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Algebraic Classification of Numerical Spacetimes and Black-Hole-Binary Remnants

Manuela Campanelli, Carlos O. Lousto, and Yosef Zlochower

Center for Computational Relativity and Gravitation, and

School of Mathematical Sciences, Rochester Institute of Technology,

78 Lomb Memorial Drive, Rochester, New York 14623

(Dated: November 18, 2008)

In this paper we develop a technique for determining the algebraic classification of a numerical
spacetime, possibly resulting from a generic black-hole-binary merger, using the Newman-Penrose
Weyl scalars. We demonstrate these techniques for a test case involving a close binary with arbitrar-
ily oriented spins and unequal masses. We find that, post merger, the spacetime quickly approaches
Petrov type II, and only approaches type D on much longer timescales. These techniques allow us
to begin to explore the validity of the “no-hair theorem” for generic merging-black-hole spacetimes.

PACS numbers: 04.25.Dm, 04.25.Nx, 04.30.Db, 04.70.Bw

I. INTRODUCTION

The recent breakthroughs in numerical relativity [1, 2,
3] that allowed for stable evolutions of black-hole-binary
spacetimes led to many advancements in our understand-
ing of black-hole physics, and it is now possible to accu-
rately simulate the merger process and examine its ef-
fects in this highly non-linear regime [4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18]. Black-hole binaries
radiate between 2% and 8% of their total mass and up
to 40% of their angular momenta in the last few orbits,
depending on the magnitude and direction of the spin
components, during the merger [4, 5, 6] (ultra-relativistic
head-on black-hole mergers can radiate up to ∼ 14% of
their mass [19]). In addition, the radiation of net linear
momentum by a black-hole binary leads to the recoil of
the final remnant hole [20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43],
which can have astrophysically observable important ef-
fects [20, 42, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53] and
represents the first strong-field test of General Relativity
(GR).

In addition to important astrophysical applications,
the two body problem in GR is intrinsically interest-
ing because it provides the framework for analyzing the
behavior of the theory in the highly-nonlinear, highly-
dynamical, non-symmetrical regime. For example, the
cosmic censorship hypothesis, that states that singular-
ities in the universe should be cloaked by a horizon is
under active investigation [4, 5, 6, 54, 55]. In this paper
we are interested in verifying the “no hair theorem”, that
states that the final state of a black hole, for instance as
the byproduct of a multi-black-hole mergers [56, 57], is a
Kerr black hole [58].

The problem of determining the geometry of the final
stage of a black-hole binary merger arises as a practi-
cal question even in perturbative techniques, such as the
Lazarus approach [59, 60], which used a combined numer-
ical and perturbative approach to simulate the waveforms
from a binary merger. In the context of the Lazarus
approach, it is crucial to determine when the transi-

tion from numerical to perturbative evolutions is possi-
ble, i.e. when the full numerical simulation could be ap-
proximated by (relatively small) perturbations of a Kerr-
rotating black hole, and a diagnostic, the S-invariant [61]

S = 27J2/I3, (1)

that is identically 1 for a Kerr spacetime, was developed
to measure the closeness of the spacetime to an alge-
braically special type II. However, the S-invariant by it-
self is not sufficient to demonstrate that the spacetime is
near Kerr because it does not distinguish between type
II and type D spacetimes.

More recently, with the availability of new long term
evolutions, one of the consistency tests performed is the
agreement of the total angular momentum of the system
when computed in three different ways: by measuring
the angular momentum (and mass) of the remnant black
hole [5, 6, 22] using the isolated horizon formulae [62],
by measuring the total energy and angular momentum
radiated [63, 64] and subtracting it from the total initial
values, and by looking at the quasi-normal frequencies of
the late-time waveforms and associate them with those
of a rotating Kerr hole with mass M and angular mo-
mentum per mass a [23]. The rough agreement of those
values represents weak evidence that the final black hole
is of the Kerr type.

No hair theorems assume a stationary Killing vec-
tor [58] as characterizations of the Kerr geometry [65, 66].
While one can classify spacetimes based on their symme-
try properties, here we will use a classification method
based on the algebraic properties of generic spacetimes
without a-priori assumptions about symmetries.

Demonstrating that the remnant of a black-hole
merger approaches Kerr asymptotically (in time) would
also help answer open questions about the stability of
Kerr under arbitrary perturbations. The stability of the
Kerr spacetime under linear perturbations has only been
proven mode-by-mode [67], and the interior of the hole
may even be unstable [68]. Hence a study of the in-
variant geometrical properties of the black-hole merger,
which would yield a highly-nontrivial perturbation of the
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‘Kerr’ background, may answer many open questions.

II. MATHEMATICAL TECHNIQUES

A. Petrov type

The Petrov classification of a generic spacetime is re-
lated to the number of distinct principle null directions
(PND) of the Weyl tensor. A generic spacetime will have
four linearly independent null vectors kµ (i.e. PNDs) at
all points that satisfy

kνkρk[τCµ]νρ[σkχ]. (2)

Type I spacetimes have four distinct PNDs, Type II have
three distinct PNDs (1 pair and two additional distinct
PNDs), Type III have two distinct PNDs with one PND
of multiplicity three, Type D spacetimes have two dis-
tinct PNDs consisting of two pairs of PNDs of multiplic-
ity two, type N spacetimes have a single PND of multi-
plicity four, and Type O spacetimes have Cµνρσ = 0.

If the tetrad is chosen such that la is a PND, then the
Weyl scalar ψ0 = Cµνρσ l

µmν lρmσ vanishes, and simi-
larly, if ψ0 = 0, then la is a PND. Hence the algebraic
classification of the spacetime can be obtained by find-
ing the number of distinct choices of la for which ψ0 = 0.
This amounts to finding the roots (and multiplicity of the
roots) of the quartic equation (See Ref. [69], Eq. (9.5))

ψ0 + 4λψ1 + 6λ2ψ2 + 4λ3ψ3 + λ4ψ4 = 0, (3)

where ψ0, ..., ψ4 are the Weyl scalars in an arbitrary
tetrad, restricted only by the condition ψ4 6= 0. This is
equivalent to finding a tetrad rotation such that ψ0 = 0,
and if the root is repeated, then in this tetrad, ψ1 = 0
(similarly if the multiplicity of the root is 3 or 4 then
ψ2 = 0 and ψ3 = 0 respectively). If, as in type D space-
times, there are two pairs of repeated PNDs, then we
can choose a tetrad where the only non-vanishing Weyl
scalar is ψ2. It is important to note that the algebraic
classification is done pointwise. A spacetime, as a whole,
is of a particular type, if at every point the algebraic
classification is of that type.

In order to determine if the numerical spacetime is al-
gebraically special (within the numerical errors) we fol-
low [70] and [69], Ch. 4. We start by defining the scalar
invariants [71]

I =
1

2
C̃abcdC̃

abcd and J = −1

6
C̃abcdC̃cd

mnC̃
mnab. (4)

where C̃abcd = 1
4 (Cabcd + i

2ǫabmnC
mn

cd) (i.e. 1/2 the con-
jugate of the self-dual part of the Weyl tensor Cabcd).

If a spacetime has repeated principal null directions it
is algebraically special. If this is the case, Eq. (3) has
at least two repeated roots. In any case, Eq. (3) can be
transformed into a depressed quartic (see Eq. (9) below)

that, in turn, can be converted into a depressed nested
cubic with roots y, which satisfy the condition

y3 − Iy + 2J = 0. (5)

Algebraic specialty then implies

I3 = 27J2, (6)

i.e. S = 1 in Eq. 1. For Types II and D the invariants
I and J are non-trivial, while for Types III, N , and O
they vanish identically.

For practical applications, it is convenient to write the
invariants in terms of Weyl scalars in an arbitrary null
tetrad

I = 3ψ2
2 − 4ψ1ψ3 + ψ4ψ0, (7)

J = −ψ3
2 + ψ0ψ4ψ2 + 2ψ1ψ3ψ2 − ψ4ψ

2
1 − ψ0ψ

2
3 . (8)

In order to completely determine the algebraic type we
reduce Eq. (3), by changing to the variable x = λψ4 +
ψ3 [72], to the form

x4 + 6Lx2 + 4K x+N = 0, (9)

where

K = ψ1ψ
2
4 − 3ψ4ψ3ψ2 + 2ψ3

3, (10)

L = ψ2ψ4 − ψ2
3 , (11)

N = ψ2
4I − 3L2

= ψ4
3ψ0 − 4ψ4

2ψ1ψ3 + 6ψ4ψ2ψ3
2 − 3ψ3

4 (12)

(note the typo in the definition of N in Refs. [69, 70]).
For a type II spacetime, K 6= 0 and N − 9L2 6= 0, while
for type D and III spacetimes, K = 0 and N − 9L2 = 0
with N 6= 0. For a type N spacetime, K = 0 and L = 0
(hence N = 0).

Note that the above scalar objects are not invariant
under arbitrary tetrad rotations (See Ref. [73], Chapter
1, Eqs. (342), [note typo there], (346) and (347)). In
particular they transform as

L → A2e−2IθL,

K → A3e−3IθK,

N → A4e−4IθN. (13)

for Type III rotations and

L → L,

K → K,

N → N, (14)

for Type II rotations. Similar expressions for Type I
rotations do not have these simple forms, but we verified
that, if as in type D solutions, K = 0 and N−9L2 = 0 in
the original tetrad, then K = 0 and N − 9L2 = 0 in the
new rotated tetrad (this is also obvious for type III and
II transformations above). One the other hand L = 0 is
not preserved by type I rotations.
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Coming back to the roots x1, x2, x3, x4 of the Eq. (9),
we observe that, in numerically generated spacetimes, the
roots never agree exactly, even if the metric is expected
to be of a special algebraic type. Of course, the root
differences in each pair should scale with resolution and
asymptotically approach zero as h→ 0 and t→ ∞.

The roots of Eq. (3) can be obtained from the roots of
Eq. (5)i using the following algorithm [74]

D = J2 − (I/3)3,

A = (−J +
√
D)1/3, B = (−J −

√
D)1/3,

y1 = A+B,

y2 = −1

2
(A+B) + i

√
3

2
(A−B),

y3 = −1

2
(A+B) − i

√
3

2
(A−B), (15)

where the complex phases of A and B are chosen such
that AB = I/3. The roots of Eq. (9) are then obtained
from the roots of the complete cubic equation for the
variable z (where z = 2ψ4 y − 4L)

z3 + 12L z2 + 4(9L2 −N) z − 16K = 0, (16)

which has the roots

z1 = 2ψ4 y1 − 4L,

z2 = 2ψ4 y2 − 4L,

z3 = 2ψ4 y3 − 4L. (17)

Finally the roots of our original equation (3) can be writ-
ten in the form [72]

λ1 =

[
−ψ3 +

1

2
(
√
z1 +

√
z2 +

√
z3)

]
/ψ4,

λ2 =

[
−ψ3 +

1

2
(
√
z1 −

√
z2 −

√
z3)

]
/ψ4,

λ3 =

[
−ψ3 +

1

2
(−√

z1 +
√
z2 −

√
z3)

]
/ψ4,

λ4 =

[
−ψ3 +

1

2
(−√

z1 −
√
z2 +

√
z3)

]
/ψ4, (18)

where the signs of the
√
zi are chosen such that

(
√
z1
√
z2
√
z3) = −4K. We note that in a type D space-

time λ1 = λ2 and λ3 = λ4.

B. Vacuum

The determination of the algebraic type of the matter
fields can be done in an analogous way using the Ricci
tensor, rather than the Weyl scalars. The analogue of
the Petrov types are the Segre types and the equation
to determine the multiplicities of the roots is ([69], Eq.
(9.2))

σ4 − 1

2
I6 σ

2 − 1

3
I7 σ +

1

8
(I2

6 − 2I8) = 0, (19)

where

I6 = Sa
b S

b
a, (20)

I7 = Sa
b S

b
c S

c
a, (21)

I8 = Sa
b S

b
c S

c
d S

d
a , (22)

and

Sab = Rab −
1

4
gabR, (23)

is the trace free part of the Ricci tensor.
This characterization of the matter fields does not com-

pletely determine the algebraic properties, and other ad-
ditional criteria have to be used. In our numerical simu-
lations here, we are concerned with vacuum spacetimes.
Numerical evolutions may introduce artificial (and un-
physical) matter fields through violations of the Hamil-
tonian and momentum constraints, and the natural way
of monitoring the accuracy of the solution is to examine
these constraints and confirm that the induced matter
fields converge to zero.

C. Determination of the Kerr solution

Once we determine that a solution is, for instance,
Petrov type D and is a vacuum solution, we still do not
uniquely single out the Kerr spacetime. One can go fur-
ther and try to determine if the spacetime has the sym-
metries of Kerr (the Kerr spacetime has two commuting
spacelike and timelike Killing vectors [75]). However, one
still needs to examine the asymptotic behavior of the so-
lutions to determine that the spacetime does not have a
NUT charge.

A general type D, vacuum solution can be described
by the metric ([69], Eq. (21.17)),

ds2 = (p2 + r2)(dθ2 + dr2/Y )

+a2 sin2 θ(dτ + r2dσ)2/(p2 + r2)

−Y (dτ − p2dσ)2/(p2 + r2), (24)

where p = l − a cos θ, σ = −ϕ/a, τ = t + aϕ, Y =
a2 − l2 − 2mr + r2, m is the mass, a is the specific spin,
and l the NUT parameter of the black hole. If the null
tetrad is aligned with the principal null directions, i.e.

lµ, nµ = (r2∂τ − ∂σ)/Y ± ∂r, (25)

then the only non-vanishing Weyl scalar is

ψ2 = −(m+ il) (r + i(l − a cos θ))
−3
. (26)

It is then natural to look at the asymptotic behavior of
the spacetime to determine if there is a NUT charge l,
or if the spacetime is Kerr. One can use the method of
determining a quasi-Kinnersley frame [59, 76] to compute
ψ2 and perform the above analysis. Alternatively, we can
use the fact that, once we determined the spacetime is
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type D, we can choose a tetrad where all the Weyl scalars,
but ψ2, vanish. Hence the invariants I and J must have
the form

I = 3ψ2
2 , J = −ψ3

2 (27)

in this special class of tetrads.
An asymptotic expansion of the I invariant for the met-

ric (24) then gives

I =
3

r6
(m+ il)2 − 18i

r7
(m+ il)2(l − a cos θ) + O

(
1

r8

)
,

(28)
and, by looking at the real and imaginary parts of the I
invariant at large radii, we can determine the l parameter
via

ℑ(I)/ℜ(I) =

{
2ml

m2
−l2 ; l 6= 0,

6a cos θ
r ; l = 0.

(29)

We will use this method to determine the asymptotic be-
havior of the final remnant of a black-hole-binary merger.
Note that using I and J only requires smooth second
derivatives of the metric, which has a distinct advan-
tage over higher-derivative methods when dealing with
numerically generated spacetimes.

III. NUMERICAL TECHNIQUES

To compute the numerical initial data, we use the
puncture approach [77] along with the TwoPunc-

tures [78] code. In this approach the 3-metric on the
initial slice has the form γab = (ψBL + u)4δab, where
ψBL is the Brill-Lindquist conformal factor, δab is the
Euclidean metric, and u is (at least) C2 on the punc-
tures. The Brill-Lindquist conformal factor is given by
ψBL = 1+

∑n
i=1m

p
i /(2|~r−~ri|), where n is the total num-

ber of ‘punctures’, mp
i is the mass parameter of puncture

i (mp
i is not the horizon mass associated with puncture i),

and ~ri is the coordinate location of puncture i. We evolve
these black-hole-binary data-sets using the LazEv [79]
implementation of the moving puncture approach [2, 3].
In our version of the moving puncture approach we re-
place the BSSN [80, 81, 82] conformal exponent φ, which
has logarithmic singularities at the punctures, with the
initially C4 field χ = exp(−4φ). This new variable, along
with the other BSSN variables, will remain finite pro-
vided that one uses a suitable choice for the gauge. An
alternative approach uses standard finite differencing of
φ [3]. Recently Marronetti et al. [83] proposed the use of
W =

√
χ as an evolution variable. For the runs presented

here we use centered, eighth-order finite differencing in
space [56] and fourth-order Runge-Kutta time integrator
(note that we do not upwind the advection terms).

We use the Carpet [84] mesh refinement driver to pro-
vide a ‘moving boxes’ style mesh refinement. In this ap-
proach refined grids of fixed size are arranged about the
coordinate centers of both holes. The Carpet code then

moves these fine grids about the computational domain
by following the trajectories of the two black holes.

We obtain accurate, convergent waveforms and horizon
parameters by evolving this system in conjunction with
a modified 1+log lapse and a modified Gamma-driver
shift condition [2, 85], and an initial lapse α(t = 0) =
2/(1 + ψ4

BL). The lapse and shift are evolved with

(∂t − βi∂i)α = −2αK, (30a)

∂tβ
a = Ba, (30b)

∂tB
a = 3/4∂tΓ̃

a − ηBa. (30c)

These gauge conditions require careful treatment of χ,
the inverse of the three-metric conformal factor, near the
puncture in order for the system to remain stable [2, 7, 8].
As shown in Ref. [86], this choice of gauge leads to a
strongly hyperbolic evolution system provided that the
shift does not become too large. In our tests, W showed
better behavior at very early times (t < 10M) (i.e. did
not require any special treatment near the punctures),
but led to evolutions with lower effective resolution when
compared to χ.

We use AHFinderDirect [87] to locate apparent
horizons. We measure the magnitude of the horizon
spin using the Isolated Horizon algorithm detailed in [62].
This algorithm is based on finding an approximate rota-
tional Killing vector (i.e. an approximate rotational sym-
metry) on the horizon ϕa. Given this approximate Killing
vector ϕa, the spin magnitude is

S[ϕ] =
1

8π

∮

AH

(ϕaRbKab)d
2V, (31)

where Kab is the extrinsic curvature of the 3D-slice, d2V
is the natural volume element intrinsic to the horizon,
and Ra is the outward pointing unit vector normal to
the horizon on the 3D-slice. We measure the direction of
the spin by finding the coordinate line joining the poles
of this Killing vector field using the technique introduced
in [6]. Our algorithm for finding the poles of the Killing
vector field has an accuracy of ∼ 2◦ (see [6] for details).
Note that once we have the horizon spin, we can calculate
the horizon mass via the Christodoulou formula

mH =
√
m2

irr + S2/(4m2
irr), (32)

where mirr =
√
A/(16π) and A is the surface area of the

horizon.
We also use an alternative quasi-local measurement of

the spin and linear momentum of the individual black
holes in the binary that is based on the coordinate ro-
tation and translation vectors [22]. In this approach the
spin components of the horizon are given by

S[i] =
1

8π

∮

AH

φa
[i]R

bKabd
2V, (33)

where φi
[ℓ] = δℓjδmkr

mǫijk, and rm = xm − xm
0 is the

coordinate displacement from the centroid of the hole,
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while the linear momentum is given by

P[i] =
1

8π

∮

AH

ξa
[i]R

b(Kab −Kγab)d
2V, (34)

where ξi
[ℓ] = δi

ℓ.

A. Numerical Tetrad and Root Finder

We calculate ψ0 · · ·ψ4 using the tetrad

lµ = (tµ + rµ)/
√

2, (35)

nµ = (tµ − rµ)/
√

2, (36)

mµ = (θµ + iφµ)/
√

2, (37)

where tµ is the unit normal to the t = const slices and
{rµ, θµ, φmu} are unit spacelike vectors (with time com-
ponent equal to zero) constructed as follows [60]. We
start with the unit vector

φa =
̂̃
φa, (38)

where φ̃a = {−y, x, 0} , v̂a = va/
√
vavbγab, and γab is

the spatial metric. We then find the unit vector in radial
direction perpendicular to φa

ra = ̂̃ra, (39)

where

r̃a = r̆a − r̆aφbγab, (40)

and r̆a = {x, y, z}. Finally, we obtain

θa = ̂̃θa, (41)

where

θ̃a = γabǫbcdφ
crd. (42)

With this choice of tetrad ψ0 · · ·ψ4 are all non-vanishing
for Kerr spacetimes when the specific spin a is non-
vanishing.

In practice, we found that the roots of Eq. (3) are eas-
ily calculated using Newton’s method. Here we start by
assuming the root is λ = 0 and iterate until the root
converges to order roundoff and obtain the root λ1. We
then divide the polynomial by (λ − λ1) and repeat the
procedure twice to find λ2 and λ3. λ4 is then obtained di-
rectly from the resulting first order polynomial. We then
test that we found the true roots by comparing the poly-
nomial ψ4Π

4
i=1(λ− λi) with the original polynomial (3).

This procedure worked well because two of the roots in
our case were always located near λ = 0. Thus we found
that λ1 and λ2 always corresponded to the pair of roots
near λ = 0. This procedure is repeated for all points in
the spacetime that we analyzed.

TABLE I: Initial data parameters for the numerical evolution.
The punctures have mass parameters mp

i , horizons masses

mH
i , momenta ±~p, spins ~Si, and the configuration has a total

ADM mass MADM = 1.0000004M .

mp
1
/M 0.37752 mp

2
/M 0.42452

mH
1 /M 0.46298 mH

2 /M 0.57872
x1/M -0.75023 x2/M 0.58004
y1/M 1.11679 y2/M -0.89449
z1/M -0.16093 z2/M 0.20338
Sx

1 /M2 -0.020765 Sx
2 /M2 0.12106

Sy
1
/M2 0.065806 Sy

2
/M2 -0.05532

Sz
1/M2 0.054697 Sz

2/M2 0.16178
px/M -0.134735 py/M -0.21376
pz/M -0.012323

B. Initial Data

To generate the initial data parameters, we used ran-
dom values for the mass ratio and spins of the binary
(the ranges for these parameters were chosen to make
the evolution practical). We then calculated approximate
quasi-circular orbital parameters for a binary with these
chosen parameters at an initial orbital separation of 50M
and evolved using purely PN evolutions until the binary
separation decreased to 2.3M . The goal was to produce
a binary that had no particular symmetries, so that we
can draw general conclusions from the results, while also
merging very quickly (within 15M of the start of the
simulation), to reduce the computational expense. The
initial binary configuration at r = 50M was chosen such

that q = m1/m2 = 0.8, ~S1/m
2
1 = (−0.2,−0.14, 0.32),

and ~S2/m
2
2 = (−0.09, 0.48, 0.35). This is the same basic

configuration that we used in [88]. We summarize the
initial data parameters in Table I.

IV. RESULTS

We ran the binary configuration using 9 levels of refine-
ment with an outer grid of resolution h = 3.2M extending
to ±416. The resolution on the finest grid was h = M/80.
We analyze the Weyl scalars in the region r <∼ 5M where
we had a resolution of h ≤ M/20. This calculation is
non-trivial because the magnitudes of the Weyl scalars
can be quite small (we need to analyze these scalars at
very late times when the waveform amplitudes are quite
small), requiring very-high overall simulation accuracy.
We found that the isolated horizon formulae and the ra-
diated energy and angular momentum both predict sim-
ilar remnant masses and spins, with the isolated horizon

formulae Eqs. (31)-(33) giving Mrem = 0.9859, ~Srem =
{0.00160±0.00005, 0.0407±0.0004, 0.7173±0.0001} and

the radiation giving Mrem = 0.9861 ± 0.0001, ~Srem =
{0.00153± 0.00001, 0.04078± 0.00002, 0.7179± 0.0001}.
A fit to the quasi-normal profile ∼ exp(−αt) sin(ωt) gives
α = 0.07997 ± 0.0013 and ω = 0.5603 ± 0.0025, where
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t/M

10
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y 3−

y 2)
/y

1|

FIG. 1: The magnitude |(y3−y2)/y1| versus time at the point
x = 5M, y = 0, z = 0. The spacetime is algebraically special
if |(y3 − y2)/y1| = 0.

the values quoted are the average from fits to the real
and imaginary parts of the (ℓ = 2,m = 2) compo-
nent of ψ4 extracted at r = 100M over the domain
(160M < t < 200M). The resulting values of Mrem

and a/Mrem [89] are 0.9876 ± 0.0079 and 0.743 ± 0.013
respectively. Note that the isolated horizon and radiated
Energy/Momentum formulae predict that the final spe-
cific spin is a/Mrem = 0.73931± 0.00016.

If the spacetime is algebraically special, then the roots
y2 and y3 of Eq. (5) are equal. To measure how far the
spacetime is from being algebraically special we plot the
magnitude |(y3 − y2)/y1|. In Fig. 1 we show this magni-
tude for the point (x = 5M, y = z = 0) as a function of
time. From the figure we can see that the deviation of
the spacetime from being algebraically special decreases
with time until t ∼ 150M . The oscillation seen after
this time may be due to reflections off of the refinement
boundaries.

In Figs. 2-6 we show the magnitudes of the root-pair
differences |λ1 − λ2| and |λ3 − λ4| both as a function
of t at a fixed (x, y, z) = (5, 0, 0) and along the x-axis
at several times. Both pairs show a general decrease in
the magnitudes of the differences with time, but with
a pronounced oscillatory behavior. Note that |λ1 − λ2|
separation is much smaller than the |λ3 −λ4| separation,
indicating that the space-time first approaches Type II
before settling to Type D. In Fig. 7 we plot the values of
the pairs (λ1, λ2) and (λ3, λ4) on the complex plane at
the point (5, 0, 0) for times t = 57, · · · , 166.25 in steps of
0.59375. From the plots we can see how each of the two
roots in the root pairs approach each other. In Fig. 4 we
plot the magnitude of the root separations normalized by
the difference between the average value of the roots in
each pair. It takes about 80M of evolution, or 65M post

0 100 200 300
t/M

0

0.01

0.02

0.03

|λ
1 

−
 λ

2|

FIG. 2: The magnitude of the root-pair separation |λ1 − λ2|
versus time for the two roots close to λ = 0 at the point
x = 5M, y = 0, z = 0.
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10
−1

10
0

10
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10
3

|λ
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−
 λ

4|

FIG. 3: The magnitude of the root-pair separation |λ3 − λ4|
versus time for the two roots furthest from λ = 0 at the point
x = 5M, y = 0, z = 0.

merger, until the larger normalized root separation falls
below 1.

In Fig. 8 we plot the function rℑ(I)/ℜ(I) along the
x-axis for various times from t ∼ 100 to t ∼ 350M .
It is clear from the plot that this function does not
tend to ∞ at larger r, which indicates that the NUT
charge of the space time vanishes. Hence we can see
good evidence that the spacetime is approaching Type D
with zero NUT charge, and hence is approaching a Kerr
spacetime. In addition, one can, in principle, determine
the a parameter (specific spin) of the remnant from the
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FIG. 4: The magnitude of the two root-pair separations nor-
malized by the magnitude of the differences of the average
value of the roots in each pair |λa−λb|, where λa = (λ1+λ2)/2
and λb = (λ3 + λ4)/2.
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t=71.25
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t=142.5
t=190
t=237.5

FIG. 5: The magnitude of the root-pair separation |λ3 − λ4|
along the x-axis for several values of t.

asymptotic behavior of ℑ(I)/ℜ(I) through Eq. (29) (i.e.
ℑ(I)/ℜ(I) ∼ 6a cos(θ)/r+O(r−2)). From the spin mag-
nitude and direction of the remnant, we have 6a cos(θ) =
0.0097 ± 0.0002 on the x-axis, which we can reproduce
to within a factor of 2 through a fit of the data in Fig. 8
to the asymptotic form ℑ(I)/ℜ(I) ∼ a/r + b/r2 + c/r2.
We have confirmed that the constraints converge to zero
for our code outside of the horizons. For this simulation
the constraint violations where of order 10−4 at the hori-
zons, and dropped off steeply with radius. Convergence
of the constraints is important to show that the space-
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t=249.375
t=273.125
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t=320.625
t=332.5

FIG. 6: The magnitude of the root-pair separation |λ3 − λ4|
along the x-axis for several values of t.
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Re(λ)
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)
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0.04
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−10 −5 0 5
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FIG. 7: The locations on the complex plane of the roots
λ1, · · · , λ4 for t = 57, 57.59375, · · · , 166.25 at the point (x =
5, y = 0, z = 0). The insets shows the last 107 points. Note
that λ4 has the largest scatter in time and that the separation
of λ1 and λ2 is not distinguishable on the overall plot.

time remains a vacuum spacetime outside of the remnant
horizons (otherwise proving that the spacetime is Type
D would not imply that it is Kerr).

V. CONCLUSION

We have provided a method to classify numerically
generated spacetimes according to their algebraic prop-
erties. This is based on the use of the coincidence of the
principal null directions for algebraically special space-



8

−20 −10 0 10 20
x/M

10
−2

10
−1

10
0

10
1

10
2

r 
Im

(I
)/

R
e(

I)
t=178.125
t=237.5
t=296.875
t=356.25

FIG. 8: The ratio rℑ(I)/ℜ(I) as a function of x along the
x-axis. Note that the behavior indicates that ℑ(I)/ℜ(I) → 0
as r → ∞, which indicates that the NUT charge vanishes.

times. In particular, we focus on the final remnant of a
generic-black-hole-binary merger, that, according to the
‘no hair’ theorem, is expected to produce a Kerr black
hole, and hence be of algebraic (Petrov) type D (i.e. that
the four principal null directions agree in pairs). We give
a measure of the agreement by normalizing the numerical
differences between two nearby roots of Eq. (3) with the
average separation to the other root pair in the complex
plane.

We have been able to verify this agreement to order
10−4 and 10−2 for the two pairs respectively. We find
that the agreement of the two roots in each pair improves

with evolution time and only appears to be limited by un-
physical boundary effects (from the refinement and outer
boundaries). The late-time behavior of these two root
pairs implies that the spacetime near the remnant first
approaches a type II (with one pair of roots and two dis-
tinct roots) and over longer timescales approaches type
D. Thus, our simulations would suggest that the space-
time indeed approaches Kerr, which incidentally, is also
a strong test of the stability of the Kerr solution under
large, generic perturbations within the timescales of the
simulation.

These results represent the first such tests for generic
binary mergers using modest computational resources.
This naturally suggests that further studies, perhaps also
involving other numerical evolution methods, such as
Pseudo-spectral [90, 91] and multi-patch, multi-block [92,
93], be used to test the algebraic structure of the rem-
nants of binary mergers. Finally, the algebraic structure
of the remnants from the merger of more than two black
holes (e.g. close-encounters [56, 57] of multiple black
holes), while expected to have the same structure as the
remnants of binaries, could conceivably have different al-
gebraic structures. Thus it would be interesting to use
these techniques to examine those remnants.
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