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                  (a)                                     (b)                              (c)                               (d) 

Figure 4.17. Branch reconstruction results (a) original 3D tree model (leaf-on), (b) 

original 3D tree model (leaf-off), (c) reconstructed tree branches using waveform 

simulated from leaf-on tree, (d) quantitative results of 2ns and 4ns pulse width branch 

reconstruction (leaf-on) accuracy by comparing to the truth data (2ns leaf-off). Note: 

Azimuth Angle in degree (AA), Title Angle in degree (TA), Normalized Branch Length 

(BL) 
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 The algorithm was further tested on five other trees from different species, using a 

2ns outgoing pulse width for simulated waveforms for the leaf-off tree state as truth data. 

These truth data were then compared to the branch reconstruction results using simulated 

waveform LiDAR signals for the leaf-on tree states for 2ns and 4ns outgoing pulse 

widths. The latter pulse width was chosen to evaluate the pulse width impact on the 3D 

reconstruction, and also because a 4ns outgoing pulse width is commonly used in 

commercial waveform LiDAR systems. 

           The first column (a) of Figure 4.17 shows the input high-fidelity 3D tree models 

that were used for generating simulated waveform from DIRSIG, while the second 

column (b) shows the same trees in leaf-off condition. The reconstructed 3D tree branch 

structure, based on the simulated waveforms from trees in leaf-on state and using a 2ns 

outgoing pulse width is presented in the third column (c). The accuracy in terms of the 

difference (azimuth angle, tilt angle, and branch length) between the truth data is listed in 

the last column (d). As we can see, the presented approach can successfully reconstruct 

similar 1st order branch structure to the truth data, even with the leaf-on condition by 

visual comparison. Although the 3D reconstruction approach still can not reach the 

accuracy of ground base LiDAR mainly due to the limitation of the spatial resolution of 

airborne LiDAR system, but the preliminary results still look encouraging and hint at the 

potential of using waveform LiDAR to estimate the woody biomass of vegetation by 

locating every 1st order branch, even inside the canopy volume.  

 In this experiment, in order to test the robustness of our method, we have used 

different trees, with differences in terms of branch orientation, tilt angle, etc. Figure 4.17 

shows that the accuracy of branch reconstruction varies between trees. This is because the 

waveform spatial resolution (0.15m for a 1ns sampling rate) is identical across all the 

trees, but the spatial distance between branches inside the canopy can be quite different 

between species. Those branches with many small tips may cluster together and present a 

challenge when it comes to distinguishing branches using a limited waveform temporal 

resolution. We also observed that a smaller pulse width may not always result in better 

outcomes, which can be attributed to the fact that the algorithm always attempts to 

maximize the number of detected clusters, which means that the smaller the outgoing 

pulse width, the larger the number of branch clusters that can be detected by the 
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algorithm. In other words, the smaller pulse width may result in lots of higher order 

branch that could impact the azimuth and tile angle calculation accuracy. 

 
4.3 Conclusions 
 
           In this chapter, we presented a novel 3D 1st order branch reconstruction approach 

based on DBSCAN clustering that applies on the LiDAR waveform data directly. Firstly, 

an optimal waveform intensity threshold was determined by iteratively running the 

DBSCAN across wide range of threshold setting in order to maximize the branch clusters 

that can be detected. The results also show the flexibility of 3D object reconstruction by 

using waveform data, in contrast to the airborne discrete return LiDAR, where we may 

not have enough information for data preprocessing. Because small footprint discrete 

return LiDAR usually produces single or a few (e.g, <4) returns in meter level footprint 

size, this type of data can only resolve the overall canopy shape, and may not even be 

able to show the branch cluster shape [69-71]. Secondly, we characterized the branch 

geometry in terms of branch length (L) and branch angle (Ɵ), by approximating the 1st 

order branch cluster as a cylinder from the clusters. Mathematically, we also developed a 

model using similar triangle geometry to naturally reconnect 1st order branches to the 

stem. Thirdly, the proposed approach was applied on both leaf-off and leaf-on scenarios 

for 1st order tree branch reconstruction. This was validated by using the simulated 

waveform data from DIRSIG that takes the same tree in these two scenarios as inputs. To 

further quantify the accuracy of the branch reconstruction for leaf-on case, three metrics 

were computed to compare difference, average azimuth angle (AA), average zenith/tilt 

angle (TA), and average projected branch length (BL). Although there exists some 

variation between different tree species and pulse width conditions, the results still show 

a promising outcome whereby our proposed approach can reconstruct tree structure at the 

1st order branch level with similar geometry, compared to the leaf-off scenarios for 

different trees. 

           In short, our approach shows the 1st order skeleton structure inside the canopy can 

be successfully characterized and reconstructed using waveform LiDAR data, which has 

not been adequately addressed in the literature before. Further research could involve the 



 102 

higher order branch reconstruction by estimating the sub-clusters in 3D. Also, local 

waveform intensity threshold may also be valuable to distinguish more details of the 

branch structure. In addition to that, advanced computer graphic techniques could be 

another tool to render the reconstructed branch in 3D in a more realistic way. Finally, this 

approach will be eventually tested on real waveform data to reconstruct a real tree.  
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Chapter 5: Conclusions 
 
           The processing and application of small-footprint waveform LiDAR systems are 

topics that arguably have not received adequate attention in scientific literature. In this 

thesis a detailed literature review of waveform LiDAR was presented in terms of the 

basic system scheme, signal processing algorithms, and associated applications. 

Accordingly, three objectives were identified based on existing gaps in the current 

waveform LiDAR research: (1) Develop a robust, end-to-end waveform LiDAR 

processing chain approach; (2) Decode the waveform in terms of feature metrics 

extraction for woody and herbaceous biomass modeling; and (3) Develop a signal- and 

image processing-based waveform LiDAR inverse model for 3D tree structure 

characterization and reconstruction using Digital Imaging and Remote Sensing Image 

Generation (DIRSIG) waveform LiDAR simulation. 

  An end-to-end signal processing chain to preprocess raw waveform LiDAR data - 

which typically exhibit a stretched, misaligned, and relatively featureless character when 

unprocessed - was developed and presented. Our approach addresses these signal 

impairment problems by applying a preprocessing chain, which includes frequency-based 

noise filtering, Richardson-Lucy (RL) deconvolution, waveform registration, and angular 

rectification.  

  The first challenge was that of identifying the best-suited deconvolution approach, 

as part of the preprocessing chain development. A methodology based on four statistic-

based quantitative metrics, namely classification accuracy, RMSE, sensitivity, and false 

discovery rate was developed to compare three widely used deconvolution algorithms: 

RL, Wiener Filter (WF), and Non-negative Least Squares (NNLS). Such methods 

successfully solved the question of deconvolution algorithm choice as a preprocessing 

step to waveform LiDAR usage in the literature. The results showed superior 

performance for the RL algorithm in terms of the small RMSE between the deconvolved 

and truth waveforms, a low false discovery rate for the recovery of the true 3-D tree cross 

section as one use case, and a high classification accuracy for differentiating the 

herbaceous biomass levels as the second validation case. These results provide a 
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quantifiable basis for the selection of the RL deconvolution approach in the waveform 

LiDAR preprocessing chain. 

           The next step was to validate the entire preprocessing chain by using a high 

fidelity simulation environment in the DIRSIG model, which is based on known 

waveform LiDAR system parameters and object (target) structure. The approach enabled 

a direct comparison between the processed waveform signals and the true cross section 

profile of vegetation components. Spectral angle mapper (SAM) approach was used to 

quantify the stepwise improvement of waveform signal recovery after applying the 

preprocessing chain. The distinct decrease in spectral angles (e.g., 80º spectral angle 

before preprocessing, reduced to 20º after going through the entire preprocessing chain) 

between truth and processed data along the preprocessing chain, validated the promising 

performance of the methodology. The results also showed that the most significant 

improvement in the case of nadir waveforms occurs during the deconvolution step, while 

waveform registration has the biggest impact on spectral angles in the case of off–nadir 

waveforms. The preprocessing chain subsequently was applied to real waveform LiDAR 

data, collected by the Carnegie Airborne Observatory (CAO), and waveform metrics 

were extracted for modeling of tree-level woody biomass in a savanna environment. The 

significant improvement in model fit (R2) - from 0.55 to 0.64 (or a 16% improvement) - 

and reduction in model root-mean-squared error (RMSE; from 1250kg/ha to 1080kg/ha; a 

14% improvement) along the processing chain steps corroborated the conclusion that the 

proposed processing approach has significant improvement for the accuracy of waveform 

LiDAR-based vegetation biomass assessment.  

           Furthermore, algorithms for extracting the feature metrics required for woody, 

foliar and herbaceous biomass estimation were proposed; this approach highlighted the 

potential of small-footprint waveform LiDAR for this specific vegetation application. 

The model evaluation results exhibited a correlation of R2 =0.92 for the tree height 

estimation, R2 =0.73 for foliar biomass estimation, and R2 =0.71 for the woody biomass 

estimation, based on our proposed model derived from small footprint waveform LiDAR 

dataset.  

           Finally, a clustering-based 3D tree reconstruction in terms of 1st order branch 

structure using waveform LiDAR data was also presented. This approach exhibited 
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flexibility in that it can be applied to both leaf-off and leaf-on conditions and produced 

encouraging results for both 3D branch visualization and quantitative metrics in terms of 

branch-level azimuth angle and tilt angle and length. To the best of our knowledge, this is 

also the first instance where individual tree-level branch reconstruction, based on 

airborne small-footprint waveform LiDAR data, was performed. This will contribute not 

only to the visualization of vegetation (trees) at a fine scale by using a large area 

coverage airborne LiDAR system, but also benefit the quantification of vegetation 

structure, biomass, etc. for natural resource applications.  

           Future research should include efforts to further improve the functionality of this 

processing chain by incorporating waveform normalization algorithms to calibrate the 

signal for intensity attenuation along the laser trajectory through vegetation. 3D Voronoi 

natural neighbor interpolation could also be included for improved angular rectification, 

although this comes with an increased burden on computational and time resources. 

Finally, a higher order branch reconstruction will constitute the logical next step for 

further improving the accuracy of the 3D branch reconstruction. As far as the  waveform 

LiDAR system is concerned, auxiliary information, such as the signal-to-noise-ratio, will 

be useful to the application of the preprocessing chain towards optimization of the noise 

filtering level. The absolute energy data for both outgoing and incoming waveforms 

furthermore can be utilized to better understand and simulate the signal attenuation 

complexities, which theoretically could serve as the basis for eventual waveform 

normalization. 

  It was shown that this research presents a significant contribution to the science 

and application of small-footprint waveform LiDAR to structural assessment, given the 

proven robustness of the various approaches in both simulated and real environments. 

Finally, the processing code will be made available as an open source resource to the 

research community. 
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APPENDIX 
 
 

A.1 DIRSIG waveform simulation model 
	  

           DIRSIG, developed by the Digital Imaging and Remote Sensing (DIRS) 

Laboratory at Rochester Institute of Technology, was used to simulate the realistic 

interaction between the outgoing laser pulse and vegetation. The DIRSIG model [72-73] 

is designed to simulate returned fluxes for a scene as a function of time, using Monte-

Carlo [74] ray tracing techniques and is based on outgoing laser pulses that are generated 

by a well-defined source system. The advantage of using a waveform LiDAR simulation 

approach is that we can arbitrarily change LiDAR system settings, e.g., pulse width, 

beam divergence (footprint size), wavelength, etc., thereby providing the flexibility to 

characterize the object structure for a variety of scenarios. On the other hand, the 

structural parameters of the virtual object, e.g., tree, grass, etc., are known exactly, thus 

enabling us to link tree height, crown shape, volume, biomass, leaf area, and other 

parameters to the simulated waveform. 

           Figure A.1 shows the workflow we used for waveform LiDAR simulation for a 

tree using DIRSIG. A 3D virtual deciduous tree was first created as input to the DIRSIG 

LiDAR simulation by using the tree generation software Arbaro [46]. Specific materials 

such as leaves, branches, and ground were mapped to each facet of this 3D model and 

valid emissivity and extinction coefficients, which are based on measurement of actual 

vegetation, were assigned to each material. This enabled the simulation of absorption, 

reflection, and transmission processes for each pulse and the vegetation it interacts with.  

 



 107 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1.  Workflow of waveform LiDAR simulation using DIRSIG 

LiDAR waveform. 
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           An operationally viable waveform LiDAR platform was set up in the DIRSIG 

environment as per the system configuration lists: the goal was to match our virtual 

system with commercially available small-footprint waveform LiDAR systems, e.g., the 

Optech ALTM series. A varying outgoing pulse width (2/4/8/16 ns) was used in order to 

test the effect of pulse width on waveform processing and analysis results. The selection 

of pulse width was motivated by the outgoing pulse width of 16ns, as implemented in the 

operational waveform LiDAR system on the Carnegie Airborne Observatory [75], which 

is essentially a custom-built Optech ALTM 3100EA system. This operational selection is 

based on the need for the laser pulse to have enough energy to penetrate dense canopy in 

all woody or forested environments. A 2ns outgoing pulse width was used to generate the 

approximated or truth dataset. A 4ns (and 8ns) pulse width is the standard setting for the 

ALTM 3100 and other waveform LiDAR systems and was also used as an intermediate 

setting between 2ns and 16ns. Therefore, the outgoing pulse width setting of our 

simulation is congruent with an applicable operational system so that the results can 

guide the waveform preprocessing that will be applied to the real data. The transmitted 

pulses in operational sensors furthermore are asymmetric in shape, i.e., they have a 

slightly longer tail in the trailing edge vs. the leading edge. However, the shape of the 

outgoing pulse in the simulation was assumed to approximate a Gaussian distribution 

based on our observations of the actual outgoing pulse from the Carnegie Airborne 

Observatory (Figure A.2) and for the following reasons:  Firstly, as can be observed from 

Figure A.2, the shape of the actual pulses closely approximates a “Gaussian” distribution 

and the observed asymmetry is minimal; secondly, the shape of the outgoing pulse in 

reality could vary in terms of the slope and intensity; we used a Gaussian approximation 

in order to maintain consistency in the shape of the outgoing pulse across all the 

waveforms for our simulation.  

 

 

 

 

 

 



 109 

 

 

 

 

 

 

 

 

 

 

Figure A.2.  Actual outgoing pulses used by CAO system (ALTM 3100EA) 

 

           Figure A.1 also shows an example of the typical output from the DIRSIG LiDAR 

simulation. The plot of the tree was divided into a 40x40 pixel grid with a footprint size 

equal to 0.5m, while the waveforms were sampled in 225 time bins for each pixel after 

implementing the simulation. The x-axis for each waveform corresponds to the time bins, 

which can be converted to height-above-ground. The y-axis of the output waveform 

represented the number of photons detected for that pixel at different heights or time bins, 

which directly relates to the intensity of the waveform signal in the real waveform 

LiDAR system. It can be observed that the waveform basically consists of three parts: the 

canopy (where most of the energy is reflected), the base of the tree (trunk without 

branches), and the ground response. In some situations, the ground response may not be 

recorded, since there is not enough energy transmitted by branches and leaves to reach 

the ground. A post-ground response, or delayed returns, may also be observed due to 

multiple scattering of photons and delayed signal travel time. 
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A.2 DBSCAN 
	  

Pseudo code is below: 

DBSCAN(D, eps, MinPts) 
   C = 0 
   for each unvisited point P in dataset D 
      mark P as visited 
      NeighborPts = regionQuery(P, eps) 
      if sizeof(NeighborPts) < MinPts 
         mark P as NOISE 
      else 
         C = next cluster 
         expandCluster(P, NeighborPts, C, eps, MinPts) 
           
expandCluster(P, NeighborPts, C, eps, MinPts) 
   add P to cluster C 
   for each point P' in NeighborPts  
      if P' is not visited 
         mark P' as visited 
         NeighborPts' = regionQuery(P', eps) 
         if sizeof(NeighborPts') >= MinPts 
            NeighborPts = NeighborPts joined with 
NeighborPts' 
      if P' is not yet member of any cluster 
         add P' to cluster C 
           
regionQuery(P, eps) 
   return all points within P's eps-neighborhood 
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A.3 Waveform LiDAR processing GUI tools 
	  

Brief guideline for the waveform LiDAR processing tools 
 
a). Start the tools: 

1. Add the folder “GUI tools” to your MATLAB searching path. 

2. Type “LiDAR_tools” to bring up the main user interface of the tools. 

 

         
Figure A.3.  LiDAR_tools main user interface 

 

 

 

 

b). Data viewer: 

1. Data viewer allows you to visualize three types of remote sensing data: spectra, 

discrete return (point clouds) and waveform data. (Spectra and waveform input 

data require the ENVI “.hdr” format, point clouds input data are “.txt” format) 

2. Note: Please clear the cache whenever you reload the data or load new inputs to 

avoid any memory issues. 
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Figure A.4.  LiDAR_tools data viewer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.5.  Waveform LiDAR data viewer 
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c). Waveform preprocessing: 

1. Select or unselect the required step (“Denoise”, “Deconvolution”, Registration”, 

“Angular Rectification”); then click “run” to launch the preprocessing-chain UI. 

2. Depending on the steps you selected, only those required input areas in the 

preprocessing-chain UI will be activated.  

3. Details about the preprocessing parameters can be found in my IEEE paper [42, 

43]. 

4. The processed data can be exported as ENVI readable format.  

 

 
Figure A.6.  LiDAR waveform preprocessing window 

 

d). The overall code for the waveform processing chain is in “waveform processing.m”.        

This file is not included in the GUI tools, since it serves only as a tool for step-wise 

debugging and testing purposes (all the functionalities in the waveform processing.m was 

eventually dissected and used to make up the preprocessing section in the GUI). 
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A.4  Matlab source code 
 
%% Smooth the waveform by removing the high frequency components  
wf(wf<12)=12;  
wf_f=fft(wf-12,[],3); %shift the data 
wf_f_raw=wf_f; 
wf_f(abs(wf_f)<20)=0; % filter the noise 
wf=ifft(wf_f,[],3); 
wf(wf<0.5)=0; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Waveform deconvolution (Richardson-Lucy) 
% Intialization of parameters 
iter=200;  
residual=zeros(1,iter); 
y_n=wf; 
x_n=wf; 
h_n=t0; 
Imp_Res=reshape(Imp_Res,1,1,numel(Imp_Res)); 
Imp_Res=repmat(Imp_Res,[size(wf,1),size(wf,2),1]); 
s_h=size(t0,3); 
s_i=size(Imp_Res,3); 
s_x=size(wf,3); 
s_y=size(wf,3); 
  
% compute the system contribution (convolve the impulse response with  
% outgoing waveform)  
h_n=ifft(fft(h_n,s_h+s_i,3).*fft(Imp_Res,s_h+s_i,3),[],3); 
h_n=circshift(h_n,[0,0,-round(s_i/2)+1]); 
h_n=h_n(:,:,1:s_h); 
% Shift of the system contribution (peak at center) 
h_n_temp=reshape(h_n,size(h_n,1)*size(h_n,2),size(h_n,3)); 
h_n_temp_left=repmat(h_n_temp(:,1),1,10); 
h_n_temp_right=repmat(h_n_temp(:,end),1,10); 
h_n_temp=[h_n_temp_left h_n_temp h_n_temp_right]; 
[C,I]=max(h_n_temp,[],2); 
for ith=1:size(h_n_temp,1) 
    h_n_temp(ith,:)=circshift(h_n_temp(ith,:),[0 30-I(ith)]); 
end 
h_n_temp=h_n_temp(:,11:50); 
h_n=reshape(h_n_temp,size(t0,1),size(t0,2),size(t0,3))+eps; 
  
% Iteratively deconvolove the incoming waveform  
tic 
for t=1:iter 
    temp=ifft(fft(x_n,s_h+s_x,3).*fft(h_n,s_h+s_x,3),[],3); 
    temp=circshift(temp,[0,0,-round(s_h/2)+1]); 
    temp=y_n./(temp(:,:,1:s_x)+eps); 
    temp=ifft(fft(temp,s_h+s_x,3).*fft(h_n,s_h+s_x,3),[],3); 
    temp=circshift(temp,[0,0,-round(s_h/2)+1]); 
    x_n=abs(x_n.*temp(:,:,1:s_x));     
% Calculate the residual 
    temp1=abs(ifft(fft(x_n,s_h+s_x,3).*fft(h_n,s_h+s_x,3),[],3)); 
    temp1=circshift(temp1,[0,0,-round(s_h/2)+1]); 
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    temp1=temp1(:,:,1:s_x); 
    energy1=sum(wf,3); 
    energy2=sum(temp1,3); 
    energy2(isnan(energy2))=eps; 
    scale=energy1./energy2; 
    scale(isnan(scale))=eps; 
    temp1=temp1.*(repmat(scale,[1 1 size(wf,3)]));  
    temp2=sum((wf-temp1).^2,3);  
    temp2(isnan(temp2))=eps; 
    
residual(t)=(sum(sum(temp2))/(size(wf,3)*numel(find(sum(wf,3)>0))))^0.5
;       
end 
toc 
wf_out=x_n; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Waveform Registration (from ground to top) 
[x,y]=find(sum(wf,3));%find out the non-zero pixels 
wf_temp=reshape(wf_out,size(wf,1)*size(wf,2),size(wf,3)); 
%transform the wf data from 3D to 2D 
rows=find(mean(wf_temp,2));% Find nonzero rows 
LUT=zeros(size(wf,1)*size(wf,2)*size(wf,3),4); 
length=size(wf,3); 
index=ones(size(x,1),1); 
tic 
for i=1:size(x,1)      
    % Find the last peak of the nonzero waveform   
    [b,a]=lmax(squeeze(wf_out(x(i),y(i),:)));  
    if isempty(a)==0 
    n=numel(a); 
    % If the last peak is too small, we assume it's due to the multiple 
    % Scattering and just ignore. 
            while b(n)<0.15*max(b)          
            n=n-1; 
            end            
    index(i,1)=a(n); 
    % Assign the X Y Z and intensity to each waveform element 
    % b1=0; 
    b1=theta(x(i),y(i),1); 
    b2=theta(x(i),y(i),2); 
    b3=theta(x(i),y(i),3); 
    % x (row) 
    LUT(((rows(i)-1)*length+1):(rows(i)*length),1)=... 
     x(i)+b3*sind(b1)*cosd(b2)/0.56+((1:length)'-
index(i,1))*sind(b1)*cosd(b2)*0.15/0.56; 
    xp=round(x(i)+b3*sind(b1)*cosd(b2)/0.56); 
    if xp<1 
        xp=1; 
    elseif xp>size(dem,1) 
        xp=size(dem,1); 
    end 
    % y (col) 
    LUT(((rows(i)-1)*length+1):(rows(i)*length),2)=... 
     y(i)+b3*sind(b1)*sind(b2)/0.56+((1:length)'-
index(i,1))*sind(b1)*sind(b2)*0.15/0.56; 
    yp=round(y(i)+b3*sind(b1)*sind(b2)/0.56); 
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      if yp<1 
        yp=1; 
      elseif yp>size(dem,2) 
             yp=size(dem,2); 
    end 
    % z (height) 
    LUT(((rows(i)-1)*length+1):(rows(i)*length),3)=... 
    dem(xp,yp,2)-((1:length)'-index(i,1))*cosd(b1)*0.15;    
    % Intensity     
    LUT(((rows(i)-1)*length+1):(rows(i)*length),4)=... 
     wf_temp(rows(i),:)';    
    end 
end 
toc 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Resampling to the 3D voxel (interpolation along xy plane) 
ind=find(mean(LUT,2)); 
LUT1=LUT(ind,:); 
L=size(dem,1); 
W=size(dem,2); 
[xi,yi]=meshgrid(1:L,1:W); 
top=ceil(max(max(dem(:,:,1)))); 
bottom=floor(min(min(dem(:,:,2)))); 
h=bottom:0.15:top; 
w=zeros(L,W,numel(h)); 
tic 
for i=1:numel(h); 
    Zslice=bottom+0.15*(i-1); 
    index=find(LUT1(:,3)>Zslice & LUT1(:,3)<=Zslice+0.15); 
    temp=LUT1(index,:); 
    x1=temp(:,1);  
    y1=temp(:,2);    
    v1=temp(:,4);  
    F=TriScatteredInterp(x1,y1,v1,'natural'); 
    w(:,:,i)=F(xi,yi)'; 
end 
w(isnan(w))=eps; 
toc 

 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Tree 3D reconstruction 
close all 
wf1=enviread('tree4'); 
num=size(wf1,3); 
  
threshold=3:0.5:5; 
  
for j=1:numel(threshold) 
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A=wf1;     
A(A<threshold(j)*10^9)=0; % threshold 
  
X=[]; 
Y=[]; 
Z=[]; 
  
for layer=65:num 
A(:,:,layer)=im2bw(A(:,:,layer),0); % Make the binary image 
[row,col]=find(A(:,:,layer)); 
X=[X;col]; 
Y=[Y;row]; 
Z=[Z;layer*ones(numel(row),1)]; 
end 
  
[IDX,type]=dbscan([X,Y,Z],2,2); 
  
clust=max(IDX); 
Cl(j)=clust; 
  
end 
  
figure 
bar(threshold,Cl) 
hold on 
plot(threshold,Cl,'--r','LineWidth',2) 
xlim([0 threshold(end)]) 
ylim([0 max(Cl)*1.3]) 
xlabel('Intensity threshold','fontsize',12) 
ylabel('Number of cluster','fontsize',12) 
  
% 
[C,I]=max(Cl); 
threshold_max=threshold(I); 
 
A=wf1;     
A(A<threshold_max*10^9)=0; % threshold 
  
X=[]; 
Y=[]; 
Z=[]; 
  
for layer=65:num 
A(:,:,layer)=im2bw(A(:,:,layer),0); % Make the binary image 
[row,col]=find(A(:,:,layer)); 
X=[X;col]; 
Y=[Y;row]; 
Z=[Z;layer*ones(numel(row),1)]; 
end 
  
   
[IDX,type]=dbscan([X,Y,Z],2,2); 
clust=max(IDX); 
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%% 
figure 
for i=1:clust 
scatter3(X(IDX==i),Y(IDX==i),Z(IDX==i),25,[rand rand rand],'filled') 
axis([0 60 0 60 0 num]) 
daspect([1 1 50/15]) 
grid on 
hold on 
end 
Center=mean([X,Y]); 
   
% Stem of the tree 
  maxheight = max(Z); 
  nPoints = 8; 
  [x,y,z] = cylinder([maxheight/200; maxheight/600], nPoints); 
  z = (z+0.2)/1.2 * maxheight; % tree 2 
   
  stem.Vertices = [x(:)+Center(1),y(:)+Center(2),z(:)]; 
  stem.Faces = convhulln(stem.Vertices); 
  handles.Stem = 
trisurf(stem.Faces,stem.Vertices(:,1),stem.Vertices(:,2),stem.Vertices(
:,3),2,... 
                   'FaceColor',[0.5, 0.4, 0.2],... 
                   'EdgeColor','none','FaceLighting','gouraud'); 
                         
  light 
  set(gcf, 'Renderer', 'OpenGL'); 
  %view(0,0); 
  %set(gca,'Visible','off'); 
  %set(gcf, 'color', 'black'); 
  axis([0 60 0 60 0 num]) 
  daspect([1 1 50/15]) 
 %  
clear x0_all x1_all y0_all y1_all z0_all z1_all 
for i=1:clust 
  
px=X(IDX==i); 
py=Y(IDX==i); 
pz=Z(IDX==i); 
  
[C1,I1]=min((px-Center(1)).^2+(py-Center(2)).^2); 
[C2,I2]=max((px-Center(1)).^2+(py-Center(2)).^2); 
  
[B,IX]=sort((px-Center(1)).^2+(py-Center(2)).^2); 
t=numel(IX); 
  
x0=px(IX(1)); 
y0=py(IX(1)); 
z0=pz(IX(1)); 
  
x1=px(IX(t)); 
y1=py(IX(t)); 
z1=pz(IX(t)); 
  
hold on 
light 
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%line([x0;x1],[y0;y1],[z0;z1],'LineWidth',3,'Color',[0.3, 0.2, 0.1]) 
x0_all(i)=x0; 
x1_all(i)=x1; 
y0_all(i)=y0; 
y1_all(i)=y1; 
z0_all(i)=z0; 
z1_all(i)=z1; 
end 
  
d=((x0_all-x1_all).^2+(y0_all-y1_all).^2).^0.5; 
d0=((x0_all-Center(1)).^2+(y0_all-Center(2)).^2).^0.5; 
d1=((x1_all-Center(1)).^2+(y1_all-Center(2)).^2).^0.5; 
  
xyz_branch=[]; 
z_branch=[]; 
for i=1:clust 
  % Find the longest branches and extend them to the stem 
  v0=[x0_all(i)-Center(1), y0_all(i)-Center(2)]; 
  v1=[x1_all(i)-Center(1), y1_all(i)-Center(2)]; 
  angle=acosd((v0*v1')/norm(v0)/norm(v1)); 
if d(i)>max(d)*0.1 & angle<45 & z0_all(i)<=z1_all(i) %for leaf-on                
line([x0_all(i);x1_all(i)],[y0_all(i);y1_all(i)],[z0_all(i);z1_all(i)],
'LineWidth',3,'Color',[0.3, 0.2, 0.1]) 
  ratio=((x0_all(i)-Center(1)).^2+(y0_all(i)-
Center(2)).^2)^0.5/((x1_all(i)-Center(1)).^2+(y1_all(i)-
Center(2)).^2)^0.5; 
  z0_temp=(ratio*z1_all(i)-z0_all(i))/(ratio-1); 
  hold on 
  if (z0_temp>0 & z0_temp<=z0_all(i)) 
  
line([Center(1),x0_all(i)],[Center(2),y0_all(i)],[z0_temp,z0_all(i)],'L
ineWidth',3,'Color',[0.3, 0.2, 0.1]) 
xyz_branch=[xyz_branch; [x1_all(i)-Center(1),y1_all(i)-
Center(2),z1_all(i)-z0_temp]]; 
  z_branch=[z_branch;z0_temp]; 
  end 
  hold on 
  else 
index=find(d1<d0(i) & z1_all<z0_all(i)); 
  [C3,I3]=min((x1_all(index)-x0_all(i)).^2+(y1_all(index)-
y0_all(i)).^2+(z1_all(index)-z0_all(i)).^2); 
  temp_x=x0_all(index); 
  temp_y=y0_all(index); 
  temp_z=z0_all(index); 
   hold on         
 end  
    
end 
close all 
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