECT DETECTOR

 Viola and Jones introduced their object detection algorithm in [14]. This algorithm is

extended in [15] with the addition of rotated features and alternative boosting algorithms. This

extended algorithm was implemented as part of the OpenCV library. The OpenCV

implementation offers the ability to enable OpenMP to distribute strips of an image across

multiple CPU threads. The use of OpenMP allows OpenCV to exploit parallelism, but not at the

level of GPUs.

 The concepts introduced by Viola and Jones are not only applicable for their object

detector. Several phases of the object detection process have been parallelized for use in other

projects. For example, [28] introduces a new integral image algorithm for the GPU. The

algorithm was implemented in Brook and uses parallel prefix sum operations to compute the

integral image in stages. A speedup of 10x over “the best available CPU implementation” was

reported for large images. Allusse et al. [29] also implement parallel integral image generation

but use the CUDPP
3
 library to perform the parallel sums for a speedup ranging from ~0.06x for

128x128 images to ~3x for 2048x2048 images.

 While no other CUDA implementations of the Haar classifier based object detector could

be found, parallel implementations exist for other platforms. The work in [30] processes up to

three feature classifiers in parallel using a FPGA hardware architecture for a 35x speedup over a

similar sequential CPU implementation.

3
 CUDA Data Parallel Primitives Library - http://gpgpu.org/developer/cudpp

28

 An exceptional amount of knowledge can be gained from the previous work, especially

the OpenCV implementation. However, implementing the Viola & Jones object detector on

CUDA required a substantially different implementation process.

 The next chapter discusses this thesis’ GPU implementation of k-Nearest Neighbor

Classification, Multi-class Support Vector Machines and Viola and Jones Object Detection. This

includes both the high level algorithms and data parallel primitives that are required to perform

several common tasks.

29

Chapter 4 – GPU IMPLEMENTATION

 Many computer vision tasks require fast response times. The proposed algorithms can be

very computationally intensive, making them difficult to use for real-time tasks. By taking

advantage of the parallel nature of these algorithms, execution on the GPU can be done in a

fraction of the original time. Offloading processing to the GPU also frees the CPU for other

tasks such as device IO, reporting or user interaction.

4.1 - PARALLEL PRIMITIVES

 A set of data-parallel algorithm primitives are used quite frequently to implement parts of

larger algorithms. Fortunately, a variety of these parallel primitives have already been

implemented in CUDA.

 Several of these are implemented as examples in the CUDA Software Development

Kit (SDK).

 The CUDA Data Parallel Primitives (CUDPP) library also provides several

implementations.

 Thrust is an open-source library that provides a high-level interface to many of these

parallel primitives.

Several of these primitives are used as part of the algorithms implemented in this thesis; any

libraries used will be detailed in later sections.

4.1.1 – REDUCTION

 A reduction is a method for processing a list of data elements to build up a single return

value. In this thesis, reductions are used to find the sum and minimum value in a list of elements.

A reduction can be viewed as a tree of operations:

30

The operation for a sum reduction would be addition and min for a minimum reduction.

 This process maps well onto the GPU where each thread block is responsible for reducing

a section of the data array. Each block produces a result and all of these results must then be

combined. This is accomplished by calling the kernel an additional time to reduce these results.

Operation

Result

Data 0 Data 1

Operation

Intermediate
Result

Operation

Intermediate
Result

Data 2 Data 3

Operation

Intermediate
Result

Data 4 Data 5

Operation

Intermediate
Result

Operation

Intermediate
Result

Data 6 Data 7

Operation

Intermediate
Result

Figure 4.1 – Reduction as a tree of operations

34

4.2 – ALGORITHM IMPLEMENTATIONS

4.2.1 – K-NEAREST NEIGHBOR CLASSIFICATION

 The work in [21] already provides a very fast and efficient implementation of the base k-

NN algorithm. The basic algorithm of this work is:

 Compute the distances from all test points to all known vectors in parallel

 Sort the distances for each test point in parallel

 Take the square root of the closest k distances in parallel

 Copy the results from the GPU to the CPU

Rather than duplicating this work, this thesis focused on optimizing the implementation for two

different cases: classifying a single test point and classifying test points when k=1.

4.2.1.1 – Classifying a single test point

 As the previous work focused on classifying multiple test points at a time, there was

sufficient data to fully and efficiently utilize the GPU without utilizing the finest grain of

parallelism. In the previous implementation, each thread was responsible for computing the

distance from a reference point to a query point by calculating

.)(
1

2

),(

n

i

iiqp qpD

 With only a single test point however, additional parallelism must be exploited to utilize

the device fully. The new implementation breaks the distance calculation apart, making each

thread responsible for computing only

40

Figure 4.7 - Cascade structure

4.2.3.2 – Preprocessing

 OpenCV is used to read and preprocess the image. The image is read in and converted to

an 8 bits per pixel, grayscale data array. The face detection example provided with OpenCV

performs histogram equalization over the entire image before generating the integral image. This

step is not necessary; thus it was not implemented in CUDA. However, histogram equalization is

a parallelizable process, making it a good candidate for a CUDA implementation.

4.2.3.3 – Context Creation

 A CUDA context is comparable to a CPU process. The context tracks all resources and

actions, allowing CUDA to clean up after itself automatically. The CUDA context must be

created for each GPU before any CUDA calls can be made in an application. To prevent the

context from being created during the classification call, a function was written to create the

context at application launch.

Cascade

Stage 0

Tree 0

Feature 0

Rect 0

...

Rect N...

Feature N...

Tree N

...

Stage N

45

node (feature) is evaluated, and that result is returned as the tree value. The same concept is used

if the right branch is taken, except the field prefixed with “right_” is inspected. As discussed in

Section 2.6.1, this conditional branching may result in unavoidable performance degradation.

However, very little computation is done along each branch path, increasing the possibility for

the compiler to use branch prediction rather than branching.

4.2.3.7 - Stage Evaluation

 As specified above, each stage is composed of a set of trees.

The tree values within a stage are accumulated, and that value is compared with the stage

threshold. If the stage sum is greater than the threshold, the sub-window is classified as a face by

the stage and passed onto the next stage for further classification.

 OpenCV performs the complete classification of a sub-window before moving to the next

sub-window. However, the CUDA implementation processes all sub-windows in parallel so a

single cascade stage is run at a time. A kernel is launched for each stage in which each thread is

<!-- stage 0 -->

<trees>

...

</trees>

<stage_threshold>0.3506923019886017</stage_threshold>

<parent>-1</parent>

<next>-1</next>

<!-- stage 1 -->

<trees>

...

</trees>

<stage_threshold>3.4721779823303223</stage_threshold>

<parent>0</parent>

<next>-1</next>

Figure 4.11 – Stage structure from OpenCV trained data file

50

4.2.3.11 – Function Calls

 The k-NN and SVM work in this thesis was transparent from the outside caller. As the

Viola & Jones work is a new implementation, new function calls must be created. In order to

keep consistent with OpenCV, the function call was made as similar as possible.

Read and Preprocess Image

Group Detected
Faces

Display Results

Process scale X

Process stage 0

…

Process stage N

Store results for
scale X

thread 0 thread N

Process scale Y

Process stage 0

…

Process stage N

Store results for
scale Y

thread 0 thread N

All Scales
Processed

?

All Scales
Processed

?

No
X += 2

Yes

No
Y += 2

Build Integral Images

GPU 0 GPU 1

Figure 4.14 - Parallel execution of scale iterations across multiple GPUs

51

 As discussed in Section 4.2.3.3, the context must be created at application launch via a

call to createContext(). The primary difference in the function call is due to the cascade not

being passed to the CUDA function because it is “hard coded” in the CUDA kernels. In addition,

OpenCV allows a set of flags to be passed to the classifier. The flags include:

 CV_HAAR_DO_CANNY_PRUNING – Causes Canny edge detection to be performed

on the image before classification. Regions with too many or too few edges are rejected

prior to running the classifier cascades.

 CV_HAAR_SCALE_IMAGE – Causes the image to be resized rather than scaling the

windows and features.

 CV_HAAR_FIND_BIGGEST_OBJECT – Causes detection to find only the largest

object in the image.

void createContext()

CvSeq*

cvHaarDetectObjectsGPU(

const IplImage* image,

CvMemStorage* storage,

const double scaleFactor,

int min_neighbors,

const int origWindowSize,

const int numStages)

CvSeq*

cvHaarDetectObjects(

const CvArr*

image,CvHaarClassifierCascade*

 cascade,

CvMemStorage* storage,

double scale_factor,

int min_neighbors,

int flags,

CvSize min_size)

Figure 4.15 – OpenCV detection function call Figure 4.16 – CUDA detection function call

52

 CV_HAAR_DO_ROUGH_SEARCH – Used in conjunction with

CV_HAAR_FIND_BIGGEST_OBJECT, causes the function to dismiss candidate

objects of a smaller size once an object is found at the current scale. This can greatly

decrease processing time and can also decrease accuracy.

It is anticipated that some of these features are good candidates for parallel implementations;

however this extra functionality is left for future work.

 The next section discusses the timing and performance benchmarks for each of the

algorithms in this thesis. This includes analysis on each algorithm which was benchmarked

against a similar implementation to determine any changes in execution time and accuracy.

53

Chapter 5 – RESULTS

 This Section discusses both the classification accuracy and execution time for the

algorithms in this thesis. For k-Nearest Neighbors classification and Viola and Jones object

detection, the previous implementations were used to verify the classification results of the GPU

implementations. As the previous SVM implementation was a binary classifier, the results were

compared with the expected value and used to calculate the accuracy. This accuracy was then

compared with other implementations to ensure the algorithm was producing correct results.

 As discussed above, the CUDA algorithms require device memory allocation and copies

before any processing can be performed. To compare CPU and CUDA implementations

accurately and fairly, these processes are included in the CUDA timing. As discussed in Section

4.2.3.3, the CUDA context must be created before any CUDA calls can be made. However, the

context needs to be created only once at application launch and will have no effect on later

classification calls. Because of this, the CUDA context creation time is not included in these

results.

 Execution times can vary across multiple application runs due to a variety of factors

including other background processes and memory access times. In order to get an accurate

timing, all reported times are averages of 15 application runs.

 The benchmarks were all performed using a PC running Windows XP 32 bit. The

machine had an AMD Athlon 64 X2 Dual Core Processor 5600+ at a speed of 2.91 GHz and

2.75GB of RAM. Two different video cards were used for benchmarking, the first of which is a

NVIDIA GTX 285. The GTX 285 has 240 processor cores, a 1,467 MHz processor clock, a

1,242 MHz memory clock and 1GB of GDDR3 memory. The other card is a NVIDIA GTX 295

54

which has two GPUs in a single card. Each of the GPUs in the 295 has 240 processor cores with

a 1,242 MHz processor clock, a 999 MHz memory clock and 896MB of GDDR3 memory.

5.1 – K-NEAREST NEIGHBOR CLASSIFICATION

 This work focused on extending a previous CUDA implementation that boasted a

speedup of up to 295x over a serial implementation. Therefore, a large speedup was not

expected. The results from the previous implementation were used to verify the resulting values

of the new implementation. The performance metric for the k-NN results is speedup over the

previous CUDA implementation.

5.1.1 – CLASSIFYING A SINGLE TEST POINT

 As seen in Figure 5.1, the optimizations for classifying a single test point provide a

minimal speedup.

Figure 5.1 – Results for k-NN single test point classification

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

64 128 256 512 1024 2048 4096 8192

S
p

ee
d

 U
p

Dimensions

Speedup vs. # Dimensions

#Reference = 16

#Reference = 64

#Reference = 256

#Reference = 1024

55

The maximum speedup over the previous CUDA implementation is 1.24x. The results indicate

that the number of dimensions has the greatest impact on the performance. As discussed in

Section 4.2.1.1, each thread in the previous implementation was responsible for sequentially

computing the distance from a reference point to a query point. The new implementation now

computes the partial sums of the distance in parallel.

 It can be seen that the speedup decreases when dealing with a greater number of

reference points. This is expected, as with additional reference points, more threads are required

to compute the distance between the reference points to the query point. This provides a

sufficient amount of computation to utilize the device fully with the previous implementation.

Computing the distance sequentially keeps the threads busy and provides computation to hide the

memory access latencies. When dealing with a larger number of reference points, computing the

intermediate differences in parallel takes longer than computing them sequentially.

Figure 5.2 – Profiling of the k-NN CUDA implementation for 256 reference points, 1 query point and a dimension of 8192

74

 Ultimately, it would be ideal for the CUDA Viola & Jones implementation to have the

full functionality of the OpenCV implementation. The first step to matching the functionality is

matching the OpenCV flags discussed in Section 4.2.3.11.

 Canny edge detection can be used to quickly eliminate sub-windows that have too many

or too few windows. This could be implemented using existing OpenCV functionality;

however it would be ideal to exploit the GPU for at least some of the edge detection

computation.

 CUDA textures and interpolation make image resizing implementations fairly

straightforward. Once the input image is bound to a texture, threads can be launched to

sample values at the locations between the original pixels. The texture cache will

automatically return the interpolated value. Of course, more advanced implementations

are possible.

 OpenCV provides two flags that can greatly decrease processing time if only the largest

object in the scene is important. However, these flags will require adjustments to the

cascade kernels and their behavior must be fully understood in OpenCV in order to match

the results in the CUDA implementation.

 As the CUDA Viola & Jones implementation was designed for face detection, the sub-

windows were assumed to be square. This is not the case for all detectors; the body detectors for

example are rectangular. Adding support for rectangular sub-windows should be as easy as

replacing the window size in the data structure with height and width fields and then updating the

references in the code.

75

 Tilted features were not supported in the original Viola & Jones implementation;

however they are in OpenCV. Tilted features are used in the eyeglass and body detectors.

Adding support for the tilted features will first require changes to the XML parsing script. The

rotated integral image must also be implemented.

 For this work, multiple GPUs worked together to process a single classifier. However, it

should be possible to exploit multiple GPUs to process multiple classifiers in parallel. For

example, frontal and profile face detectors could be run in parallel to detect faces at nearly any

angle.

79

[22] V. Vapnik and A. Lerner, "Pattern Recognition using Generalized Portrait Method,"

Automation and Remote Control, vol. 24, p. 774–780, 1963.

[23] C.-C. Chang and C.-J. Lin, "LIBSVM: a library for support vector machines," 2001.

[24] B. Catanzaro, N. Sundaram, and K. Keutzer, "Fast support vector machine training and

classification on graphics processors," 25th international conference on Machine learning,

vol. 307, pp. 104-111, 2008.

[25] A. Carpenter. (2009, Jan.) cuSVM: A CUDA Support Vector Machine Implementation.

[Online]. http://patternsonascreen.net/cuSVM.html

[26] T.-N. Do and V.-H. Nguyen, "A novel speed-up SVM algorithm for massive classification

tasks," in IEEE International Conference on Research, Innovation and Vision for the

Future, Ho Chi Minh City, 2008, pp. 215-220.

[27] L. Zhang and R. Nevatia, "Efficient scan-window based object detection using GPGPU," in

IEEE Computer Society Conference on Computer Vision and Pattern Recognition

Workshops, Anchorage, AK, 2008, pp. 1-7.

[28] C. Messom and B. AL, "High Precision GPU based Integral Images for Moment Invariant

Image Processing Systems," Electronics New Zealand Conference (ENZCON08), 2008.

[29] Y. Allusse, P. Horain, A. Agarwal, and C. Saipriyadarshan, "GpuCV: A GPU-Accelerated

Framework for Image Processing and Computer Vision," 2008.

[30] J. Cho, S. Mirzaei, J. Oberg, and R. Kastner, "Fpga-based face detection system using Haar

