5-1-2010

A Novel variation-tolerant 9T SRAM design for nanoscale CMOS

Sreeharsha Tavva

Follow this and additional works at: http://scholarworks.rit.edu/theses

Recommended Citation

This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact ritscholarworks@rit.edu.
A Novel Variation-Tolerant 9T SRAM Design for Nanoscale CMOS

by

Sreeharsha Tavva

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Engineering

Supervised by

Dr. Dhireesha Kudithipudi
Department of Computer Engineering
Kate Gleason College of Engineering
Rochester Institute of Technology
Rochester, New York
May 2010

Approved By:

Dr. Dhireesha Kudithipudi
Assistant Professor, RIT Department of Computer Engineering
Primary Adviser

Dr. Kenneth W. Hsu
Professor, Department of Computer Engineering

Dr. James Moon
Associate Professor, Department of Electrical and Microelectronic Engineering
To my parents Narayana Rao Tavva and Rama Devi Narayanam for their endless love and encouragement.
Acknowledgments

This thesis would not have been possible unless for the constant guidance and encouragement of my advisor, Dr. Dhireesha Kudithipudi. I owe my deepest gratitude for her relentless support both professionally and personally during my research at RIT. I am grateful to my committee members Dr. Ken Hsu and Dr. James Moon for their feedback and suggestions. I would like to thank Madan Mohan Nutakki at IBM Microelectronics whose help was invaluable for conducting Monte Carlo analysis using IBM models. I am grateful to Dr. Chris Wahle for his guidance in my research. I would also like to thank all my colleagues in the Hardware Design Lab for the several thought-provoking and fun interactions during the long hours in the lab. I would like to acknowledge the help of Richard Tolleson, Charles Gruener and Joe Walton for their help in setting up the softwares used in this research.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>iii</td>
</tr>
<tr>
<td>Abstract</td>
<td>vii</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Motivation</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Thesis Outline</td>
<td>1</td>
</tr>
<tr>
<td>2 Background</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Variability</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Process Variations</td>
<td>5</td>
</tr>
<tr>
<td>2.2.1 Sources of Process Variations</td>
<td>9</td>
</tr>
<tr>
<td>2.2.2 Random Dopant Fluctuations</td>
<td>11</td>
</tr>
<tr>
<td>2.3 Analysis of 6T SRAM Cell</td>
<td>12</td>
</tr>
<tr>
<td>2.3.1 Cell Design</td>
<td>12</td>
</tr>
<tr>
<td>2.3.2 Read Operation</td>
<td>13</td>
</tr>
<tr>
<td>2.3.3 Write Operation</td>
<td>16</td>
</tr>
<tr>
<td>2.4 Impact of Process Variations</td>
<td>18</td>
</tr>
<tr>
<td>2.4.1 Static Noise Margin</td>
<td>21</td>
</tr>
<tr>
<td>2.4.2 Bitline Leakage</td>
<td>24</td>
</tr>
<tr>
<td>2.5 Supporting Work</td>
<td>26</td>
</tr>
<tr>
<td>2.5.1 8T SRAM Cell</td>
<td>26</td>
</tr>
<tr>
<td>2.5.2</td>
<td>10T SRAM Cell with Stacked Read Buffer</td>
</tr>
<tr>
<td>2.5.3</td>
<td>10T SRAM Cell with Differential Read-Sensing</td>
</tr>
<tr>
<td>2.5.4</td>
<td>10T Schmitt Trigger Based SRAM Cell</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Proposed 9T SRAM Cell</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Cell Design</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>Read Operation</td>
<td>32</td>
</tr>
<tr>
<td>3.3</td>
<td>Write Operation</td>
<td>34</td>
</tr>
<tr>
<td>3.4</td>
<td>Static Noise Margin</td>
<td>36</td>
</tr>
<tr>
<td>3.5</td>
<td>Bitline Leakage</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Results</th>
<th>38</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Simulation Setup</td>
<td>38</td>
</tr>
<tr>
<td>4.2</td>
<td>6T SRAM</td>
<td>39</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Read Static Noise Margin</td>
<td>39</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Write Noise Margin</td>
<td>43</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Impact of Process Variations</td>
<td>45</td>
</tr>
<tr>
<td>4.3</td>
<td>Supporting Work</td>
<td>47</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Static Noise Margin</td>
<td>48</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Write Noise Margin</td>
<td>49</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Impact of Process Variations</td>
<td>50</td>
</tr>
<tr>
<td>4.4</td>
<td>Proposed 9T SRAM</td>
<td>57</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Static Noise Margin</td>
<td>57</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Bitline Leakage</td>
<td>59</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Impact of Process Variations</td>
<td>60</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Area Overhead</td>
<td>61</td>
</tr>
</tbody>
</table>

| 5 | Conclusions | 63 |

| 6 | Future Work | 65 |
Abstract

As the feature sizes decrease, understanding manufacturing variations becomes essential to effectively design robust circuits. Manufacturing variations occur when process parameters deviate from their ideal or expected values, resulting in variations in device characteristics. Variations in the device characteristics cause the circuit to deviate from its expected behavior resulting in circuit instability, performance degradation, and yield loss. Both from an economic and performance standpoint, the yield and performance of Static Random Access Memories (SRAMs) are of great importance to the modern System-on-Chip designs. SRAM bitcells typically employ well-matched, minimum-sized transistors which make them highly sensitive to process variations. To overcome these challenges, researchers have proposed different topologies for SRAMs with 8T and 10T SRAM designs. These designs improve the cell stability but suffer from bitline-leakage noise, placing constraints on the number of cells shared by each bitline. These designs also have substantial area overhead when compared to the traditional 6T design.

In this work, the published SRAM designs are characterized using commercial CMOS 65 nm models and are compared based on critical SRAM parameters like read stability, write stability, bitline leakage and the impact of process variations. Furthermore, a single-ended 9T SRAM design is proposed that enhances data stability and simultaneously addresses the bitline leakage problem. The proposed design also satisfies the yield criterion to achieve 90% yield for a 1Mb SRAM array in the presence of process variations.
List of Tables

4.1 Cell Ratio versus Read SNM Comparison .. 41
4.2 Impact of random intra-die variations on the 6T SRAM cells 47
4.3 Impact of random intra-die V_{th} variations on the read SNM of SRAM cells 53
4.4 Impact of random intra-die L_{eff} variations on the read SNM of SRAM cells 55
4.5 Impact of process variations on the proposed 9T SRAM cells 62
4.6 Area overhead comparison of different SRAM cells [24] [25] [26] [27] [34] 62
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Environmental variability [3]</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Temperature variability</td>
<td>5</td>
</tr>
<tr>
<td>2.3</td>
<td>Types of variability [5]</td>
<td>7</td>
</tr>
<tr>
<td>2.4</td>
<td>Front end variability [3]</td>
<td>8</td>
</tr>
<tr>
<td>2.5</td>
<td>Back end variability [3]</td>
<td>9</td>
</tr>
<tr>
<td>2.6</td>
<td>Line edge roughness [8]</td>
<td>10</td>
</tr>
<tr>
<td>2.7</td>
<td>Random dopant fluctuations [8]</td>
<td>12</td>
</tr>
<tr>
<td>2.8</td>
<td>Standard 6T SRAM cell in 65 nm CMOS technology</td>
<td>13</td>
</tr>
<tr>
<td>2.9</td>
<td>6T CMOS SRAM Cell in read state</td>
<td>14</td>
</tr>
<tr>
<td>2.10</td>
<td>Simplified model of 6T CMOS SRAM cell during read state [16]</td>
<td>15</td>
</tr>
<tr>
<td>2.11</td>
<td>6T CMOS SRAM cell in write state</td>
<td>16</td>
</tr>
<tr>
<td>2.12</td>
<td>Simplified model of 6T CMOS SRAM cell during write state [16]</td>
<td>17</td>
</tr>
<tr>
<td>2.13</td>
<td>SoC transistor count memory vs logic [17]</td>
<td>19</td>
</tr>
<tr>
<td>2.14</td>
<td>Montecito die photograph [18]</td>
<td>19</td>
</tr>
<tr>
<td>2.15</td>
<td>Memory vs logic transistor density [19]</td>
<td>20</td>
</tr>
<tr>
<td>2.16</td>
<td>V_{th} variability in memory and logic [17]</td>
<td>21</td>
</tr>
<tr>
<td>2.17</td>
<td>Simulation setup to calculate 6T SRAM SNM</td>
<td>22</td>
</tr>
<tr>
<td>2.18</td>
<td>VTCs of the SRAM cell in read and hold state</td>
<td>22</td>
</tr>
<tr>
<td>2.19</td>
<td>Presence of V_{th} variability in sram cell [20]</td>
<td>23</td>
</tr>
<tr>
<td>2.20</td>
<td>Worst-case bitline leakage in the SRAM array</td>
<td>25</td>
</tr>
<tr>
<td>2.21</td>
<td>8T SRAM cell [24]</td>
<td>26</td>
</tr>
<tr>
<td>2.22</td>
<td>10T SRAM cell I [25]</td>
<td>28</td>
</tr>
<tr>
<td>2.23</td>
<td>10T SRAM cell II [26]</td>
<td>29</td>
</tr>
</tbody>
</table>
2.24 10T SRAM cell III [27] 30

3.1 Proposed 9T SRAM Cell in a 65 nm CMOS technology 32
3.2 Proposed 9T SRAM cell during the read operation when Qb= ‘1’ 33
3.3 Proposed 9T SRAM cell during the read operation when Qb= ‘0’ 33
3.4 Proposed 9T SRAM cell during the write operation when Q= ‘1’ 35
3.5 Proposed 9T SRAM cell during the write operation when Q= ‘0’ 35
3.6 Bit-line Leakage in 9T STRAM 37

4.1 Simulation setup for 6T SRAM Cell [15] 39
4.2 VTCs of SRAM cell with and without noise 40
4.3 Impact of supply voltage scaling on read SNM 42
4.4 Read SNM vs. temperature and process corners 43
4.5 VTCs of 6T SRAM during a successful write operation 44
4.6 Pull-up ratio versus read SNM 44
4.7 Impact of process variations on SRAM 45
4.8 MC simulations on 6T SRAM with V_{th} variations 46
4.9 MC simulations on 6T SRAM with L_{eff} variations 47
4.10 Comparison of read SNM in different SRAM cells 48
4.11 Comparison of write SNM in different SRAM cells 50
4.12 MC simulations on 8T SRAM with V_{th} variations 51
4.13 MC simulations on 8T SRAM with L_{eff} variations 52
4.14 MC simulations on 10T I SRAM with L_{eff} variations 53
4.15 MC simulations on 10T I SRAM with V_{th} variations 54
4.16 MC simulations on 10T III SRAM with L_{eff} variations 56
4.17 MC simulations on 10T III SRAM with V_{th} variations 56
4.18 Read and Hold SNMs of 9T SRAM 58
4.19 Read SNM Comparison 58
4.20 Bitline Leakage Comparison 60
4.21 MC simulations on 9T SRAM with process variations 61
1. Introduction

1.1 Motivation

The advancement of semiconductor process technology has been the driving force behind the rapid growth of very large scale integrated (VLSI) systems. In order to meet the increasing demand for higher performance and lower power consumption in modern System-on-Chips (SoCs), it is often required to have a large amount of on-chip or embedded memory. Among the embedded memories, the traditional six-transistor (6T) static random access memory (SRAM) continues to play a pivotal role in all VLSI systems due to its superior speed and compatibility with the process technology. But as the technology scaling continues, SRAM design is facing severe challenges in maintaining sufficient cell stability [1]. This is primarily due to the increasing variability in process parameters due to the technology scaling and the fact that embedded memory is highly susceptible to process variations [2]. Many innovative SRAM topologies and techniques have been explored in the recent years to address these challenges. However, there is minimal published work which effectively compares the several published SRAM designs from a cell stability perspective. This research investigates the previously-published SRAM cell designs based on their robustness to process variations and proposes a novel SRAM cell design.

1.2 Thesis Outline

The thesis document is organized as follows. Chapter 2 covers several topics which provide the required background information related to this thesis. A brief introduction to the increasing variability in the semiconductor manufacturing process, its classification and the different sources are discussed in the section 2.1 and 2.2. The 6T SRAM cell is
presented and its read and write operations are analyzed in the section 2.3. The impact of process variations on 6T SRAM cell and major obstacles that challenge the nanoscale CMOS SRAM design are analyzed in the section 2.4. The previously-published SRAM designs that are analyzed in this research are presented in the section 2.5. The proposed 9T SRAM cell design, its read and write operations are presented in the Chapter 3. The results are presented in three different sections (6T SRAM, Supporting Work and Proposed 9T SRAM) in the Chapter 4. Finally, the conclusions and suggestions for future work are offered in the Chapters 5 and 6.
2. Background

2.1 Variability

As integrated circuit process complexity increases every technology generation, the semiconductor industry is confronted with new challenges. One of the important design challenges in the nanoscale CMOS circuit design is the increasing variability due to process, environmental and temporal variations [3]. These variations result in the circuit to deviate from its expected behavior eventually resulting in yield loss. Several techniques are being researched to address these variations. Some techniques are at the design level which are transparent to the process and other techniques are at the process level which are transparent to the circuit designers. This thesis deals with techniques at the design level which are transparent to the process engineers. Before the techniques are discussed, it is important to understand various types of variations, their sources and those sources that are most critical to memory design and their impact.

Variation can be defined as the deviation from intended or designed values for a structure or circuit parameter of concern. The performance, power consumption and the yield of microprocessors or other integrated circuits are impacted by three types of variation [4].

- **Process Variations**: Variations that occur due to the perfect lack of control over the fabrication process.

- **Environmental Variations**: Variations that occur during the operation of a circuit due changes in the circuit environment. These include variations in temperature, voltage (I*R drop) and their impact on performance and on reliability.
Temporal Variations: Designs manufactured correctly will wear out and become unreliable over time because of mechanisms like Negative Bias Temperature Instability (NBTI), hot carrier effects and gate-oxide breakdown.

Process variations are discussed in detail in section 2.2. The environmental variations are discussed briefly in this section. Environmental variations include variations in power supply and temperature of the chip or across the chip [3] [4]. The different sources of environmental variations and their impact on circuit parameters are illustrated in the Figure 2.1.

Figure 2.1: Environmental variability [3]

The temperature variation greatly impacts the power consumption and performance of a circuit. Figure 2.2 shows the temperature distribution in the substrate of a typical chip [4]. Notice the rather large variance between the relatively cold cache and the few spots of high...
temperatures. As far as the dynamic power consumption is concerned, higher temperature translates to slower devices, but the total power consumed at a particular clock frequency remains the same ($C \times V^2 \times f$). However, the leakage power grows exponentially, making the I*R drop increase. Furthermore, the temperature gradient causes a two-fold effect in the circuit performance and power consumption. One is the increase in leakage power dissipation with temperature and the other is a possibility of thermal runaway and device damage. The temperature variation across communicating blocks on the same die can cause performance mismatches, which may lead to functional failures [3].

Figure 2.2: A temperature distribution map of a typical chip with a core and cache [4]

2.2 Process Variations

One of the notable features of sub-100 nm CMOS technology is the increasing magnitude of variability of the key parameters affecting the performance and stability of integrated
circuits [1]. There are as many sources of variability in the IC design and manufacturing process as there are steps carried out in the design, manufacturing, and usage of a finished IC product. From a circuit designer’s perspective, process variations can be broadly classified into lot-to-lot, wafer-to-wafer, inter-die and intra-die variations, as illustrated in the Figure 2.3 [3]. Wafer level variability can be due to fab-fab or lot-lot or wafer-wafer within a lot variability. Fab-fab variability is due to several factors. Different fabrication facilities use different versions (new vs. old) of the same piece of equipment. Furthermore, maintenance and process control procedures might vary from fab to fab. Any piece of equipment might be slowing shifting out of calibration at any particular fab. The nature of this variance is totally random. Lot-lot variance is another totally random variance caused by slight change in the state and condition of the equipment from lot to lot and in human operating procedures (to the extent that there is any human interaction).

Wafer-wafer variance within a lot is mainly systematic. It is caused by the location of a wafer within a lot and the gradient of a gas flow in the lot as an example. Wafer-wafer variation is systematic within a lot and can be modeled properly. Inter-die variation causes a change in the value of a parameter between different dies on the same wafer or different wafers or in different lots. For example, the V_{th} of all the transistors on one die could be different from the transistors on a different die on the same wafer or a different wafer. Inter-die variation is typically accounted for in circuit design as a shift in the mean of some parameter value (e.g., V_{th} or wire-width) equally across all devices or structures on any one chip. In typical circuit design, die-to-die variations are the simplest to analyze [3] [4].

Intra-die variation is the deviation occurring spatially within one die. Such intra-die variation may have a variety of sources depending on the physics of the manufacturing steps that determine the parameter of interest. In contrast to inter-die variation (affecting all structures on any one chip equally), intra-die variation (or variance across chip) contributes to the loss of matched behaviour between structures on the same chip. In other words, intra-die variation introduces mismatch between the transistors in a circuit present on a chip [3].
Such intra-die variation can arise from a number of manufacturing sources.

The sources of variability can also be classified as those that occur during the front-end process and those that occur during the back-end process. The front-end process of the integrated circuit manufacturing involves the fabrication of the transistors. These sources are usually random dopant induced fluctuations, line edge roughness, lattice stress, thin film thickness, as shown in the Figure 2.4 [3]. These sources affect the current drive, leakage current, threshold voltage, mobility, velocity saturation, etc.
The back end process of the integrated circuit design involves the fabrication of the interconnect that connect the devices. These sources typically occur in copper CMP, copper electroplating, multilevel copper interconnect variation, interconnect lithography, etch variation, dielectric variation, barrier metal deposition, copper resistivity, copper line edge roughness, as shown in the Figure 2.5. These variations influence several interconnect parameters like interconnect resistance, interconnect capacitance, thickness of patterned and polished lines, etc[3].
2.2.1 Sources of Process Variations

Process variations can also be classified as systematic and random variations [3] [4]. The intra-die variations can be classified into systematic and random variations. The physical or environmental components of variability that can be modeled as a function of a design characteristic are termed systematic variations. These variations can be accounted for during the design using such models. Systematic variability can thus be compensated for during the design, and typically causes only small increase in design cost. On the other hand, random variations do not have a quantitative model or dependence on any design characteristic. These variations are difficult to take into consideration during the design stage and are accounted for by creating large design margins and performing worst-case analysis by using statistical analysis. Random Dopant Fluctuations (RDFs)-induced V_{th}
variation, line edge roughness (LER), line edge erosion, gate-oxide thickness variation are some of the examples which are increasingly prevalent in sub-65 nm designs, leading to increased design cost.

Every metal line has two edges and the two edges can experience different LERs. If the LER was uniform on both edges of a line in amplitude and frequency, the critical dimension of the line will be intact although such a behavior will impact cross talk coupling to neighboring lines and will impact performance [9]. The potential distribution at threshold in a well scaled 50X200nm MOSFET with line edge roughness is illustrated in the Figure 2.6 [8]. Gate-oxide thickness variation is another important source of random variations which greatly affects the V_{th}. Gate-oxide deposition is a well controlled procedure, but with the oxide thickness becoming a stack of about 3 atomic layers, precise oxide deposition is very difficult process [3]. This results in a random variance of the oxide thickness of about 2Å to 3Å and a corresponding random variance in the V_{th}.
Variability in gate-length (L_{gate}) of the MOS transistor is also important for multiple aspects of integrated circuit performance and stability [4] [7]. L_{gate} and its related parameter L_{eff} strongly impact the current drive and hence the speed of the circuit [9]. Transistor leakage current is an exponential function of L_{gate}. Due to this exponential dependence, the variation in L_{gate} has a deep impact on leakage [3] [4].

2.2.2 Random Dopant Fluctuations

RDF-induced V_{th} variation is a major contributor to device mismatch in nanoscale embedded memories [10] [11]. The placement of dopant atoms into the silicon crystal is achieved via ion implantation and subsequent activation through annealing. There is a certain degree of uncertainty inherent in the process of ion implantation and annealing, due to which the resultant number and location of dopant atoms which end up in the channel
of each transistor is random. As the V_{th} of the transistor is determined by the number and placement of dopant atoms, it exhibits significant variation [12] [13]. This uncertainty can be attributed to the fact that the process of doping is a function of the implant tilt, dose, and energy. Figure 2.7 shows how the MOSFETs are drifting to become atomistic devices. It can be observed that there are no more smooth boundaries and interfaces as we further scale down the transistors. RDF is represented by Stolk’s formula [6] [14] as given below:

$$
\sigma_V = \frac{\sqrt{4q^3\epsilon_{Si}\phi_B}}{2} \left(\frac{T_{ox}}{\epsilon_{ox}} \right) \sqrt{N_\sqrt{W_{eff}L_{eff}}} (2.1)
$$

where σ_V is the standard deviation in the threshold voltage, T_{ox} is the gate oxide thickness, N is the channel dopant concentration, ϕ_B is the surface potential, $\phi_B = 2k_B T \ln \left(\frac{N}{n_i} \right)$ (with k_B Boltzmann’s constant, T absolute temperature, n_i the intrinsic carrier concentration, q the elementary charge), ϵ_{Si} and ϵ_{ox} are the permittivity of the silicon and oxide, respectively, W_{eff} and L_{eff} are the effective channel width and length. From the design perspective, the important factor in this model is the inverse-dependence of the standard deviation of V_{th} on the square root of effective transistor width and length; thus, the transistor area. As the semiconductor technology is scaled down every generation, the transistor area shrinks to roughly half its size. It is clear from Equation 2.1 that the standard deviation of V_{th} of large-width devices is much smaller than that of minimal-width devices.
2.3 Analysis of 6T SRAM Cell

2.3.1 Cell Design

The conventional 6T SRAM bitcell consists of two cross-coupled inverters and two access transistors as shown in Figure 2.8. Four transistors (L1, D1, D2 and L2) comprise cross-coupled CMOS inverters which form a latch and store either a ‘1’ or a ‘0’. Two NMOS transistors (A1 and A2) function as the access transistors that isolate the cell from the bitlines during the hold state and provide access to the cell during the read and write operations.

Since SRAM arrays occupy large area, cell minimization is an important design consideration. A smaller cell allows more bits per unit area thus decreasing the cost per bit.
Smaller cells result in smaller array area which reduces the capacitance associated with bitlines and wordlines and thus improving the access speed performance. However, reducing the cell area by using minimum sized devices can compromise the cell stability. Hence a careful tradeoff between cell area, robustness and speed has to be made during the design of SRAM cells.

![Standard 6T SRAM cell in 65 nm CMOS technology](image)

Figure 2.8: Standard 6T SRAM cell in 65 nm CMOS technology

2.3.2 Read Operation

The 6T SRAM cell in the read operation is illustrated in Figure 2.9. Prior to the start of the read operation, both the bitlines BL and BLB are precharged to V_{dd}. After the bitlines are precharged, the read operation is initiated by asserting the wordline to V_{dd}; thereby connecting the two bitlines to the internal nodes of the cell. Based on the voltage stored at the two nodes of the bitcell, the bitline adjacent to the node containing ‘0’ is discharged and the other bitline is held at ‘1’. The sense amplifier reads out the correct value stored in
the bitcell. For the case shown in the Figure 2.9, upon read access, BL remains precharged at \(V_{dd} \), but BLB gets discharged via transistors A2 and D2.

![Figure 2.9: 6T CMOS SRAM Cell in read state](image)

A successful read operation on a 6T SRAM cell is dependent on well-matched transistors. During the read operation as shown in Figure 2.9, the bitline BLB which is initially precharged to Vdd discharges via A2 and D2. Now during this discharge there is a slight increase in the node voltage ‘nq’ to \(\Delta V \). This increase in voltage at node nq should not exceed the switching threshold of the inverter pair (L1-D1) to ensure a non-destructive read operation. This increase in voltage at node ‘nq’ to \(\Delta V \) decreases the stability of the SRAM during the read condition. The simplified model of the 6T SRAM cell during the read operation is illustrated in Figure 2.10. It can be observed that transistor A2 operates in saturation region and D2 in the linear region. The boundary conditions on the transistor sizes of the SRAM cell for a successful read operation can be derived by solving the current equation at the maximum allowed value of the voltage \(\Delta V \) as shown by the equations 2.2 2.3.
Figure 2.10: Simplified model of 6T CMOS SRAM cell during read state [16]

\[
k_{n,A2} \left[(V_{dd} - \Delta V - V_{Tn}) - \frac{V_{DSATn}^2}{2} \right] = k_{n,D2} \left[(V_{dd} - V_{Tn}) \Delta V - \frac{\Delta V^2}{2} \right]
\]

(2.2)

which simplifies to

\[
\Delta V = \frac{V_{DSATn} + CR(V_{dd} - V_{Tn}) - \sqrt{V_{DSATn}^2 (1 + CR) + CR^2 (V_{dd} - V_{Tn})^2}}{CR}
\]

(2.3)

where \(\Delta V\) is the voltage ripple at the node containing ‘0’, \(V_{dd}\) is the supply voltage, \(V_{Tn}\) is the threshold voltage of the NMOS transistor, \(V_{DSATn} = V_{DS}\) when the NMOS transistor is in the saturation region of operation, \(k_n\) is the gain factor, \(k_n = \frac{W}{L} \mu_n C_{ox}\).

\[
CellRatio = \frac{[W_{D1}/L_{D1}]}{[W_{A1}/L_{A1}]} = \frac{[W_{D2}/L_{D2}]}{[W_{A2}/L_{A2}]}
\]

(2.4)

As shown in the Equation 2.4, the cell ratio is defined as the ratio of the dimensions of the driver transistor to that of the access transistor. For the present nanometer regime, the typical value of the cell ratio has to be greater than \(~2\) in order to guarantee a successful read operation [16] [23].
2.3.3 Write Operation

The 6T SRAM cell during the write operation is illustrated in Figure 2.11. Prior to the start of the write operation, one of the bitlines is precharged to V_{DD} and the other bitline is driven to ground. The bitline adjacent to the node containing ‘0’ is precharged to ‘1’ and the bitline adjacent to the node containing ‘1’ is precharged to ‘0’. After the bitlines are precharged, the write operation is initiated by activating the wordline; thereby connecting the two bitlines to the internal nodes of the cell. As shown in Figure 2.11 the node ‘q’ containing ‘1’ discharges through the adjacent bitline BL. When the voltage at node ‘q’ falls below the switching-threshold of the inverter pair (L2-D2), the state of the inverter L2-D2 toggles; in this case from ‘0’ to ‘1’ and the new values are written to the cell.

![Figure 2.11: 6T CMOS SRAM cell in write state](image)

The simplified model of the 6T SRAM cell during the write operation is illustrated in Figure 2.12. The ease with which the node voltage at ‘q’ decreases to a value lesser than the
switching threshold of the adjacent inverter (L2-D2), translates to the writability of the cell. The conditions for a successful write operation can be derived using the current equations at the node q as shown in the Equations 2.5 and 2.6.

\[
k_{n,A1} \left[(V_{dd} - V_{Tn}) \frac{V_q - V_{q}^2}{2} \right] = k_{n,L1} \left[(V_{dd} - |V_{Tp}|) V_{DSATp} - \frac{V_{DSATp}^2}{2} \right]
\]

which simplifies to

\[
V_q = V_{dd} - V_{Tn} - \sqrt{(V_{dd} - V_{Tn})^2 - 2\frac{\mu_p}{\mu_n} P R \left[(V_{dd} - |V_{Tp}|) V_{DSATp} - \frac{V_{DSATp}^2}{2} \right]} \quad (2.6)
\]

where \(V_q \) is the voltage at the node ‘q’ during the write operation, \(V_{dd} \) is the supply voltage, \(V_{Tn} \) is the threshold voltage of the NMOS transistor, \(V_{Tp} \) is the threshold voltage of the PMOS transistor, \(V_{DSATp} = V_{DS} \) when the PMOS transistor is in the saturation region of operation, \(k_n \) is the gain factor, \(k_n = \frac{W}{L} \mu_n C_{ox} \).
\[\text{Pull-Up Ratio} = \frac{W_{L1}/L_{L1}}{W_{A1}/L_{A1}} = \frac{W_{L2}/L_{L2}}{W_{A2}/L_{A2}} \]

(2.7)

The write ability depends on the pull-up ratio (PR) of the SRAM cell (Equation 2.7). The Pull-Up Ratio is defined as the size ratio between the PMOS pull-up transistors (L1, L2) and the NMOS access transistors (A1, A2). For the present nanometer regime, the typical value of the pull-up ratio has to be lesser than or equal to \(\sim 1 \) inorder to guarantee a successful write operation [16] [23].

2.4 Impact of Process Variations

Due to the small geometry of the cell transistors, the memory arrays become more vulnerable to the random dopant fluctuation-induced threshold voltage mismatch. Understanding the impact of process variations, modeling them and incorporating their effect on circuit performance and reliability during the early stages of design is very important to ensure proper yield of modern high-density embedded memories. The amount of on-chip memory is increasing according to the latest update from the International Technology Roadmap for Semiconductors, as illustrated in Figure 2.13 [17]. Figure 2.14 shows a die photograph of an Intel Montecito processor which was released in 2006. According to the data released from Intel, nearly 96\% of the transistors are used in caches and about 80\% of the die area is dedicated for caches in the Montecito processor [18].
Figure 2.13: SoC transistor count memory vs logic [17]

Figure 2.14: Montecito die photograph [18]
Apart from the fact that the SRAM arrays occupy large portion of current SoCs, they also have very high transistor-densities when compared to those areas of the chip which contains the logic. A graph showing the growing trend of the transistor density in memory and logic is illustrated in Figure 2.15 [19]. This is one of the important reasons for on-chip SRAM arrays being more susceptible to process-induced variations when compared to the logic. A recent update from the International Technology Roadmap for Semiconductors (ITRS) regarding the growing V_{th} variability trend in memory compared to the logic is illustrated in Figure 2.16 [17].

![Figure 2.15: Memory vs logic transistor density [19]](image-url)
2.4.1 Static Noise Margin

Static Noise Margin (SNM) is an important criterion to assess the stability of SRAMs. SNM is the maximum noise that can be tolerated by an SRAM bitcell before its contents are lost/destroyed [21]. Figure 2.17 shows the location of noise sources in the 6T bitcell schematic. These noise sources are a representation of the noise which could be induced in the cell due to the presence of intra-die or inter-die process, environmental or temporal variations. If the values of the dc noise sources V_n exceed the static noise margin of the SRAM cell, the cell loses its data. SNM is the maximum value of the noise sources V_n beyond which the bit stored in the cell is lost. Therefore, SNM can also be determined by drawing and mirroring the inverter characteristics and finding the largest square between them [21]. Figure 2.18 illustrates the butterfly curves that are obtained by plotting the voltage transfer characteristics of the two inverters of the SRAM cell during the read and write operation of the traditional 6T SRAM cell. It is evident from the figure that the SNM of the cell during the read state is less than the hold state. This shows that the 6T SRAM cell is more susceptible to process variations during the read operation when compared to
the hold state.

Figure 2.17: Simulation setup to calculate 6T SRAM SNM

Figure 2.18: VTCs of the SRAM cell in read and hold state
In order to better understand the effect of process variations on the 6T SRAM cell, Figure 2.19 shows the schematic of a 6T SRAM cell subjected to intra-die V_{th} variations. Different transistors in the 6T cell have different deviations in V_{th}. The inverter L1-D1 has a high-V_{th} PMOS and a low-V_{th} NMOS which translates to a reduced switching threshold voltage of the inverter L1-D1. At the onset of the read operation, there is a slight increase in voltage at one of the nodes on the read discharge path. For this example, there would be an increase in voltage at the node containing ‘0’. This increase in voltage can toggle the state of the inverter L1-D1, due its reduced switching threshold voltage. This could result in loss of data stored in the cell and eventually a wrong value being read by the sense-amplifier. This is the most important problem associated with the traditional 6T SRAM cell.

![Figure 2.19: Presence of V_{th} variability in sram cell [20]](image-url)
2.4.2 Bitline Leakage

During the read operation, the sense amplifier detects a droop on one of the bitlines, for example BL, differentially with respect to the other bitline BLB, as illustrated in Figure 2.20. During this time, we expect bitline BLB to dynamically remain high. However, the aggregate leakage currents on BLB depend on the data stored in the cells in the hold state. Due to the effects of process variations, the leakage currents can exceed the actual read-current of the cells which are in the hold state. Figure 2.20 shows the worst case bit-line leakage scenario where the data in all of the cells in the hold state is such that the access transistors on the bitline undergo a large V_{DS} voltage drop. As a result, the aggregate leakage current is maximized and thus exceeds the weak cell read-current, making the droop on the two bit-lines indistinguishable [22]. This could result in a wrong value being read by the sense amplifier.
Figure 2.20: Bit-line leakage from cells in the hold state sharing BL/BLB, leading to parasitic droop. [22]
2.5 Supporting Work

2.5.1 8T SRAM Cell

There has been considerable effort over the past years to optimize the SRAM design to maintain minimum SNM in the presence of process variations. L. Chang in [24], proposed an 8T SRAM bitcell design shown in Figure 2.21. The 8T SRAM cell shown in Figure 2.21 uses a buffered read to isolate the internal nodes of the cell from the read path. In order to increase the read SNM, the cell disturbance at the node storing ‘0’ must be eliminated. Prior to the read operation the read bitline RBL is precharged to V_{dd}. The read operation is started by asserting the RWL. RBL either remains at V_{dd} (if internal node ‘nq’ contains a ‘0’) or is pulled down to ground (if internal node ‘nq’ contains a ‘1’). In the either case, the internal nodes remain undisturbed. Prior to the write operation, the bitlines are precharged to the pre-determined values. The write operation is initiated by asserting the write wordline WWL and the nodes attain the corresponding values from the bitlines.

![Figure 2.21: 8T SRAM cell [24]](image-url)
2.5.2 10T SRAM Cell with Stacked Read Buffer

In the 10T SRAM cell [25] (referred as 10T I cell for the rest of the document) transistors L1, L2, D1, D2, A1, A2 are identical to a 6T bitcell except that the sources of L1, L2 and E1 are tied to a virtual supply voltage rail VVdd (Figure 2.22). Transistors E1-E4 form a buffer used for the read operation. Prior to the start of the read operation RBL is precharged to Vdd. At the onset of the read operation, RWL is asserted. If q = ‘0’, the RBL remains precharged. If q = ‘1’, RBL discharges via E2-E3-E4. VVdd is maintained at the actual supply voltage during the read operation to provide high read SNM but it is lowered during the write operation to improve the write noise margin. Sub-threshold memory operation is important for low-power embedded processors. This novel cell topology gives the ability to operate the cell in the sub-threshold regime [25]. Prior to the write operation, both the bitlines BL and BLB are precharged to the pre-determined values. In the write state, the write wordline WL is asserted and the nodes attain the corresponding voltages from the bitlines.

To enable sub-threshold write, the virtual rail VVdd floats, thereby weakening the cross-coupled inverters. The presence of E1 is critical in order to reduce the leakage from the read bitline. When the cell is in the retention mode, E2 and E3 are in the off condition. If q = ‘0’, E1 holds the node qbb at ‘1’. This prevents leakage from the bitline RBL through E2. If q = ‘1’, E1 is switched off, but due to the leakage, it tends to pull the node qbb to nearly ‘1’ which again reduces the leakage from the bitline RBL.
2.5.3 10T SRAM Cell with Differential Read-Sensing

The 10T SRAM bitcell [26] (referred as 10T II cell for the rest of the paper) uses a fully differential read sensing scheme (Figure 2.23). In the read mode, WL is enabled and Vgnd is forced to 0 V while WWL remains disabled. The disabled WWL makes data nodes Q and QB decoupled from the bitline during the read access. Due to this isolation, the read SNM of the 10T SRAM cell is almost same as that of the hold SNM of the conventional 6T SRAM cell. Based on the cell data value, one of the bitlines would get discharged after the WL is enabled. It can be noticed that in this 10T SRAM cell, read value is developed as an inverted signal of cell data. Prior to the write operation, the bitlines BL and BLB are precharged to the pre-determined values. In the write mode, both the wordlines WL and WWL are enabled to transfer the write data to the cell nodes from the bitlines. Since this 10T SRAM cell has series access transistors, writability is a critical issue. This is addressed by employing a write-assist technique which will be discussed in section 4.2.2.
2.5.4 10T Schmitt Trigger Based SRAM Cell

The robust Schmitt trigger-based memory cell [27] (referred as 10T III cell for the rest of the paper) shown in Figure 2.24, focuses on improving the switching threshold of the basic inverter pair of the memory cell, during the read operation. A Schmitt trigger (ST) increases or decreases the switching threshold voltage of the inverter depending on the direction of the input transition. Transistors PL-NL1-NL2-NFL form one ST inverter while PR-NR1-NR2-NFR form another ST inverter. Feedback transistors NFL/NFR increase the inverter switching threshold voltage whenever the node storing ‘1’ is discharged to the ‘0’ state. Write-trip point defines the maximum bitline voltage needed to flip the cell content. The higher the bitline voltage, the easier it is to write to the cell. During the write operation, the ST action reduces the effective strength of the pull-down transistors during a ‘1’ to ‘0’ input transition. Hence, the node storing ‘0’ gets flipped at a much higher voltage giving higher write-trip-point compared to the 6T cell.
Figure 2.24: 10T SRAM cell III [27]
3. Proposed 9T SRAM Cell

3.1 Cell Design

The circuit of the proposed 9T SRAM cell is illustrated in Figure 3.1. The cross-coupled inverters formed by the transistors L1, D1, L2 and D2 store a single bit of information. The write bitline WBL and the pass transistor A2 are used for transferring new data into the cell. Alternatively, the read bitline RBL and transistors E2, E3 and E4 are used for reading data from the cell. The transistor E1 serves the purpose of reducing the bitline leakage which will be discussed in section 3.3. Two separate control signals, read wordline RWL and write wordline WWL, are used for controlling the read and write operations, as shown in Figure 3.1. The proposed 9T SRAM cell does not have any strict sizing constraints for the read operation which will be discussed in section 3.2.
3.2 Read Operation

Prior to a read operation, RBL is precharged to V_{DD}. To start the read operation, RWL transitions to V_{DD} while WWL is maintained at V_{GND}. Transistor E1 remains switched off during the read operation. If a ‘1’ is stored at node Qb, E4 is turned on and RBL is discharged through the transistor stack formed by E2, E3 and E4, as illustrated in Figure 3.2. Alternatively, if a ‘0’ is stored at node Qb, E4 remains turned off and RBL is maintained at V_{DD}, as illustrated in Figure 3.3.
Figure 3.2: Proposed 9T SRAM cell during the read operation when Qb= ‘1’

Figure 3.3: Proposed 9T SRAM cell during the read operation when Qb= ‘0’
As discussed in the section 2.3.2, the read operation imposes sizing constraints on the transistors of the 6T SRAM bitcell. The cell ratio has to be at least more than the minimum value in order to guarantee a successful read operation in a 6T SRAM cell. However, the 9T SRAM cell’s read discharge path is completely isolated from the two nodes of the SRAM bitcell that store the data. Hence, there are no sizing constraints imposed due to the read operation in the proposed 9T SRAM cell. The sizing of the transistors E1-E4 depend on the desired read performance and maximum cell area. In order to boost the read performance, the widths of transistors E2-E4 can be increased. However, since increased device size results in increased SRAM cell area, a careful tradeoff between the read performance and cell area is required.

3.3 Write Operation

Prior to a write operation the WBL is charged (discharged) to V_{DD} (V_{GND}) in order to force a ‘1’/‘0’ onto node Q. To start the write operation, the write signal WWL transitions to V_{DD} while the read signal RWL is maintained at V_{GND}. The data is forced onto node Q through the bitline access transistor A2, as shown in Figures 3.4 and 3.5. During the retention period, when the cell is neither accessed for read or write operations, both the wordlines WWL, RWL remain at ‘0’. The sizing constraints on the proposed design exist only for the write operation. In order to perform a successful write operation, the voltage at the node Q should decrease below the switching threshold of the adjacent inverter. The equations for a successful write operations can be derived as shown in the Equations 3.1 and 3.2.
Figure 3.4: Proposed 9T SRAM cell during the write operation when Q = ‘1’

Figure 3.5: Proposed 9T SRAM cell during the write operation when Q = ‘0’
\[V_Q = V_{dd} - V_{Tn} - \sqrt{(V_{dd} - V_{Tn})^2 - \frac{2\mu_p P R}{\mu_n} \left[(V_{dd} - |V_{Tp}|)V_{DSATp} - \frac{V_{DSATp}^2}{2}\right]} \]

(3.1)

\[Pull-UpRatio = \left[\frac{W_{L2}/L_{L2}}{W_{A2}/L_{A2}}\right] \]

(3.2)

where \(V_Q \) is the voltage at the node ‘Q’ during the write operation, \(V_{dd} \) is the supply voltage, \(V_{Tn} \) is the threshold voltage of the NMOS transistor, \(V_{Tp} \) is the threshold voltage of the PMOS transistor, \(V_{DSATp} = V_{DS} \) when the PMOS transistor is in the saturation region of operation, \(k_n \) is the gain factor, \(k_n = \frac{W}{L} \mu_n C_{ox} \).

3.4 Static Noise Margin

The proposed 9T SRAM cell enhances the read stability by employing a read discharge path that is completely isolated from the internal nodes of the cell. Based on the voltage at node ‘Qb’, the RBL is conditionally discharged through the E2-E4 transistor stack during a read operation. The data stability is thereby significantly improved when compared with the conventional 6T SRAM cell design.

3.5 Bitline Leakage

Previously published SRAM designs 9T and 10T attempt to address the bitline leakage problem in order to allow more cells to share a bitline. But these cells only achieve a partial success in preventing the leakage current from the read bitline. In the present 9T SRAM design, the read SNM problem could be eliminated without the presence of E1 and E3 while using lesser area, but these transistors are essential to prevent the leakage current. In the hold state RWL is maintained at ‘0’ due to which E1 remains switched on. When \(Q=’0’ \) and \(Qb=’1’ \), from Figure 3.6, E2 is in off state. E1 is switched on which firmly holds the node N at \(V_{DD} \). Since node N is maintained at \(V_{DD} \) by transistor E1, \(V_{DS}=’0’ \) for E2.
and hence there is negligible bitline leakage. When Q=‘1’ and Qb=‘0’, from Figure 3.6, E2 is switched off. Again in this case E1 is switched on which maintains the node N at V_{DD}. Since node N is maintained at V_{DD} by the transistor E1, V_{DS}=‘0’ for E2 and hence its i_D=‘0’. Note that the state of transistor E4 changes based on the node voltage at Qb. This has negligible effect on the bitline leakage since node N is held at ‘1’ and E2, E3 are switched off irrespective of the node voltage at Qb. Hence, the 9T SRAM cell completely prevents any bitline leakage, allowing more cells to share the read bitline RBL.

![Figure 3.6: Schematic of the read buffer from 9T bitcell for both data values. Node N is maintained at ‘1’ in both the cases which prevents bitline leakage.](image-url)
4. Results

4.1 Simulation Setup

This section describes the simulation framework used for this thesis. The 6T SRAM cell is initially evaluated for successful read and write operations. The schematic used for this analysis is shown in Figure 4.1. The precharge circuitry consists of two transistors a1 and a2, both of which are tied to V_{dd}. In this setup the maximum possible voltage on the bitlines is $V_{dd} - V_{THn}$. This type of precharge circuitry is more suitable for differential voltage sensing amplifier since the bitline voltages initially start at $V_{dd} - V_{THn}$. This lower voltage is needed for a proper biasing and output swing of the differential amplifier [15].

The write circuitry consists of four transistors e1, e2, e3 and e4. The write enable ‘wr_en’ signal drives transistors e1 and e3. Transistors e2 and e4 are operated by the signals ‘data’ and ‘notdata’. The ‘wr_en’, ‘data’ and ‘notdata’ are used simultaneously to precharge or discharge the bitlines during the write operation.

The read circuitry consists of a differential voltage sense amplifier as shown in Figure 4.1. The bit value stored in the SRAM cell is obtained on the ‘sense_out’ signal. At the onset of the read operation, the transistors in the SRAM cell draw current from the highly capacitive column. The slow drop in bitline voltage could cause long read access times. In order to reduce the read access time, the memory is designed so that a minimum voltage change on one or the other bitline is required to detect the stored value. The sense amplifier detects this change in voltage and detects the right bit value stored in the SRAM cell. For the setup shown in Figure 4.1, a differential voltage sense amplifier is used. This sense amplifier attenuates common-mode noise and amplifies the differential-mode signals. This is important because any noise that is common to both the bitlines should not be amplified.
Figure 4.1: Schematic of the 6T SRAM cell along with write and sense-amplifier circuitry used to perform read and write operations [15]

4.2 6T SRAM

4.2.1 Read Static Noise Margin

The butterfly curves obtained by plotting the VTCs of the inverters of the 6T SRAM cell present valuable information regarding the stability of the SRAM cell during the read and
hold states. It is clear that the eye of the butterfly curve during the read access is less than the case when the SRAM is held in the hold state as discussed in section 2.4.1. Lower SNM means that the cell is vulnerable to noise and the cell contents can be easily destroyed. The SNM is lower during the read access because the VTC is degraded by the increase in voltage at the node containing ‘0’ due to the voltage divider action across the access transistor (A1, A2) and drive transistor (D1, D2). Hence, one of the main considerations of SRAM sizing is to minimize the voltage rise at the node containing ‘0’ at the onset of the read operation. Researchers have explored several techniques which were discussed in detail in section 2.5. Figure 4.2 illustrates the read SNM of 6T SRAM cell with and without the presence of noise. The VTCs of a stable SRAM cell which store a ‘0’ or a ‘1’ are bistable—i.e., the VTCs have three points of intersection among which there are two points which indicate the stability of the cell. It can be observed that when the noise is greater than the SNM of the cell, the curves meet at only one point which indicates the loss of content (‘1’ or ‘0’) stored in the cell.

Figure 4.2: VTCs of SRAM cell with and without noise
Table 4.1: Cell Ratio versus Read SNM Comparison

<table>
<thead>
<tr>
<th>Cell Ratio</th>
<th>Read SNM (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta = 2$</td>
<td>195</td>
</tr>
<tr>
<td>$\beta = 3$</td>
<td>226</td>
</tr>
<tr>
<td>$\beta = 4$</td>
<td>245</td>
</tr>
<tr>
<td>$\beta = 5$</td>
<td>257</td>
</tr>
</tbody>
</table>

The cell ratio (CR) represented by Equation 2.4 is defined as the ratio of the dimensions of the driver transistor to that of the access transistor. The rise of voltage at the node containing ‘0’ in the 6T SRAM cell depends on the cell ratio of the cell. The impact of cell ratio on the read SNM of the 6T SRAM cell is illustrated in Table 4.1. It can be observed that larger CRs provide improved stability but at the expense of larger cell area. A smaller CR ensures a more compact cell with moderate speed and stability.

The dependence of the read SNM on the operating voltage and the process corners can reveal valuable information about the stability margins of the SRAM cell in consideration. Scaling down of supply voltage from one technology node to the other reduces the read SNM. The impact of supply voltage scaling on 6T SRAM read stability is illustrated in Figure 4.3. It is clear that the eye of the butterfly curves for the SRAMs with lesser supply voltage is smaller, which translates to lesser read SNM and hence the cells are more susceptible to process or environmental variations at reduced supply voltages. As discussed in section 2.1, it is important to assess the impact of environmental variations on the circuit performance and stability. Modern SoCs are often subjected to operations which could
greatly vary the on-die temperature. The impact of temperature on the cache stability is illustrated by Figure 4.4. The read SNM decreases with increase in temperature, as illustrated in Figure 4.4, which also shows the read SNM at different process corners. It is evident that worst case read SNM occurs at the FS (Fast NMOS and Slow PMOS) process corner. This is because at the onset of the read operation, the voltage rise at the node containing ‘0’ would be more at the FS corner when compared to the nominal case due to the relatively strong NMOS transistors. Similarly, the SF (Slow NMOS and Fast PMOS) is the best case process corner since the δV is least compared to the other process corners.

![Figure 4.3: Impact of supply voltage scaling on read SNM](image)

Figure 4.3: Impact of supply voltage scaling on read SNM
4.2.2 Write Noise Margin

Write Noise Margin (WSNM) is measured by using VTC curves, which are obtained from the dc simulation of sweeping the input of the inverters of the SRAM cell [28] [29]. Prior to the simulation, the bitlines are precharged to the corresponding data values that are to be written to the two nodes of the SRAM cell. The write ability depends on a parameter called pull-up (PR) ratio of the SRAM cell, expressed in Equation 2.7. PR is defined as the size ratio between the PMOS pull-up and the NMOS access transistor. For a successful write operation only one cross point should exist on the butterfly curves, which indicates that the cell is monostable. The WSNM of writing ‘1’ is the width of the smallest embedded square at the lower side, shown in Figure 4.5. WSNM for writing ‘0’ can be obtained from a similar simulation setup. The final WSNM of the cell is the minimum of the WSNMs for writing ‘1’ and ‘0.’ The cell with lower WSNM has poorer write ability [29]. Figure 4.6 illustrates the improvement in the write noise margin with reduction in pull-up ratio. There is a 15.5% improvement in WNM when PR is halved from 1 to 0.5.
Figure 4.5: VTCs of 6T SRAM during a successful write operation

Figure 4.6: Pull-up ratio versus read SNM
4.2.3 Impact of Process Variations

Systematic and random variations in process parameters are posing a major challenge to the future high-performance embedded memory designs [20]. The impact of intra-die and inter-die process variations are depicted in Figure 4.7. As shown in both the figures, the nominal 6T SRAM VTCs are distorted due to the presence of process variations. Due to the mismatch introduced between the transistors of the 6T SRAM cell by the process variations, the read SNM is affected.

Figure 4.7: Distorted VTCs due to the presence of intra and inter-die process variations

In order to assess the impact of process variations on the 6T SRAM cell, the SRAM cell is subjected to intra-die V_{th} and L_{eff} variations. The distribution of read SNM of the 6T SRAM cell obtained from the Monte Carlo simulations due to V_{th} variations is illustrated in Figure 4.8. The mean read SNM is 164.9 mV and the standard deviation is 63.25 mV. Similarly, the distribution of read SNM of the 6T SRAM cell obtained from the Monte Carlo simulations due to variations in L_{eff} is illustrated in Figure 4.9. The mean read SNM is 157 mV and the standard deviation is 64.45 mV. These values as such do not present a clear assessment of the impact of the process variations on the cell yield. However, it has already been published that ‘$\mu - 6\sigma$’ of the SNM is required to exceed approximately 4% of the supply voltage to achieve 90% yield for 1Mbit SRAMs [30] [31]. Hence, for
this research we consider this as the yield criterion to assess the stability of 6T and the other cells. The yield criterion for the 6T SRAM cells is evaluated and shown in Table 4.2. Since, The 6T SRAM cell in the presence of process variations fails to satisfy the $\mu - 6\sigma$ yield criterion. From the simulations performed on the 6T SRAM cell, it is evident that without resorting to any bias control approaches, the standard 6T SRAM cell fails to satisfy the yield criterion. However, as we will discuss in the results section, employing different SRAM topologies improve the SNM and thus the cell yield.

![Distribution of read SNM of the 6T SRAM cell as obtained from Monte Carlo simulations in the presence of intra-die V_{th} variations.](image)

Figure 4.8: Distribution of read SNM of the 6T SRAM cell as obtained from Monte Carlo simulations in the presence of intra-die V_{th} variations.
Table 4.2: Impact of random intra-die variations on the 6T SRAM cells

<table>
<thead>
<tr>
<th>Variation</th>
<th>Mean of SNM (μ (mV))</th>
<th>SD of SNM (σ (mV))</th>
<th>Yield Criterion</th>
<th>((\mu - 6\sigma)) > 48mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{th})</td>
<td>164.9</td>
<td>63.25</td>
<td>0</td>
<td>Fail</td>
</tr>
<tr>
<td>(L_{eff})</td>
<td>157</td>
<td>64.45</td>
<td>0</td>
<td>Fail</td>
</tr>
</tbody>
</table>

Figure 4.9: Distribution of read SNM of the 6T SRAM cell as obtained from Monte Carlo simulations in the presence of intra-die \(L_{eff}\) variations.

4.3 Supporting Work

All the SRAM cells are sized to occupy minimum area and are designed and verified for successful read, write and hold functionality. The cells are designed using commercial 65
nm CMOS models. All the simulations are performed at FS process corner which is the worst-case process corner and 125°C temperature.

4.3.1 Static Noise Margin

The read SNMs of the SRAM cells are compared in Figure 4.10. The read SNM of the 8T SRAM, 10 SRAM I and 10T SRAM II cells is 54% higher when compared to the 6T SRAM cells with $\beta = 2$. However, the 10T SRAM III is only 36.4% higher than 6T SRAM cell with $\beta = 2$. The 10T SRAM III shows relatively less improvement in read SNM over the other three SRAM cells. This can be attributed to the fact that during the read operation the internal nodes of the 10 SRAM III are not completely isolated from the read discharge path whereas the other three SRAM cells have their internal nodes completely decoupled from the read discharge path. It can also be observed that the read SNMs of the three cells 8T SRAM, 10 SRAM I and 10T SRAM II are identical. This is because the basic circuit that responds to the SNM simulation is same for all the three SRAMs—i.e., the 6T bitcell of the corresponding cell is completely isolated from the read buffer and acts as a 6T SRAM in hold state.

![Figure 4.10: Comparison of read SNM in different SRAM cells](image)

Figure 4.10: Comparison of read SNM in different SRAM cells
4.3.2 Write Noise Margin

The WSNM comparison between the SRAM cells is illustrated in Figure 4.11. The proposed SRAM cells typically employ a write-assist technique to boost the writability of the cell and improve the WSNM. Before the onset of the write operation of the 10T SRAM cell I, the VVdd floats instead of supplying Vdd. This decrease in the supply voltage effectively weakens the SRAM cell making it easy for the access transistors to overpower the node voltages, which in turn improves the WSNM. For the 10T SRAM II, in the write mode both the wordlines WL and WWL are enabled to transfer the write data to the cell nodes from the bitlines. Since this SRAM has two series access transistors in order to perform the write operation, writability is a critical issue. The writability in this implementation is improved by boosting the voltages of WL and WWL by 100 mV during the write operation, which improves the writability by making the access transistors stronger than the SRAM cell. The 10T SRAM III cell has the best write noise margin among all the SRAM cells compared in this paper (Figure 4.11). Compared to the 6T cell, the effective strength of the pull-down transistor is reduced in the 10TSRAM III cell during the ‘1’ to ‘0’ input transition, which boosts the WSNM of the cell.
4.3.3 Impact of Process Variations

The read stability of the SRAM cells in the presence of variations in V_{th} and gate length L_{eff} is evaluated. The V_{th} variation due to random dopant fluctuations is the major source of variability in modern nanoscale SRAMs [20]. Therefore, it is of utmost importance to evaluate any memory design in the presence of V_{th} variations so as to ensure that the design meets the yield requirements. In order to simulate the RDF induced intra-die (mismatch between the adjacent transistors on the same die) variation, each of the V_{th} of the transistors in a cell is assumed to be an independent random parameter with a Gaussian distribution. In addition, each parameter is assumed to have three sigma (3σ) variations of 10% [32] [33]. Monte Carlo (MC) simulations for 1000 samples were performed on the SRAM cells and the corresponding read SNM is calculated for each MC run. Similarly, the SRAM cells are evaluated for L_{eff} variation. Since all the simulations are performed at $V_{dd} = 1.2$ V, as a guideline ‘$\mu - 6\sigma$’ of the SNM is required to exceed 48 mV (4% of the supply voltage) to achieve 90% yield for 1Mbit SRAMs. Therefore, it is obvious that a high mean read SNM

![Figure 4.11: Comparison of write SNM in different SRAM cells](image)
and a low standard deviation are ideal to meet the yield criterion.

The read SNM distribution of the 8T SRAM cells as obtained from the MC simulations is illustrated in Figure 4.12. Table 4.3 shows the read SNM comparison of all the SRAM cells when subjected to V_{th} variation. The mean read SNM of the 8T SRAM cell is above 390 mV, 60% higher than that of the 6T SRAM cell. The standard deviation of the 8T SRAM is 10.55% less than the 6T SRAM cell. The 8T SRAM cell passes the yield test by a considerable margin whereas the 6T SRAM cell does not. The 8T SRAM cell when subjected to L_{eff} variations shows better robustness when compared to the 6T SRAM cell, as shown in Table 4.4 and Figure 4.13. The mean read SNM of the 8T SRAM cell is 60% higher than that of the 6T SRAM cell and the standard deviation of the 8T SRAM is 12.55% less than the 6T SRAM cells. The cell yield criterion is met by the 8T cell.

Figure 4.12: Read SNM distribution of the 8T SRAM cells as obtained from the MC simulations in presence of V_{th} variations
The 10T SRAM I and the 10 SRAM II cells outperform the 6T cell in the case of L_{eff} variation too (Figure 4.14 and Table 4.4). The mean read SNM of both the cells is higher than the 6T cell by 60.08% and the standard deviation is lesser by 13.23% as shown in the Table 4.4. The major advantage of the 10T SRAM I and II cells is the yield criterion, which is met by both the cells with a considerable margin whereas the 6T cell fails to meet the yield criterion. The 10T SRAM I and 10T SRAM II cells are subjected to V_{th} variations (Figure 4.15 and Table 4.3). There is a substantial improvement in the mean read SNM as well as the standard deviation of the 10T I cell when compared to the 6T cell. The mean read SNM of the 10T I cell is 58.3% higher than the traditional 6T cell. The standard deviation is 15.74% lower in the 10T I cell. Similarly, the read SNM of the 10T II cell is 58.3% higher than the conventional 6T cell and the standard deviation is 15.74% lower than the 6T cell.
Table 4.3: Impact of random intra-die V_{th} variations on the read SNM of SRAM cells

<table>
<thead>
<tr>
<th>SRAM</th>
<th>Mean of SNM μ (mV)</th>
<th>SD of SNM σ (mV)</th>
<th>$\mu - 6\sigma$ (mV)</th>
<th>Yield Criterion $(\mu - 6\sigma)>48$ mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>6T SRAM</td>
<td>164.9</td>
<td>63.25</td>
<td>0</td>
<td>Fail</td>
</tr>
<tr>
<td>8T SRAM</td>
<td>397.1</td>
<td>56.55</td>
<td>57.8</td>
<td>Pass</td>
</tr>
<tr>
<td>10T SRAM I</td>
<td>396.3</td>
<td>53.29</td>
<td>76.56</td>
<td>Pass</td>
</tr>
<tr>
<td>10T SRAM II</td>
<td>396.3</td>
<td>53.29</td>
<td>76.56</td>
<td>Pass</td>
</tr>
<tr>
<td>10T SRAM III</td>
<td>274.49</td>
<td>44.14</td>
<td>9.65</td>
<td>Fail</td>
</tr>
</tbody>
</table>

Figure 4.14: Read SNM distribution of the 10T I SRAM cells as obtained from the MC simulations in presence of L_{eff} variations
The 10 SRAM III cell is also evaluated in the presence of V_{th} and L_{eff} variations and the MC simulations for the read SNM are illustrated in Figures 4.16 and 4.17. The 10T SRAM III exhibits higher read SNM of 39.92% in the presence of V_{th} variation and 43.25% in the presence of L_{eff} variation when compared to the 6T SRAM cell as shown in Tables 4.3 and 4.4. However, the 10T SRAM fails to satisfy the yield criterion by a narrow margin in both the cases. At this juncture, it is important to notice two primary differences between 10T III cell and other bitcells. During the read operation, the 8T, 10T I and 10T II cells completely isolate the internal nodes of the bitcell from the read path. Therefore, even though one of the bitlines is discharged, the internal nodes are decoupled from the discharge path. The 10T III bitcell works on a different principle altogether. During the read operation, the NFR/NFL forms a positive feedback with the inverter PR-NR1-NR2/PL-NL1-NL2. This feedback helps to raise the threshold voltage at $V_R(V_L)$ when $B_L(B_R)$ discharges via $V_L(V_R)$, thereby avoiding read failure. However, in the presence of process variations, mismatch is introduced between NFR/NFL and NR1-NR2/NL1-NL2, which weakens the
Table 4.4: Impact of random intra-die L_{eff} variations on the read SNM of SRAM cells

<table>
<thead>
<tr>
<th>SRAM</th>
<th>Mean of SNM μ (mV)</th>
<th>SD of SNM σ (mV)</th>
<th>$\mu - 6\sigma$ (mV)</th>
<th>Yield Criterion $(\mu - 6\sigma) > 48$ mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>6T SRAM</td>
<td>157</td>
<td>64.45</td>
<td>0</td>
<td>Fail</td>
</tr>
<tr>
<td>8T SRAM</td>
<td>392.6</td>
<td>54</td>
<td>68.6</td>
<td>Pass</td>
</tr>
<tr>
<td>10T SRAM I</td>
<td>393.37</td>
<td>55.92</td>
<td>57.85</td>
<td>Pass</td>
</tr>
<tr>
<td>10T SRAM II</td>
<td>393.37</td>
<td>55.92</td>
<td>57.85</td>
<td>Pass</td>
</tr>
<tr>
<td>10T SRAM III</td>
<td>276.7</td>
<td>43.9</td>
<td>13.3</td>
<td>Fail</td>
</tr>
</tbody>
</table>

Schmitt trigger, thereby making the cell vulnerable to read failure. Hence, the 10T III cell is more vulnerable to read failure when compared to the 8T, 10T I and 10T II SRAM cells.
Figure 4.16: Read SNM distribution of the 10T III SRAM cells as obtained from the MC simulations in presence of L_{eff} variations

Figure 4.17: Read SNM distribution of the 10T III SRAM cells as obtained from the MC simulations in presence of V_{th} variations
4.4 Proposed 9T SRAM

4.4.1 Static Noise Margin

The butterfly curves representing the VTCs of the two inverters of the proposed 9T bitcell during the read and retention states are shown in Figure 4.18. In the standard 6T SRAM cell, during the read operation, the node containing ‘0’ experiences a rise in voltage which makes the cell vulnerable to read failure. Previously published 8T, 10T and 9T SRAM cells isolate the read path from the internal nodes of the bitcell to improve the read SNM. The 9T SRAM cell also employs a read buffer which isolates the bitline from the internal nodes of the bitcell. This increases the static noise margin of the 9T SRAM cell as shown in Figure 4.18. The read SNMs of the standard 6T SRAM cell at $\beta = 2, 3, 4$, in addition to 8T, 10T, 9T and the proposed 9T SRAM cells are illustrated in Figure 4.19. The read static noise margin of the proposed 9T SRAM cell is 2.5 times greater than the 6T SRAM cell with $\beta = 2$ and 2 times greater than 6T SRAM with $\beta = 3$. Therefore, even though the cell-ratio of the 6T SRAM cell is increased, it exhibits lesser read stability when compared to proposed 9T SRAM cell.
Figure 4.18: The read and hold static noise margins of the proposed 9T SRAM circuit. The cell exhibits higher SNM for both states compared to the standard 6T SRAM cell.

Figure 4.19: Comparison of Read Static Noise Margins of different SRAM cells with the proposed 9T SRAM cell.
4.4.2 Bitline Leakage

The proposed 9T SRAM cell prevents the bitline leakage independent of the node voltage driving the read buffer. This is an important improvement over the previously published designs which attempt to address the bitline leakage but achieve it partially: only when the node voltage driving the read buffer is ‘0’. The Figure 4.20 compares the SRAM cells based on the node voltage driving the read buffer since this voltage can bring about a significant change in the amount of bitline leakage. The voltage of one of the internal nodes of the cell connected to the read buffer will be referred as the “drive voltage” for the rest of the paper. For example, the drive voltage for the proposed 9T SRAM cell would be the voltage at node Qb. The proposed 9T SRAM cell in this paper successfully maintains the node voltage N at VDD during the standby state(see Figure 3.6). This prevents any bitline leakage independent of the drive voltage. Leakage would exist only through transistors E3 and E4 from the node N, which is reduced due to the transistor stack E3 and E4 as shown in the Fig 3.6. It can be observed from the Figure 4.20 that among all the cases except the proposed 9T SRAM cell, the leakage savings are more when the drive voltage is ‘0’. The reason is that when the drive voltage is ‘0’, it creates a stack effect in all the 8T, 9T and 10T cells, whereas the other case (drive voltage = ‘1’) fails to create any effect, as illustrated in the graph. In contrast, the proposed 9T SRAM cell achieves bitline leakage power savings independent of its drive voltage Qb. The bitline leakage power consumption of the proposed 9T SRAM cell is reduced by up to 79%, 76% and 39% when compared to the previously published 8T, 10T and 9T SRAM cells, respectively.
4.4.3 Impact of Process Variations

In this section, the read stability of the SRAM cells due to process fluctuations in the channel length and the threshold voltage of the transistors is evaluated. The channel length and the threshold voltage are assumed to have a normal Gaussian statistical distributions. Each parameter is assumed to have a three sigma (3σ) variation of 10% [32]. Monte Carlo simulations with 5000 occurrences are performed to evaluate the impact of process variations on the read stability of the 6T SRAM and 9T SRAM cells. The statistical SNM distributions of the 6T and the proposed SRAM cells are shown in Figure 4.21. The mean read static noise margin of the 9T cells is approximately 2.4 times when compared to the 6T SRAM cell with $\beta = 2$. This increase in static noise margin can be attributed to the fact that the 9T SRAM cell achieves a complete isolation of the internal nodes from the read discharge path. The standard deviation of the 9T cells is 14.6% less than the 6T cells which implies a lesser spread in the SNM distribution in the proposed 9T SRAM cells.

Figure 4.20: Comparison of bitline leakage of different SRAM cells with the proposed 9T SRAM cell.
The impact of process variations on the yield of the proposed 9T SRAM cell in the presence of process variations can be assessed by evaluating the yield criterion from the monte carlo simulations. The proposed 9T SRAM has a higher mean read SNM and a lower standard variation when compared to the 6T SRAM cell. The yield criterion is evaluated as shown in the Table 4.5. The proposed 9T SRAM cell satisfies the 90% yield criterion.

4.4.4 Area Overhead

The bitcell area is an important parameter for cache design since it directly relates to the cache footprint, array density and the overall SoC cost. The previous-published SRAM bitcells have a substantial area overhead when compared to the traditional 6T SRAM cell. Table 4.6 illustrates the area overhead in terms of the number of MOSETS, wordlines and bitlines required for each SRAM cell. It can be observed that in spite of the 8T (33% area
Table 4.5: Impact of process variations on the proposed 9T SRAM cells

<table>
<thead>
<tr>
<th>SRAM</th>
<th>Mean of SNM (µ (mV))</th>
<th>SD of SNM (σ (mV))</th>
<th>Yield Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>6TSRAM</td>
<td>165.8</td>
<td>63.43</td>
<td>Fail</td>
</tr>
<tr>
<td>Proposed 9T SRAM</td>
<td>396.3</td>
<td>54.13</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Table 4.6: Area overhead comparison of different SRAM cells [24] [25] [26] [27] [34]

<table>
<thead>
<tr>
<th>SRAM</th>
<th>6T SRAM</th>
<th>8T SRAM</th>
<th>9T SRAM</th>
<th>10T SRAM I</th>
<th>10T SRAM II, III</th>
<th>New 9T SRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of MOSFETs</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>No. of WL</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>No. of BL</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

overhead) and 10T cells (66% area overhead) they offer better read and write stability compared to the conventional 6T cell. The proposed 9T cell exhibits better area savings when compared to 8T[24], 9T[34], 10T I[25], 10T II[26] and 10T III[27] cells. The proposed 9T cell has one less bitline when compared to 8T, 9T and 10T I SRAM cells. The proposed design also has one less transistor compared to the 10T I, II, and III cells. Even though the proposed 9T SRAM has significant area overhead compared to the conventional 6T SRAM cell, it outperforms the 6T SRAM cell when the read static noise margin and bitline leakage values are compared. The 8T SRAM cell has one less transistor than the proposed 9T cell but it is also important to notice that the 8T SRAM cell has an extra bitline and consumes more bitline leakage power.
5. Conclusions

The stability of the Static Random Access Memories in the presence of process variations is a growing concern for circuit designers in the present nanoscale regime. This research investigates the traditional 6T SRAM cell from a stability perspective. The impact of process variations on the traditional 6T SRAM is evaluated and their impact on 6T SRAM yield is established. The present work proves that, in the presence of process variations, the 6T SRAM cell fails to satisfy the “μ − 6σ” yield criterion. This reduced yield due to the results in increased design and fabrication costs and eventually increases the time-to-market of the chips. Therefore, it is imperative that the SRAM is designed to be robust in the presence of process variations.

In order to address this issue, various SRAM bitcell topologies were published earlier. These cells also employ read or write assist or a combination of both these techniques in order to boost the read/write performance of the SRAM cell. In the present work, the 8T [24], 9T [34], 10T I [25], 10T II [26], 10T III [27] SRAM circuits are designed and evaluated for correct functionality. Furthermore, the robustness of these cells to process variations are evaluated by performing Monte Carlo simulations and evaluating the yield criterion. All these cells are successful in addressing the read stability problem associated with the 6T SRAM cell. However, the cells suffer from bitline leakage problem which results in a wrong value being read by the sense-amplifier and also places constraints on the number of cells that can be accommodated on the bitlines.

In order to address the issue of bitline leakage, a new 9T SRAM cell is proposed in this work. The proposed 9T cell simultaneously addresses the read stability as well as the bitline leakage problems. The 9T cell is designed and verified for successful read and write
operations. The butterfly curves for the proposed cell are plotted and the read/hold SNMs are evaluated and it is proved that the read SNM of the proposed design is better than that of the 6T SRAM cell. The impact of process variations on the stability of the proposed design is evaluated by performing 5000 MC simulations. The proposed design satisfies “μ − 6σ” yield criterion. The bitline leakage power consumption by the current design is evaluated and compared with the previous designs. The present research provides a design framework to perform simulations to calculate the SNM of different SRAM cells. The present work also provides a framework to perform Monte Carlo simulations in the presence of process variations.
6. Future Work

The proposed 9T SRAM cell can be further improved. Some suggestions for future work are:

1. Read and write-assist techniques can be explored which could give a better read and write performance for the proposed design. During the read operation, the RWL voltage which drives the transistors on the read discharge path can be boosted to improve the read performance.

2. Techniques to boost the write performance can be implemented. The writability of the SRAM cell can be improved by decreasing the pull-up ratio of the cell. The write performance can also be boosted by decreasing the supply voltage to the bitcell during the write operation.

3. The rapid growth of battery operated handheld devices like cell phones, GPS devices, music players etc have increased research in decreasing the power consumption of these devices. These devices typically use low power SoCs. Since the caches make up the bulk of the transistors on SoCs, it is imperative that the cache design incorporates techniques to reduce the power consumption. The proposed SRAM can be investigated for sub-threshold operation using the sub-threshold library created in the Hardware Design Lab.

4. The Monte Carlo simulations typically consume a large amount of time depending on the number of monte carlo runs or the number of random variables. The Monte Carlo simulations can be performed in parallel by leveraging the Computer Engineering cluster in order to reduce simulation time.
References

A. Spice Netlist

Spice netlist used to determine butterfly curves for the 6T SRAM cell.

*Operating Conditions and Setup
*Vdd: 1.2V
*FET: Normal
*Technology: IBM CMOS 65nm
*Temperature: 125°C
*Mismatch: Off
*Process Corner: FS
*Misc: None
*Cell-Ratio: 2
*Pull-up Ratio: 1

*Include the technology file and define operating conditions
Technology file and operating conditions are not shown due to copyright policies.
.option tnom = 125
.param supply = 1.2

*Mosfets
x11 innode outnode vdd vdd pfet W=65n L=65n
xd1 innode outnode gnd gnd nfet W=130n L=65n
x12 outnode innode vdd vdd pfet W=65n L=65n
xd2 outnode innode gnd gnd nfet W=130n L=65n
xa1 vdd vdd innode gnd nfet W=65n L=65n
xa2 vdd vdd outnode gnd nfet W=65n L=65n

*power supply
VVDD VDD 0 supply
Vin outnode 0 0 pulse(0,supply, 0.1n,0.1n,0.1n, 10n,20n)
*dc sweep analysis
.DC Vin 0 supply 0.001

*Output Format
.options post
.print dc V(innode)
.END