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Figure 4.23: Intersection Example 8

(a) Original Image (b) Edge Image (c) Road Model

Figure 4.24: Intersection Example 9

(a) Original Image (b) Edge Image (c) Road Model

Figure 4.25: Intersection Example 10
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Chapter 5

Result Analysis

Because computer vision is such a difficult task that often requires a level of com-
prehension beyond the capabilities of current computing, results of a computer
vision algorithm are most accurately judged by visual inspection from a human
observer. Since the algorithm has parameters that can be changed to alter the re-
sults of the algorithm, automated testing was required.

Automated testing was done by selecting a specific data set and creating a truth
file. The truth file contained information about each image frame in the data set.
For each image frame, there was an indication of whether a left or right intersection
was present in that image frame, the location of the left and right lane boundaries,
the location of the left and right outer road boundaries, and the best-fit road trans-
formation model. The truth file was constructed using human supervision to spec-
ify the presence of intersections and verify the road lane boundary information
for each image frame. The intersection detection application was outfitted with
the ability to log all information about its results for each image frame, recording
lane position, transformation model, intersection presence, and speed. A script
was written to analyze these results and compare them to the truth file, providing
information about how the results from each changed parameter varied from the
truth file and how they compared to each other. The algorithm was then run with
varied parameters to produce different results. While this method does not pro-

vide an ideal set of parameters for the system and simply shows the algorithm’s
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response to a particular data set, it does however provide information about how
the parameters effect different aspects of the system. Each significant algorithm

parameter will be explained separately to highlight its impact on the system.

5.1 Lane Transformation Model Interpolation

The lane model interpolation affects how the road lane transformation models are
considered. The transformation model selected determines the shape of the road
detected. With interpolation, only an initial set of road transformation models
are considered and then a second pass with more specific models are considered.
Without interpolation, all transformation models are considered for every single
image frame. There are two important effects this process has on the algorithm.

The first effect interpolation has on the algorithm is the resulting transforma-
tion model chosen and the location of the lanes. In an ideal situation, there would
be no difference between the lane model selected with interpolation and without
interpolation and the location of the lanes would be the same. The most impor-
tant factor is the difference in the lane location. If the transformation model varies
slightly but the lanes are still in the same location, the error will be less than if the
model is the same and the lane location differs.

Figure 5.1 shows a graph of the transformation model variation. The blue bar
represents the test with all 260 transformation models tested for every frame. The
red bar shows the test with 43 initial transformation models and 260 interpolation
transformation models. The green bar shows the test with with only the 43 initial
transformation models and no interpolation models. The graph charts the percent-
age of variation between the detected transformation model and the truth file with
all 260 transformation models. The important aspect of this result is that using the
43 initial models with the 260 models produces a different model than the truth

tile about 22% of the time. Upon analysis of the resulting images, it seems that in
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Figure 5.1: Interpolation Lane Model Variation

some cases, slight curvature models were substituted with slight skew distortion
models. A more useful analysis is to determine the difference between the detected

lane model boundaries.
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Figure 5.2: Interpolation Average Pixel Difference

Figure 5.2 shows the average pixel variation between image frames for the 43,
260 interpolated, and full 260 transformation models. The pixel difference is mea-
sured as the horizontal difference of both the left and right lane boundaries mea-

sured at the location clostest to the vehicle. From the results, it appears that using
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only the 43 initial transforms produces an average of 8.5 pixels of difference per
frame between the road models. This equates to roughly .25 meters in variation
between the closest point of the detected road lane boundaries and the vehicle.
Using the 260 models with interpolation produces only an average of .88 pixels of
difference. This is roughly 0.05 meters in variation, which is far more acceptable.
While this is still a larger error margin than checking all 260 transformation models

for every frame, but when compared to the speed tradeoff, the error is acceptable.
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Figure 5.3: Interpolation Speed

Figure 5.3 shows the speed comparison in Hz between the three different test
setups. The fastest version of the algorithm used only the 43 initial road transfor-
mation models. The second fastest was the 260 models with interpolation. The
slowest was the entire set of 260 models. This was to be expected, but the promis-
ing conclusion is that using all 260 models with interpolation is only 6% slower
then using only the 43 initial models. Using all 260 models was significantly slower
than the other results, proving that the model interpolation was an important ad-

dition.
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5.2 Mahalanobis Distance

The Mahalanobis distance parameter determines how close a color pixel must be
to the learned color models to consider it as a road pixel. Increasing the distance
allows more pixels to be considered road, and decreasing the distance allows fewer
pixels to be considered as road. The benefit of a greater distance is that more in-
tersecting roads may be detected. The advantage of a smaller distance is that less

noise and fewer non-road pixels will be considered as road.
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Figure 5.4: Mahalanobis Distance - Misses

Figure 5.4 shows the number of missed intersection frames for the left and right
sides of the road plotted against increasing Mahalanobis distances. The results
show very clearly that a distance of 4 has the fewest number of missed intersection
frames.

Figure 5.5 shows the number of true positives for the left and right sides of the
road against increasing Mahalanobis distances. Similar to Figure 5.4, a distance of

4 produces the best results.
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Figure 5.5: Mahalanobis Distance - True Positives

5.3 Clustering

There are two important parameters for the color extraction and analysis part of the
algorithm. The first parameter is the number of learned color models the system
maintains. The second is the number of training models it learns from clustering
in each new frame. The more training models that are allowed, the longer the
clustering has to run, therefore reducing the speed of the overall system. Adding
more training models create more accurate models of the system and fewer models
run at a faster speed.

Figure 5.6 shows that the number of learned models do not effect the speed of

the system nearly as much as the number of training models.
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Figure 5.6: Clustering Parameters - Speed
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Figure 5.7: Clustering Parameters - Intersection Misses

Figure 5.7 shows that the fewest missed intersection frames occurred with ei-
ther two or three training models. The number of learned models appear to have

little effect on the number of missed intersection frames.
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5.4 Failure Points

As with many computer vision algorithms, there are certain failure points to this
algorithm. The inverse perspective mapping is a useful tool that when the car
is aligned correctly on the road, but when going over a bump or hill that causes
the defined horizon line to move above the road area, the mapping equation stops
working correctly and the road becomes distorted. Some of the distortions encoun-
tered with this method were resolved using the additional transformation models,
but there were still situations where it failed. The wider lens did not work as well
as expected. Intuitively it would seem that a lens with a wider viewing angle
would allow more intersection area to be captured in the image. Unfortunately,
due to the low height of the test vehicle and the mounting position of the camera,
the image contained a large amount of the vehicles hood and a low horizon. This
allowed for fewer road pixels in the image. The wider lens may be beneficial with

a different camera setup that was higher off the ground.
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Chapter 6

Conclusion and Future Work

The road and intersection detection method proposed here performed reasonably.
Since there are a very limited number of published intersection detection methods
available, this method proved to be an interesting venture into using edges and
color for identifying intersections. The method proved to be simple enough to run
at a reasonable speed between 3Hz and 6Hz. It was able to find intersections on
both sides of the road, but clearly favored the right side due to the fact that the
camera is better positioned to capture the right side of the road. The use of edges
for lane boundary detection proved to be very tolerant of broken lines, puddles,
and other common urban road debris. The road transformation model interpola-
tion improved upon the accuracy of the road detection while keeping the speed
within the desired ranges. The interpolation also introduced only a small error
into the system, which is an important factor.

There are many options for future work with this algorithm and in the area of
road intersection detection. Since the road lane boundary extraction, color analy-
sis, and intersection detection are all very separable, each area could be developed
turther independent of the others. One possibility is to use a more advanced lane
boundary detection method. The inverse perspective mapping technique has a va-
riety of complications that make it fail when the camera is not correctly aligned
in the road. A road lane boundary detection algorithm that searches within the

original image frame may produce better results. A road lane boundary detector
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that doesn’t rely on templates or road models may be more accurate. If the road
lane detection was more precise and stable, the color extraction would be more
accurate as well. The only problem with a better lane boundary detection method
is that it may slow the algorithm down to an unreasonable rate.

Another possibility for future work is to implement some form of tracking on
both the lane boundaries and detected intersections. Many computer vision algo-
rithms implement Kalman filters to track any detected object. Tracking the road
lane boundaries, outer lane boundaries, and intersections could create a more sta-
ble system.

Overall, the intersection detection algorithm was capable of detecting many
different intersections on both sides of the road. The system met its goal of accept-

able speed and would be beneficial to any map-based localization system.
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