

0 1000 2000 3000 4000 5000

B
lin

ks
FP

2
-F

8
FP

2
-F

4
FP

1
-F

7
FP

1
-F

3

Normal EEG Containing Two Blinks

(a) Blink detection in normal EEG

0 1000 2000 3000 4000 5000

B
lin

ks
FP

2
-F

8
FP

2
-F

4
FP

1
-F

7
FP

1
-F

3

Triphasic EEG Containing Zero Blinks

(b) Blink detection in triphasic EEG with no blinks

Figure 6.1: Blink detection in normal EEG. Results of the blink detection algorithm given
normal EEG and EEG containing triphasic waveforms. Displayed channels are channels
given to blink detection algorithm. Two blinks are correctly located within the normal EEG
and no blinks are falsely detected in the triphasic EEG.

67

0 1000 2000 3000 4000 5000

B
lin

ks
FP

2
-F

8
FP

2
-F

4
FP

1
-F

7
FP

1
-F

3

FIRDA EEG Containing Zero Blinks with False Detections

Figure 6.2: False blink detections in FIRDA EEG containing no blinks. Two blinks are
falsely detected in the first stages of the blink detection algorithm. These blinks are later
correctly identified as false when blink detection is applied to the extracted blink source
signal.

2600

3100

0 1000 2000 3000 4000 5000

FP
1

-F
3

(u
V

)

Mixed triphasic EOG with blink EOG

-40

100

FP
1

-F
3

(u
V

)

EOG with blink

2700

3100

0

FP
1

-F
3

(u
V

)

Uncontaminated triphasic EOG

Figure 6.3: Simulated blinks in triphasic EEG. Two blinks are simulated within uncontam-
inated triphasic EEG. Very little change is visible between the original and simulated EEG
signals.

68

the simulated blinks within the triphasic data, but the lack of detection could also indicate

that the simulation method is simply invalid. Looking at Figure 6.3, the difference between

the uncontaminated triphasic EEG and the simulated EEG is difficult to detect visually.

Another possibility is that the blink detection software is simply ineffective in the pres-

ence of repetitive, high-amplitude signals such as those contained in triphasic and FIRDA

EEG. During testing, data from within the Pesin thesis [25] was given to the blink detec-

tion software. This data came from a healthy adult, but contained movement artifacts and

appeared to include rapid blinking. Results from this data are not included in the previous

results table because no information was recorded in the Pesin thesis about actual locations

and numbers of eye-blinks, and so no benchmark could be created to measure against.

Finally, it must be noted that while blinks are falsely detected within the FIRDA raw

EEG (e.g., Figure 6.2), the falsely detected blinks are not detected within the extracted

source signals, and thus will not result in modifications of the EEG. In other words, the first

half of the blink detection algorithm proved to be faulty when given FIRDA EEG, but the

additional checks performed on the ICA extracted source signals prevent any information

from being removed from the EEG.

6.2 General ICA Performance

Compared to running on the CPU, the GPGPU implementation of Independent Component

Analysis showed an improvement in execution time and a much better relationship between

work and runtime. As seen in Figure 5.1, the GPGPU version of FastICA appears to have

a very slight linear increase in runtime with regard to an exponential growth in observation

data. This is in comparison to the exponential increase in runtime seen by the pure CPU

implementation of FastICA.

On the other hand, both the GPGPU and pure CPU versions of JADE exhibit exponen-

tial growth in runtime as observation variables increase, although the GPGPU implemen-

tation does consistently outperform the CPU version. This difference between FastICA

69

and JADE is a result of the cumulant matrices needed by JADE. The amount of mem-

ory required by JADE is O (n4) with respect to the number of observation variables, and

the number of cumulant matrices is O (n2). In JADE, increasing the number of observation

variables results in 4th order exponential growth in the amount of work to be performed (2nd

order growth in the number of matrices to be multiplied within each step of each sweep),

while in FastICA, an increase in observation matrix size results in an exactly matched in-

crease in the size of matrices that are multiplied together.

Looking at the plots in Figures 5.3 and 5.4, it can be seen that a change in observation

matrix size from 25×12500 to 50×25000 results in very little change in the relative amount

of time spent within each kernel in the FastICA computation. This is in contrast to the

changes seen in the JADE computation (Figures 5.5 and 5.6), where an increase in the num-

ber of observation variables results in a change from the cumulant matrix generation kernel

being the most time intensive, to the repeated calls to sgemm main tex hw ta nb be-

ing the most time intensive task. The sgemm main tex hw ta nb function in this case

is the CUBLAS GEMM function used to apply the Jacobi rotation matrix to each cumulant

matrix. This change can be explained by an increase in observation matrix size that results

in only a one-time performance penalty within the cumulant matrix generation kernel, but

results in repeated penalties when performing sweeps of the cumulant matrices, because

the number of matrices grows as O (n2).

Finally, two things must be noted about the JADE implementation. First, no measure-

ments beyond 50 observation variables could be valid because of a hard limit due to the

implementation of the kernel used to generate the cumulant matrices and the maximum

allowable grid size in CUDA. Second, due to time constraints, the plain C implementation

of JADE was not fully optimized—it is not multi-threaded. This should be considered in

comparisons between the plain C code and the C with CUDA code.

70

6.3 ICA Performance with EEG

While the previous results about the performance of ICA in general are useful, they do not

necessarily apply to the blink detection and removal problem. Within the algorithm used

for this thesis, the observation matrix was at a fixed size of 25× 5000, and it did not matter

whether the GPGPU implementation showed a speed up eventually—only the 25 × 5000

case mattered. According to Table 5.4, even in the worst case, the GPGPU implementation

still showed a speed up in all ICA configurations tested. Some speedups are relatively

insignificant, e.g., JADE only saw a speedup of 1.07; however, this test was taken on an

unloaded desktop computer. Running any other background task will steal available cycles

from the CPU implementations of ICA, while, on the other hand, the graphics card is

unlikely to suffer from variable load.

As a result of these tests, the goal of this thesis was obtained: a GPGPU implementation

of ICA has been shown to be a reasonable method for achieving real-time performance

within a blink removal algorithm. With these results and to further prove the point that

the developed ICA implementations meet the real-time goal, a program was developed to

continually stream EEG through the eye-blink removal algorithm. This program reads in

EEG stored in the Xltek “EEG Raw Data” format and allows the user to pause the reading

of the EEG so that various configuration parameters can be explored. This program showed

that both the plain C and GPGPU implementations are capable of real-time performance,

and provided the user with the ability to change configuration parameters at runtime. A

screenshot of the program, called EDE, is shown in Figure 6.4.

71

Figure 6.4: Eye-blink Detector and Extractor program. Screenshot of the eye-blink detector and extractor program as it streams
EEG through the eye-blink removal algorithm. The program allows for the user to toggle configuration parameters of the eye-
blink detection and removal algorithm.

72

Chapter 7

Conclusions

This thesis had the goal of investigating the viability of GPGPU as a platform on which to

perform eye-blink artifact removal from EEG. Specifically, it was investigated whether it

was possible to process 10 seconds of EEG within 10 seconds. It was found that GPGPU

does provide a decent system for meeting the real-time goal, and code was developed that

met the real-time goal using either only native C or a GPGPU solution.

The use of GPGPU as a workable, real-time solution to the blink artifact removal prob-

lem was demonstrated by using CUDA to implement the ICA portion of the problem on a

GPU. This resulted in notable speedups on large datasets, and marginal speedups on EEG

when compared to a single CPU based desktop computer. A GPGPU solution will show

less variance in run-time compared to a CPU, making its use in a real-time program more

favorable; however, this benefit must be tempered by the amount of time and effort required

to create an efficient GPGPU program. Creating GPGPU programs appears to require that

the implemented algorithm be already developed and finalized due to the amount of time

that must be spent determining an appropriate method of partitioning the problem for the

GPU.

The code provided with this thesis should allow for more rapid development of EEG

processing techniques as well-documented, efficient ICA implementations have been pro-

vided in all of MATLAB/Octave files, plain C files, and C with CUDA files. The provided

code should also be easily reusable, as it was written with generality in mind, and effort was

put into not “hardcoding” any values or assumptions about the data that is being processed.

73

While this is good, the code has room for improvement as follows:

1. The JADE GPGPU implementation sets an unnecessary upper bounds on the number

of signals that can be separated.

2. The ICA implementations all require that the number of observation variables matches

the number of source signals. The ICA algorithm does not require this, but it makes

for much simpler processing.

3. The JADE GPGPU implementation makes use of the CUBLAS GEMM function to

perform the left-multiplication of its set of cumulant matrices, when a custom made

kernel would likely be much faster as it could take advantage of the extreme sparse-

ness of the rotation matrix.

4. The JADE native C implementation is not multithreaded, making it likely to be less

than optimally efficient.

5. The M-file blink removal code requires that input data be in the form of a specific

struct datatype. The struct used is overly complex and should be better targeted

towards the blink removal code rather than the file I/O code from which it originates.

7.1 Future Work

• There is currently a need for a more fundamental study of the efficacy of Independent

Component Analysis for artifact removal within this application.

• The blink detection/removal algorithm is still lacking in a quantitative measurement

of its effectiveness—some set of standardized method and data on which to verify

algorithms, analogous to the MIT arrhythmia database for ECG processing, would

be extremely useful, and would contribute greatly to the field by allowing researchers

to compare their algorithms with each other.

74

• This work should provide a foundation for the rapid development and research of

EEG artifact removal algorithms that make use of Independent Component Analysis.

Investigations still need to be performed on ICA’s usefulness in removing artifacts

other than the eye-blink, such as the ECG, eye movements other than blinks, and

muscle artifacts.

• This work may prove useful for applications outside of artifact removal from EEG.

For example, the implementation of Independent Component Analysis on a GPU,

and the performance of the FastICA implementation given very large sets of data,

suggest that the developed code may be useful in other fields such as the processing

of medical images, like those created by an MRI.

75

Bibliography

[1] M. Andrecut. Parallel gpu implementation of iterative pca algorithms. Journal of
Computational Biology, 16(11):1–7, Nov. 2009. PMID: 19772385.

[2] A. Belouchrani, K. Abed-Meraim, and J.F. Cardoso. An iterative blind source sepa-
ration technique: implementation and performance. In Information, Communications
and Signal Processing, 1997. ICICS., Proceedings of 1997 International Conference
on, volume 1, pages 122 –125 vol.1, sep 1997.

[3] Jean-François Cardoso. High-order contrasts for independent component analysis.
Neural Computation, 11(1):157 – 192, 1999.

[4] J.F. Cardoso. Blind signal separation: Statistical principles. Proceedings of the IEEE,
86(10):2009–2025, Oct 1998.

[5] J.F. Cardoso and D.L. Donoho. Some experiments on independent component anal-
ysis of non-gaussian processes. In Higher-Order Statistics, 1999. Proceedings of the
IEEE Signal Processing Workshop on, pages 74 –77, 1999.

[6] J.F. Cardoso and A. Souloumiac. Blind beamforming for non-gaussian signals. Radar
and Signal Processing, IEE Proceedings F, 140(6):362 –370, Dec 1993.

[7] Matthew Alan Chaudhuri. Optimization of a hardware/software coprocessing plat-
form for eeg eyeblink detection and removal. Master’s thesis, Rochester Institute of
Technology, Rochester, NY, December 2008.

[8] NVIDIA Corporation. NVIDIA CUDA Programming Guide 2.0. NVIDIA Corpora-
tion, 2008. Available at http://www.nvidia.com/.

[9] L. De Lathauwer, J. Castaing, and J.F. Cardoso. Fourth-order cumulant-based blind
identification of underdetermined mixtures. Signal Processing, IEEE Transactions
on, 55(6):2965 –2973, june 2007.

76

[10] S. Delsanto, F. Lamberti, and B. Montrucchio. Automatic ocular artifact rejection
based on independent component analysis and eyeblink detection. In Neural Engi-
neering, 2003. Conference Proceedings. First International IEEE EMBS Conference
on, pages 309–312, March 2003.

[11] European data format. Online at http://www.edfplus.info.

[12] Bruce J. Fisch. Fisch and Spehlmann’s EEG Primer: Basic Principles of Digital and
Analog EEG. Elsevier, 3rd edition, 1999.

[13] Mark Harris. Optimizing parallel reduction in cuda. Online at
http://www.nvidia.com, 2007.

[14] Barbara Burke Hubbard. The World According to Wavelets. A K Peters, Wellesley,
MA, 2nd edition, 1998.

[15] What is independent component analysis: A demo. Online at
http://www.cis.hut.fi/projects/ica/icademo.

[16] A. Hyvärinen. Fast and robust fixed-point algorithms for independent component
analysis. Neural Networks, IEEE Transactions on, 10(3):626–634, May 1999.

[17] A. Hyvärinen and Shubhendu Trivedi. Blind source separation in magnetic resonance
images. Online at http://onionesquereality.wordpress.com, 2010.

[18] Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. Independent Component Analysis.
John Wiley & Sons, 2001.

[19] Aapo Hyvärinen and Erkki Oja. A fast fixed-point algorithm for independent compo-
nent analysis. Neural Comput., 9(7):1483–1492, 1997.

[20] C. A. Joyce, I. F. Gorodnitsky, and M. Kutas. Automatic removal of eye movement
and blink artifacts from eeg data using blind component separation. Psychophysiol-
ogy, 41(2):313–325, March 2004.

[21] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra
subprograms for fortran usage. ACM Trans. Math. Softw., 5(3):308–323, 1979.

[22] Yandong Li, Zhongwei Ma, Wenkai Lu, and Yanda Li. Automatic removal of the eye
blink artifact from eeg using an ica-based template matching approach. Physiological
Measurement, 27(4):425–436, 2006.

77

[23] Stephane Mallat. A Wavelet Tour of Signal Processing. Academic Press, September
1998.

[24] Jaakko Malmivuo and Robert Plonsey. Bioelectromagnetism - Principles and Ap-
plications of Bioelectric and Biomagnetic Fields. Oxford University Press, 1995.
Available at http://www.bem.fi/book.

[25] Jimy Pesin. Detection and removal of eyeblink artifacts from eeg using wavelet analy-
sis and independent component analysis. Master’s thesis, Rochester Institute of Tech-
nology, Rochester, NY, December 2007.

[26] S.V. Ramanan, N.V. Kalpakam, and J.S. Sahambi. A novel wavelet based tech-
nique for detection and de-noising of ocular artifact in normal and epileptic elec-
troencephalogram. In Communications, Circuits and Systems, 2004. ICCCAS 2004.
2004 International Conference on, volume 2, pages 1027–1031 Vol.2, June 2004.

[27] Rangaraj M. Rangayyan. Biomedical Signal Analysis - A Case-Study Approach. John
Wiley & Sons, 2002.

[28] Ahmed H. Sameh. On jacobi and jacobi-like algorithms for a parallel computer. Math-
ematics of Computation, 25(115):579–590, 1971.

[29] James V. Stone. Independent Component Analysis: A Tutorial Introduction. MIT
Press, Cambridge, MA, USA, 2004.

[30] L. Vigon, M.R. Saatchi, J.E.W. Mayhew, and R. Fernandes. Quantitative evaluation
of techniques for ocular artefact filtering of eeg waveforms. Science, Measurement
and Technology, IEE Proceedings -, 147(5):219–228, Sep 2000.

[31] R. Clint Whaley and Antoine Petitet. Minimizing development and
maintenance costs in supporting persistently optimized BLAS. Soft-
ware: Practice and Experience, 35(2):101–121, February 2005.
http://www.cs.utsa.edu/˜whaley/papers/spercw04.ps.

[32] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated
empirical optimization of software and the ATLAS project. Par-
allel Computing, 27(1–2):3–35, 2001. Also available as Univer-
sity of Tennessee LAPACK Working Note #147, UT-CS-00-448, 2000
(http://www.netlib.org/lapack/lawns/lawn147.ps).

78

[33] R.A. Whiteside, N.S. Ostlund, and P.G. Hibbard. A parallel jacobi diagonalization
algorthm for a loop multiple processor system. Computers, IEEE Transactions on,
C-33(5):409 –413, May 1984.

[34] Ian Wienand. Stressing the TLB with matrices. Online at
http://http://www.technovelty.org/code/linux/dtlb-stress.html.

79

Appendix A

Derivation of JADE Angle Formulas

The formulas used within the JADE algorithm (Algorithm 2.2) to compute the Jacobi ro-

tation angles are derived within this appendix. This derivation is based on the explanation

given in Cardoso’s work [5].

In JADE, there is a set of cumulant matrices {M} to diagonalize. For a single Ja-

cobi rotation it is desired to find a matrix, V , such that M ′
r = V TM rV will maximize∑

|m′ii|
2 +

∣∣m′jj∣∣2, i 6= j, over every matrix,M r ∈ {M}, where V is of the form:

V =



1 0 · · · 0

0
. . .

... c · · · −s
...

s · · · c
...

. . . 0

0 · · · 0 1


That is, V is an identity matrix except for elements vii, vij , vji, and vjj , where vii = vjj =

cos (θ), vji = −vij = sin (θ), and θ is the angle of the rotation.

In the rest of this derivation, for simplicity of representation, only the iith, ijth, jith,

and jjth elements of the V and {M} matrices are considered, representing the V andM

80

matrices, respectively, as:

V =

c −s
s c

 andM =

xm ym

ym zm


where the mii, mij , mji, mjj elements have been replaced with xm, ym, ym, and zm, re-

spectively, to highlight that, M being symmetric, the off-diagonal elements are identical,

while the on-diagonal elements may be different.

Given these conditions, the derivation is as follows:

1. First, notice that:

|xm − zm|2 + |xm + zm|2 =
∣∣x2
m + 2xmzm + z2

m

∣∣+∣∣x2
m − 2xmzm + z2

m

∣∣
= 2

∣∣x2
m + z2

m

∣∣
= 2
(
|xm|2 + |zm|2

)
(A.1)

So, maximizing
∑
|xm|2+|zm|2 is equivalent to maximizing

∑
|xm − zm|2+|xm + zm|2.

2. Next, given that the trace of a matrix is invariant under a unitary transformation,

and since V represents such a transformation, the value |xm + zm|2 is constant, so

maximizing
∑
|xm − zm|2 + |xm + zm|2 is equivalent to maximizing

∑
|xm − zm|2.

81

3. Expanding V TMV :

V TMV =

 c s

−s c

xm ym

ym xm

c −s
s c


=

 c s

−s c

xmc+ yms −xms+ ymc

ymc+ zms −yms+ zmc


=

 c2xm + csym + csym + s2zm c2ym − csxm + cszm − s2ym

−s2ym − csxm + cszm + c2ym s2xm − csym − csym + c2zm


(A.2)

This gives, forM ′ = V TMV :

x′m = c2xm + 2csym + s2zm

z′m = s2xm − 2csym + c2zm

(A.3)

And, finally:

x′m − z′m =
(
c2 − s2

)
(xm − zm) + 4csym (A.4)

4. Using the trig identities:

cos (2θ) = cos2 (θ)− sin2 (θ)

sin (2θ) = 2sin (θ) cos (θ)

Equation A.4 becomes:

x′m − z′m =
(
c2 − s2

)
(xm − zm) + 4csym

= cos (2θ) (xm − zm) + 2sin (2θ) ym

(A.5)

5. A suitable choice of θ is necessary to maximize
∑
|xm − zm|2. To find the best

choice, express
∑
|xm − zm|2 as a matrix problem by defining the vector, q, such

82

that

q =
(
x′m1 − z′m1 x′m2 − z′m2 · · · x′mn − z′mn

)
so that ∑

|xm − zm|2 = qqT (A.6)

6. Next, define the matrix,G, and the vector, v, such that

G =

xm1 − zm1 xm2 − zm2 · · · xmn − zmn
2ym1 2ym2 · · · 2ymn

T

v =

cos (2θ)

sin (2θ)

 (A.7)

Then, using the value for x′m − z′m given in Equation A.5, we can see that

qT = Gv (A.8)

and, thus:

∑
|xm − zm|2 = qqT

= vTGTGv
(A.9)

7. By choosing v to be the eigenvector of GTG with the largest eigenvalue vTGTGv

is guaranteed to be as large as possible. BecauseGTG is a 2×2 matrix, it is possible

to find its eigenvalues and eigenvectors. This will allow determination of v, and from

v, θ.

8. ExpandingGTG:

GTG =

 ∑
(xm − zm)2 ∑

(xm − zm) (2ym)∑
(xm − zm) (2ym)

∑
4y2

m

 (A.10)

83

Let

a =
∑

(xm − zm)2

b =
∑

(xm − zm) (2ym)

d =
∑

4y2
m

(A.11)

then, λ1, the largest eigenvalue ofGTG can be found with the equation:

λ1 =
a+ d+

√
(a− d)2 + 4b2

2
(A.12)

and the corresponding eigenvector can then be found using the equations:

v =

v1

v2

 (A.13)

v1 = cos (2θ) =
λ1 − d√

b2 − (λ1 − d)2
(A.14)

v2 = sin (2θ) =
b√

b2 − (λ1 − d)2
(A.15)

9. To solve for θ use the trig identity tan (·) = sin(·)
cos(·) and Equations A.12, A.14 and A.15

to get:

tan (2θ) =
sin (2θ)

cos (2θ)
=

b√
b2−(λ1−d)2

λ1−d√
b2−(λ1−d)2

=
b

λ1 − d

=
2b

a− d+
√

(a− d)2 + 4b2

(A.16)

84

which gives:

θ =
1

2
arctan

 2b

a− d+
√

(a− d)2 + 4b2

 (A.17)

10. Finally, determine θ using Equation A.17 and the values for a, b, and d given by

Equations A.11, and use this θ directly to build the rotation matrix, V , which will

allow the minimization of a pair of off-diagonal elements within all cumulant matri-

ces.

85

Appendix B

Code Repository

All code developed for this thesis is provided on a CD with the thesis document.

The code repository is divided into three main directories: c files, m files, and

eeg data. All EEG EDF files are stored within the eeg data directory, all C im-

plementation files (including the CUDA files) are under the c files directory, and all

MATLAB/Octave M files are under the m files directory.

B.1 EEG Data

The eeg data directory contains a large number of single record, 5000 sample long, EDF

files. The file names and directory structure make clear which files contain eye-blinks,

which files are of a normal, healthy adult, and which files are displaying epileptiform ac-

tivity.

B.2 MATLAB/Octave Code

The M-files for this work are meant to be executed from within the m files directory, that

is, when using this work’s M-files, it is expected that the current working directory is

m files. Before running any of the provided code, the runfirst.m script should be

executed to ensure that the environment is properly initialized (i.e., the search path is setup

and a global variable used by the wavelet processing code is initialized).

86

The M-files for this thesis were developed and tested within the Octave programming

environment. While Octave and MATLAB are extremely similar in syntax, there are oc-

casional differences, especially in supporting libraries. Because of this, the M-file code

as written is not guaranteed to run within MATLAB. A known problem is the wavelet

libraries. Octave does not provide any wavelet functions, so these functions had to be

developed. During development, effort was put into ensuring that the developed wavelet

functions behave identically to the wavelet functions provided within MATLAB, including

calling syntax.

All wavelet functions and supporting code are contained within the m files/wavelet

directory. The existence of the custom wavelet functions can cause a problem in MATLAB,

so it is advisable to remove from the runfirst.m script the addition of the wavelet di-

rectory to the search path when running with MATLAB is desired.

All provided scripts and functions are well commented and include comment headers

that will display useful information when the help function is used.

B.3 C Source Files

To build the plain C and C with CUDA files, running the make command from within the

c files directory on a computer with the ATLAS and CUDA libraries installed should be

sufficient. If compilation fails during the link stage, the likely problem is that the ATLAS

and/or CUDA libraries could not be found, and the Makefile will need to be modified to

point to the libraries’ correct location.

B.3.1 Compilation Options

There are two macros used by the C source files that affect the compiled code: USE SINGLE,

and ENABLE GPU. The ENABLE GPU macro toggles the compilation of GPGPU support

code. If the ENABLE GPU macro is not defined, then the compiled code will not require

the NVIDIA nvcc compiler and will be able to run on a computer without a CUDA-enabled

87

GPU.

The USE SINGLE macro toggles the use of single or double precision floating point

values. If USE SINGLE is not defined, double precision floats are used, and the ENABLE GPU

flag must not be defined, because CUDA does not support double precision. The USE SINGLE

flag exists to allow for the compilation of ICA libraries capable of handling double preci-

sion data.

Unfortunately, the Makefile is not in a state to allow for easy switching of the compila-

tion flags. The Makefile is given in a state that defines both USE SINGLE and ENABLE GPU.

To remove either flag, the Makefile will need to be modified to ensure that it does not at-

tempt to compile the CUDA source files (files with a “.cu” extension).

88

Appendix C

Function Documentation

This appendix documents several of the more important functions created during the com-

pletion of this thesis, including most of the custum CUDA kernels. The functions docu-

mented here are C functions–the documentation for equivalent MATLAB/Octave functions

can be found using the help command within Octave. All documentation provided here

is available within the C header files, and a Doxygen configuration file is provided with the

C code to allow for the generation of HTML documentation.

C.1 ica init()

/**

* Name: ica_init

*

* Description:

* Initializes the ICA library, allocating memory and setting up global

* variables needed to run the ICA computation. This function should be called

* before any other ICA function, and whenever the values in the ICAParams

* struct change.

*

* This function takes in a pointer to an ICAParams struct containing some

* configuration parameters for the function. If this function is not called,

* the listed default values are used when the ica() function is first called.

* The parameters, their purpose, and their default value are listed in the

* following table:

*

* property | default | description

89

* --------------+-------------+---

* implem | ICA_FASTICA | Which ICA implementation to use. If one of the

* | | JADE implementations is specified, the

* | | ‘epsilon’, ‘contrast’, and ‘max_iter’

* | | parameters are unused.

* --------------+-------------+---

* epsilon | 0.0001 | Convergence criteria. An iterative process is

* | | used to find the unmixing matrix, and this

* | | number defines how small a change must be in

* | | the calculated matrix before it is called

* | | ’converged’.

* | |

* | | Convergence means that the cosine of the angle

* | | between the previous unmixing vectors and the

* | | current vectors is within ’epsilon’ of +/- 1.

* --------------+-------------+---

* contrast | NONLIN_TANH | The contrast/learning rule that is used to

* | | find the mixing matrix. Valid values that use

* | | negentropy estimation through a nonlinear

* | | function are:

* | | NONLIN_TANH using g(y) = tanh(y)

* | | NONLIN_CUBE using g(y) = yˆ3

* | | NONLIN_GAUSS using g(y) = y * exp(-yˆ2 / 2)

* --------------+-------------+---

* max_iter | 1000 | The maximum number of iterations to perform

* | | before giving up on achieving convergence.

* --------------+-------------+---

* num_var | rows | The number of variables to extract. This

* | | defaults to the number of rows in the

* | | observation matrix, which is currently the

* | | only valid value for this parameter.

* --------------+-------------+---

* num_obs | columns | The number of observations in the observation

* | | matrix. This defaults to the number of columns

* | | in the matrix, which is currently the only

* | | valid value for this parameter.

* --------------+-------------+---

* gpu_device | 0 | Which GPU device to use. This only matters if

* | | one of the GPU implementations was specified.

* | | This value is passed to the cudaSetDevice()

* | | function to set the device on which

* | | calculations are performed. The chosen device

* | | should be different from the device supporting

90

* | | a display.

* --------------+-------------+---

*

*

* Parameters:

* @param params configuration parameters for the ICA algorithm

*

* Returns:

* @return int zero if there was a problem, nonzero otherwise

*/

int ica_init(ICAParams const *params);

C.2 ica()

/**

* Name: ica

*

* Description:

* Performs independent component analysis on the given observations X. Each

* row of X is assumed to be an observation vector. In other words, each row

* is a random variable and each column is an observation of that variable.

*

* Four values are returned by this function:

* W - the inverse mixing matrix (i.e., unmixing matrix)

* A - the mixing matrix

* S - the calculated source signals (zero-mean)

* mu_S - the calculated source signal means

*

* This function works by assuming that the observations, X, are a linear

* combination of some unknown source signals, S, represented by the equation:

*

* X = A * S

*

* The goal of this function is to find the transform, W, that will yield:

*

* W * X = S

*

* Thus, W = Aˆ-1

*

* To make finding W easier, X is first transformed into a zero-mean set of

* observations, resulting in a new matrix, represented by:

* _ _

91

* X + mu_X = A * (S + mu_S)

* _ _

* Where X and S are both zero mean. We can then ignore both mu_X and mu_S

* until we have calculated W, at which point it is simple to add them back in.

* _

* The S matrix returned by this function is actually the S matrix reference

* above. The original observations, X, may be reconstructed by calculating:

* _

* X = A * (S + mu_S)

*

* Parameters:

* @param W OUTPUT where the resulting W matrix will be stored

* @param A OUTPUT where the resulting A matrix will be stored

* @param S OUTPUT where the resulting S matrix will be stored

* @param mu_S OUTPUT where the resulting mu_S vector will be stored

* @param X INPUT the observation matrix

*

* Returns:

* @return unsigned int how many iterations/sweeps the algorithm took

*/

unsigned int ica(Matrix *W, Matrix *A, Matrix *S, NUMTYPE *mu_S,

Matrix const *X);

C.3 blinkRemove()

/**

* Name: blinkRemove

*

* Description:

* Removes eyeblink artifacts from an EEG recording given as an observation

* matrix. Each row of the observation matrix should represent a different

* EEG sensor (e.g., the ’FP1’ sensor, the ’F4’ sensor), each column should

* represent an observation of the sensors.

*

* The ‘channels’ parameter must be an array containing the channels to use for

* blink detection. The recommended channels to use are ’FP1 - F3’, ’FP1 - F7’,

* ’FP2 - F4’, and ’FP2 - F8’, but the only requirement is that at least one

* channel must be given.

*

* The ‘channels’ parameter is passed to the blinkDetect() function, so its

* storage must match that expected by blinkDetect() (i.e., ‘channels’ must be

* stored in row-major order).

92

*

* The ‘keep’ list specifies which channels in the observation EEG to leave

* unmodified. This can be used, for example, to prevent the obliteration of

* blinks from the EOG.

*

* Parameters:

* @param mat_R where to store the results

* @param mat_X the observation matrix

* @param channels the channels to use for blink detection

* @param num_channels the number of channels

* @param keep which channels to keep

* @param num_keep the length of the ‘keep’ array

* @param ica_params parameters to use for ICA

* @param b_params blink detection parameters

*

* Returns:

* @return int the number of blinks removed

*/

int blinkRemove(Matrix *mat_R, const Matrix *mat_X,

const NUMTYPE *channels, int num_channels,

const int *keep, int num_keep,

ICAParams *ica_params, const BlinkParams *b_params);

C.4 wavedec()

/**

* Name: wavedec

*

* Description:

* This function is meant to perform similar to MATLAB’s wavedec() function.

*

* This function performs a one-dimensional deconstruction of the given signal

* vector using the specified wavelet. The coefficient vectors for each level

* of the deconstruction are stored in the given coefs output vector, while

* the length of each coefficient vector is returned in the length output

* vector.

*

* For example, if C is the output coefficient vector and L is the output length

* vector, then, for a three level deconstruction, the resulting C and L vectors

* would look like:

*

* +-----+-----+---------+-----------------+

93

* C -> | cA3 | cD3 | cD2 | cD1 |

* +-----+-----+---------+-----------------+

*

* L -> [length(cA3), length(cD3), length(cD2), length(cD1)]

*

* Where cDx represent detail coefficients at level x, and cAy represents

* approximation coefficients at level y.

*

* PRE:

* The output vectors are assumed to have the required amount of space available

* for writing to. To ensure this, it is recommended to call the

* wavedecMaxLevel() and wavedecResultLength() functions to find the required

* lengths of the vectors before using this function.

*

* The ’lengths’ vector must be at least ’level + 1’ elements long.

*

* Parameters:

* @param coefs OUTPUT where to store the resulting coefficients

* @param lengths OUTPUT where to store the lengths of the coef. vectors

* @param signal INPUT the input signal vector

* @param len_signal INPUT the length of the signal vector

* @param wavelet INPUT which wavelet to use to deconstruct the signal

* @param level INPUT the deconstruction level to shoot for

*/

void wavedec(NUMTYPE *coefs, unsigned int *lengths,

NUMTYPE const *signal, unsigned int len_signal,

Wavelet wavelet, unsigned int level);

C.5 wrcoef()

/**

* Name: wrcoef

*

* Description:

* This function is meant to perform similar to MATLAB’s wrcoef() function.

*

* This function reconstructs the coefficients from a single branch of a one-

* dimensional wavelet deconstruction given by the input ’coefs’ and ’lengths’

* vectors. The input ’coefs’ and ’lengths’ should be the same format as those

* created by the wavedec() function.

*

* The type parameter defines whether to reconstruct detail or approximation

94

* coefficients, and the level parameter specifies which level to reconstruct.

*

* If an approximation reconstruction is used, then the level parameter may

* equal zero, in which case the original signal is reconstructed. The level

* parameter must always satisfy:

* level <= len_lengths - 1

*

* PRE:

* The level parameter must be less than the length of the ’lengths’ parameter

* and must be greater than zero, unless an approximation reconstruction is

* desired, in which case, the level parameter must be greater than or equal to

* zero.

*

* The ’result’ output is assumed to have the required amount of space available

* for writing to. The length of the result vector must be at least the size of

* the original signal vector.

*

* Parameters:

* @param result OUTPUT where to store the resulting signal

* @param coefs INPUT where to find the coefficient vectors

* @param lengths INPUT where to find the coefficient vector lengths

* @param len_lengths INPUT the length of the ’lengths’ vector

* @param type INPUT which type of coefficients to reconstruct

* @param wavelet INPUT which wavelet to use

* @param level INPUT which level of coefficients to reconstruct

*/

void wrcoef(NUMTYPE *result,

NUMTYPE const *coefs, unsigned int const *lengths,

unsigned int len_lengths, ReconType type, Wavelet wavelet,

unsigned int level);

C.6 CUDA kernel: fica sumAbs()

/**

* Name: fica_sumAbs

*

* Description:

* Sums the absolute value of each element of the given matrix. This function

* is very much not optimized, but it is assumed that this will not be a

* bottleneck since this function should only be used on relatively small sets

* of data.

*

95

* PRE:

* This kernel assumes the given matrix is square and that one block has been

* given for the entire matrix, with one thread per row. It is also assumed that

* there are at least 8 rows in the matrix.

*

* Parameters:

* @param d_sum where to store the sum

* @param d_X the matrix to process

*/

void __global__ fica_sumAbs(float *d_sum, float *d_X);

C.7 CUDA kernel: fica tanh()

/**

* Name: fica_tanh

*

* Description:

* Kernel for finding the tanh(.) of each element of a matrix. Assumes that

* each block operates on an entire column of the matrix at a time.

*

* POST:

* The values in the given matrix are overwritten with their tanh(.) values.

*

* Parameters:

* @param d_ws location of the matrix on which to operate

* @param ld the ’leading dimension’ of the matrix

*/

void __global__ fica_tanh(float *d_ws, int ld);

C.8 CUDA kernel: fica tanhDer()

/**

* Name: fica_tanhDer

*

* Description:

* Kernel for the gpu_negent_tanh function. Performs the following on the given

* matrix, WS (in MATLAB syntax):

*

* WS = 1 - WS.ˆ2;

* WS(:,1) = sum(WS’)’;

*

96

* There is assumed to be one block per row of the given matrix. The function

* name is based on the idea that WS holds the tanh(.) of values, which means

* that (1 - WS.ˆ2) will be the tanh’(.) (derivative of tanh()) of those values.

*

* PRE:

* It is assumed that the given matrix is stored in column-major order, that

* the number of columns in the matrix is a multiple of 256, and that there is

* only one block of threads per row of the matrix.

*

* POST:

* The first column of the given matrix is overwritten with the result of the

* above calculation.

*

* Parameters:

* @param d_ws location of the matrix on which to operate

* @param ld the ’leading dimension’ of the given matrix

* @param n_cols the number of columns of the given matrix

*/

void __global__ fica_tanhDer(float *d_ws, unsigned int ld, unsigned int n_cols);

C.9 CUDA kernel: fica cubeRule()

/**

* Name: fica_cubeRule

*

* Description:

* Kernel for the gpu_negent_cube function. Performs the following on the given

* matrix, WS (in MATLAB syntax):

*

* d_wsum = sum((3.0 * WS .ˆ 2)’);

* WS = WS .ˆ 3;

*

* There is assumed to be one block per row of the given matrix, and 256 threads

* per block.

*

* PRE:

* It is assumed that the given matrix is stored in column-major format, that

* the number of columns is a multiple of 256, and that there is only one block

* of threads per row of the matrix.

*

* Parameters:

* @param d_wsum where to store the sum value mentioned above

97

* @param d_ws the location of the ’WS’ matrix mentioned above

* @param ld the ’leading dimension’ of the given matrix

* @param n_cols the number of columns in the given matrix

*/

void __global__ fica_cubeRule(float *d_wsum, float *d_ws,

unsigned int ld, unsigned int n_cols);

C.10 CUDA kernel: fica gaussRule()

/**

* Name: fica_gaussRule

*

* Description:

* Kernel for the gpu_negent_gauss function. Performs the following on the given

* matrix, WS (in MATLAB syntax):

*

* d_wsum = sum(((1.0 - WS.ˆ2) .* exp(-(WS.ˆ2) / 2))’);

* WS = WS .* exp(-(WS.ˆ2) / 2);

*

* There is assumed to be one block per row of the given matrix, and 256 threads

* per block.

*

* PRE:

* It is assumed that the given matrix is stored in column-major format, that

* the number of columns is a multiple of 256, and that there is only one block

* of threads per row of the matrix.

*

* Parameters:

* @param d_wsum where to store the sum value mentioned above

* @param d_ws the location of the ’WS’ matrix mentioned above

* @param ld the ’leading dimension’ of the given matrix

* @param n_cols the number of columns in the given matrix

*/

void __global__ fica_gaussRule(float *d_wsum, float *d_ws,

unsigned int ld, unsigned int n_cols);

C.11 CUDA kernel: fica wnext()

/**

* Name: fica_wnext

*

98

* Description:

* Kernel for the negent functions. Performs the following on the given W, WX,

* and SUMS matrices (in MATLAB syntax):

*

* for i = 1:size(W,1)

* W(i,:) = (WX(i,:) - sums(i) * W(i,:)) / n_cols;

* end

*

* There is assumed to be one thread per element of the W matrix. No assumption

* is made about the number of threads per block or the grid size.

*

* PRE:

* The WX and W matrices are assumed to be identical in size and to have the

* same leading dimension.

*

* POST:

* The W matrix is overwritten according to the above equation.

*

* Parameters:

* @param d_w location of the W matrix

* @param d_wx location of the WX matrix

* @param d_sums location of the SUMS array/matrix

* @param ld the ’leading dimension’ of the W matrix

* @param n_cols the number of columns in the observation matrix

*/

void __global__ fica_wnext(float *d_w, float *d_wx, float *d_sums,

unsigned int ld, unsigned int n_cols);

C.12 CUDA kernel: jade genCumulants()

/**

* Name: jade_genCumulants

*

* Description:

* Generates the cumulant matrices for a given set of observation vectors,

* stored in the matrix ’X’. Each column of X should be a random variable, each

* row of X should be an observation of those random variables.

*

* The resulting cumulant matrices are stored in the matrix ’Q’. If X is a

* T x n matrix, the Q matrix must have space for n*n*n*(n+1)/2 floating point

* elements. Each consecutive grouping of n*n elements in the Q matrix

* represents a single cumulant matrix.

99

*

* CUDA dimensions:

* if d_X is an T x n matrix:

* grid_size = dim3(n, n*n*(n+1)/2, 1)

* block_size = dim3(256)

*

* PRE:

* The given ’X’ matrix is assumed to be a set of whitened variables, i.e., each

* variable is expected to be zero-mean and have a variance of one.

*

* The number of rows occupied by X must be a multiple of 256. If fewer

* observations than that exist, these rows may be made zero without affecting

* calculations, and the n_obs parameter should reflect the number of valid

* observations (i.e. should not include the zero-padding rows).

*

* Parameters:

* @param d_Q where to store the cumulant matrices

* @param d_X where to find the observation variables

* @param q_ld the leading dimension of the cumulant matrices

* @param x_ld the leading dimension of the observation matrix

* @param n_obs the number of observations in the X matrix

* @param num_cm the number of cumulant matrices to generate

*/

void __global__ jade_genCumulants(NUMTYPE *d_Q, NUMTYPE const *d_X,

unsigned int q_ld, unsigned int x_ld,

unsigned int n_obs, unsigned int num_cm);

C.13 CUDA kernel: jade anglesStepOne()

/**

* Name: jade_anglesStepOne

*

* Description:

* Step one in the generation of a rotation matrix. To find the angle value

* to minimize elements (p,q) and (q,p), we must first find:

* (1) ((p,p) - (q,q)) * ((p,p) - (q,q))

* (2) ((p,p) - (q,q)) * ((p,q) + (q,p))

* (3) ((p,q) + (q,p)) * ((p,q) + (q,p))

* for every cumulant matrix. This kernel finds those three values for every

* cumulant matrix, and every pair (p,q), where valid pairs are determined

* based on the sequence number, ‘seq’.

*

100

* The cumulant matrices pointer should point to a set of cumulant matrices as

* generated by the jade_genCumulants() kernel.

*

* The calculated values will be stored in the ‘d_vals’ memory, where the first

* ((num_var/2) * num_cm)

* values, where

* num_cm = (num_var * (num_var + 1)) / 2

* will be the set of (1) values referenced above, the next set of values will

* be the (2) values, and the final set will be the (3) values.

*

* Values are grouped such that the first (num_var/2) values are for the first

* cumulant matrix, the next set of (num_var/2) values are for the second

* cumulant matrix, and so on.

*

* CUDA dimensions:

* Given a set of cumulant matrices based on observations of ‘n’ variables:

* grid_size = dim3((n*(n+1)) / 2)

* block_size = dim3(n / 2)

*

* Parameters:

* @param d_vals where to store the generated values

* @param d_Q where to find the cumulant matrices

* @param q_ld the leading dimension of the cumulant matrices

* @param seq the sequence number

* @param num_var how many variables are in the cumulant matrices

*/

void __global__ jade_anglesStepOne(NUMTYPE *d_vals, NUMTYPE const *d_Q,

unsigned int q_ld,

unsigned int seq, unsigned int num_var);

C.14 CUDA kernel: jade anglesStepTwo()

/**

* Name: jade_anglesStepTwo

*

* Description:

* Step two in the generation of a rotation matrix. To find the angle value

* to minimize elements (p,q) and (q,p), we must now find the sum of the

* values calculated in step one, and then perform a little more manipulation

* to get the numbers we’re looking for. That’s what this kernel does.

*

* When complete, this kernel will have finished the generation of a rotation

101

* matrix. The generated rotation matrix, ‘V’, should be used as in the

* following equation to minimize a set of off diagonal elements in the set

* of cumulant matrices:

*

* Q_next = V’ * Q * V;

*

* Note the transpose operator. This kernel creates the rotation matrix so that

* it is ready to be right-multipled with the cumulant matrices.

*

* The ‘d_vals’ parameter should be as returned by the jade_anglesStepOne()

* kernel.

*

* CUDA dimensions:

* Given a set of values based on observations of ‘n’ variables:

* grid_size = dim3(1)

* block_size = dim3(3 * (n / 2))

* @sh_mem = sizeof(NUMTYPE) * 3 * (n/2)

*

* Parameters:

* @param d_rot where to store the generated rotation matrix

* @param d_vals where to find the values used to generate the matrix

* @param rot_ld the leading dimension of the rotation matrix

* @param seq the sequence number

* @param num_var how many variables are in the original observations

*/

void __global__ jade_anglesStepTwo(NUMTYPE *d_rot, NUMTYPE *d_vals,

unsigned int rot_ld,

unsigned int seq, unsigned int num_var);

C.15 CUDA kernel: jade rightRot()

/**

* Name: jade_rightRot

*

* Description:

* Right multiples the set of cumulant matrices by the given rotation matrix.

*

* The rotation will be performed inplace--the given set of cumulant matrices

* will be modified.

*

* The sequence parameter should be the same value given to the jade_angles*

* functions that generated the rotation matrix.

102

*

* CUDA dimensions:

* grid_size = dim3((num_var - (num_var + 1) / 2 - 1) *

* (num_var * (num_var + 1)) / 2, 0, 0)

* block_size = dim3(num_var * 2, 0, 0)

* sh_mem = sizeof(NUMTYPE) * num_var * 2

*

* Parameters:

* @param d_Q where to find the cumulant matrices

* @param d_rot where to find the rotation matrix

* @param rot_ld the leading dimension of the rotation matrix

* @param q_ld the leading dimension of the cumulant matrix

* @param sequence the sequence number defining which elements to minimize

* @param num_var how many variables are in the cumulant matrices

*/

void __global__ jade_rightRot(NUMTYPE *d_Q, NUMTYPE *d_rot,

unsigned int rot_ld, unsigned int q_ld,

unsigned int sequence, unsigned int num_var);

C.16 CUDA kernel: jade getPQ()

/**

* Name: jade_getPQ

*

* Description:

* Given a sequence number, this function returns the (p,q) element indexs that

* should be minimized by a given block.

*

* This computation is based the following paper:

* Title = {On Jacobi and Jacobi-Like Algorithms for a Parallel Computer},

* Author = {Sameh, Ahmed H.},

* Copyright = {Copyright {\copyright} 1971 American Mathematical Society},

* Journal = {Mathematics of Computation}

*

* ‘p’ is guaranteed to be less than ‘q’.

*

* Parameters:

* @param p where to store the p (row) index

* @param q where to store the q (column) index

* @param sequence the sequence number used to determine p and q

* @param pair which (p,q) pair in the sequence to get

* @param num_var the number of rows in the matrix we’re working on

103

*/

void __device__ jade_getPQ(unsigned int *p, unsigned int *q,

unsigned int sequence, unsigned int pair,

unsigned int num_var);

104

