10-18-2001

A C^∞-Diffeomorphism of \mathbb{R}^2 that has a Cantor set that is a minimal set

William Basener

Carl Lutzer

Follow this and additional works at: http://scholarworks.rit.edu/article

Recommended Citation
Basener, William and Lutzer, Carl, "A C^∞-Diffeomorphism of \mathbb{R}^2 that has a Cantor set that is a minimal set" (2001). Accessed from http://scholarworks.rit.edu/article/1439

This Article is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Articles by an authorized administrator of RIT Scholar Works. For more information, please contact ritscholarworks@rit.edu.
A C^∞ diffeomorphism of \mathbb{R}^2 that has a Cantor set that is a minimal set. - DRAFT

OCTOBER 18, 2001

BILL BASENER AND CARL LUTZER

ABSTRACT. We present a C^∞ diffeomorphism of \mathbb{R}^2 that has a Cantor Set that is a minimal Set. The Cantor Set is contained inside an annulus.

1. Introduction

For a homeomorphism $f : X \rightarrow X$ of a topological space X, a nonempty compact subset $Y \subset X$ is a minimal set if for every $y \in Y$ the orbit of y is dense in Y. Denjoy showed (see [4]) that any diffeomorphism of S^1 that has a Cantor set which is a minimal set cannot be C^2. Our example shows that this restriction does not hold for a diffeomorphism of the annulus.

This raises the question of whether diffeomorphisms of other manifolds can be smoother than C^2 and have a Cantor set as a minimal set. We answer this in the affirmative by constructing a C^∞ diffeomorphism of \mathbb{R}^2 that has a Cantor set which is a minimal set. We will refer to a Cantor Set that is a minimal set as a Cantor minimal set.

We need the following definition

DEFINITION 1. For $F : \mathbb{R} \rightarrow \mathbb{R}$ any j-times differentiable map we define

$$||F||_{C^j} = \sup_{x \in \mathbb{R}, 1 \leq i \leq j} \left| \frac{d^i F}{dx^i}(x) \right| + \sup_{x \in \mathbb{R}} |F(x)|,$$

and we need the following theorem.

THEOREM 1. Let $f_i : \mathbb{R}^2 \rightarrow \mathbb{R}^2$, $i = 1, 2, \ldots$ be a sequence of functions such that:

1. For every i, f_i is C^∞.
2. The sum $\sum_{i=1}^\infty ||f_i - f_{i+1}||_{C^j}$ converges.

Then $f_i \rightarrow f : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ such that f is C^∞.

The map can be loosely described as follows. Let p_1, p_2, \ldots be an infinite sequence of positive integers which are pairwise relatively prime. Let D be the unit disk in \mathbb{R}^2. Let f_1 be a rotation of D by $2\pi/p_1$. For each $i = 0, 1, \ldots, p_1 - 1$ let $D(i)$ be a closed disk contained in D such that f_1 takes $D(i)$ to $D(i+1 \mod p_1)$ and such that $D(i) \cap D(j) = \emptyset$ for
$i \neq i'$. (See Figure 1.) For each $i = 0, 1, \ldots, p_1 - 1$ define a closed disk $D^{(i)}$ such that $D^{(i)} \subseteq \text{intt} D^{(i)}$ and $D^{(i)} \cap D^{(i')} = \emptyset$ for $i \neq i'$.

Let f_2 be a function that rotates each $D^{(i)}$ by $2\pi/p_2$ and is the identity outside of the $D^{(i)}$. For each $i = 0, 1, \ldots, p_1 - 1, j = 0, 1, \ldots, p_2 - 1$ define a closed disk $D^{(i,j)}$ such that such that f_2 takes $D^{(i,j)}$ to $D^{(i,j+1 \mod p_2)}$. Hence $f_2 \circ f_1$ takes $D^{(i,j)}$ to $D^{(i+1 \mod (p_1), j+1 \mod (p_2))}$.

Continuing by induction, for every $i \in \mathbb{N}$, we define a homeomorphism $f_i : \mathbb{R}^2 \to \mathbb{R}^2$ such that:

- f_1 rotates every $D^{(x_1,\ldots,x_{i-1})}$ by $2\pi/p_1$, where $(x_1,\ldots,x_{i-1}) \in \mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_{i-1}}$.
- f_i is the identity off the $D^{(x_1,\ldots,x_{i-1})}$.

Then define disjoint disks $D^{(x_1,\ldots,x_{i-1},x_i)}$, where $(x_1,\ldots,x_{i-1},x_i) \in \mathbb{Z}_{p_1} \times \cdots \times \mathbb{Z}_{p_{i-1}} \times \mathbb{Z}_{p_i}$, and disks $D^{(x_1,\ldots,x_{i-1},x_i)}$ with $D^{(x_1,\ldots,x_{i-1},x_i)} \subset \text{intt} D^{(x_1,\ldots,x_{i-1},x_i)}$, such that

- $D^{(x_1,\ldots,x_{i-1},x_i)} \cap D^{(y_1,\ldots,y_{i-1},y_i)} = \emptyset$ for $(x_1,\ldots,x_{i-1},x_i) \neq (y_1,\ldots,y_{i-1},y_i)$
- $f_i \circ f_{i-1} \circ \cdots \circ f_2 \circ f_1$ takes $D^{(x_1,\ldots,x_{i-1},x_i)}$ to $D^{(x_1+1 \mod (p_1),\ldots,x_{i-1}+1 \mod (p_{i-1}),x_i+1 \mod (p_i))}$
- f_i is the identity off the $D^{(x_1,\ldots,x_{i-1},x_i)}$.

We show that the map $f = \cdots \circ f_i \circ f_{i-1} \circ \cdots \circ f_2 \circ f_1$ is continuous in Section 2.

Figure 1. The first three steps in creating the Cantor set C for $p_1 = 3$, $p_2 = 5$, and $p_3 = 7$.

The points in the Cantor set $C = \bigcap_{i=1}^{\infty} \left(\bigcup_{(x_1,x_2,\ldots,x_i) \in \mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_i}} D^{(x_1,x_2,\ldots,x_i)} \right)$ can be indexed by the group

$$G = \times_{i=1}^{\infty} \mathbb{Z}_{p_i}$$
using the map

\[(x_1, x_2, x_3, \ldots) \mapsto D_{(x_1)} \cap D_{(x_2)} \cap D_{(x_1, x_2, x_3)} \cap \cdots.\]

We can now prove that \(C\) is a minimal set for \(f\).

Proposition 1. The set \(C\) is a minimal set for the map \(f\).

Proof. It follows from our definition that for \((x_1, x_2, x_3, \ldots) \in C\),

\[f(x_1, x_2, \ldots) = (x_1 + 1 \mod (p_1), x_2 + 1 \mod (p_2), \ldots) \in C\]

For any \(\epsilon > 0\) there exists an \(N\) such that for two points \((x_1, x_2, x_3, \ldots), (y_1, y_2, y_3, \ldots) \in C\), \(|(x_1, x_2, x_3, \ldots) - (y_1, y_2, y_3, \ldots)| < \epsilon\) if \(x_i = y_i\) for all \(i < N\). This follows because \(\text{diam} D_{(x_1, \ldots, x_i)} \to 0\) as \(i \to \infty\). So to show that \(C\) is a minimal set for \(f\) it suffices to show that for any \((x_1, x_2, x_3, \ldots), (y_1, y_2, y_3, \ldots) \in C\) and positive integer \(N\) there exists a positive integer \(k\) such that the first \(N\) entries of \(f^k(x_1, x_2, x_3, \ldots)\) agree with the first \(N\) entries of \((y_1, y_2, y_3, \ldots)\). This follows easily from Formula 1 because the \(p_i\) are pairwise relatively prime. \(\square\)

2. The Map \(f\) Can Be \(C^\infty\)

For convenience we will use \(\mathbb{C}\) instead of \(\mathbb{R}^2\). We begin with a technical but useful lemma.

Lemma 1. For any positive integers \(p, k\), real numbers \(0 < a < b < 1\), and any real number \(\epsilon > 0\) there exists a \(C^\infty\) diffeomorphism \(\phi : \mathbb{C} \to \mathbb{C}\) such that:

1. \(\phi(z) = ze^{2\pi i/p}\) for all \(z \in \mathbb{C}\) such that \(|z| \leq a\) and for some prime number \(p' > p\).
2. \(\phi(z) = z\) for all \(z \in \mathbb{C}\) such that \(|z| \geq b\).
3. \(||\phi(z) - z||_{C^k} < \epsilon\).

Proof. Let \(\rho : \mathbb{R} \to \mathbb{R}\) be a \(C^\infty\) function such that \(\rho(r) = 1\) for \(r < a\), \(\rho\) is monotonically decreasing on \((a, b)\), and \(\rho(r) = 0\) for \(r > b\). For any prime number \(p' > p\) the function

\[\phi(z) = ze^{2\pi i\rho(|z|)/p'}\]

satisfies (1) and (2) from the theorem. We will show that if \(p'\) is chosen large enough then \(\phi(z)\) from Equation 3 also satisfies (3).

Using Definition 1,

\[||\phi(z) - z||_{C^k} = \sup_{z \in \mathbb{C}, |z| \leq 1} \left| \frac{d^i[\phi(z) - z]}{dz^i} \right| + \sup_{x \in \mathbb{C}} |ze^{2\pi i\rho(|z|)/p'} - z|\]

We will show that each of the terms on the right side of this equation can be made less than \(\epsilon/2\) if \(p'\) is chosen small enough.

We first show this for the term \(\sup_{x \in \mathbb{C}} |ze^{2\pi i\rho(|z|)/p'} - z|\). Since \(\rho(r) = 0\) for \(r > 1\), \(|ze^{2\pi i\rho(|z|)/p'} - z| = 0\) if \(|z| > 1\). So

\[\sup_{z \in \mathbb{C}} |ze^{2\pi i\rho(|z|)/p'} - z| = \sup_{|z| \leq 1} |ze^{2\pi i\rho(|z|)/p'} - z| \leq \sup_{|z| \leq 1} |e^{2\pi i\rho(|z|)/p'} - 1|.
\]
Since $|e^{2\pi i \rho(|z|)/p'} - 1| \to 0$ as $p' \to \infty$, we can choose p' so that

\[(4) \sup_{z \in \mathbb{C}} |ze^{2\pi i \rho(|z|)/p'} - z| \leq \sup_{|z| \leq 1} |e^{2\pi i \rho(|z|)/p'} - 1| < \frac{\epsilon}{4}.
\]

Note that we bound this term by $\epsilon/4$.

Now we show that the term $\sup_{z \in \mathbb{C}, 1 \leq i \leq j} \left| \frac{d^i \phi(z) - z}{dx^i} \right| < \epsilon/2$ if p' is chosen small enough. As before, $\phi(z) - z = 0$ if $|z| > 1$ so it suffices to prove that $\sup_{|z| \leq 1, 1 \leq i \leq j} \left| \frac{d^i \phi(z) - z}{dx^i} \right| < \epsilon/2$ if p' is chosen large enough. We demonstrate this by showing that if p' is large enough then $\sup_{|z| \leq 1} \left| \frac{d^i \phi(z) - z}{dx^i} \right|$ for every $1 \leq i \leq j$. For the case $i = 1$, (using the triangle inequality and Equation 4.)

\[
\sup_{|z| \leq 1} \left| \frac{d^i \phi(z) - z}{dx^i} \right| = \sup_{|z| \leq 1} \left| e^{2\pi i \rho(|z|)/p'} + z \left(\frac{2\pi i d\rho(|z|)}{p'} \right) e^{2\pi i \rho(|z|)/p'} - 1 \right|
\]

\[
< \sup_{|z| \leq 1} \left| e^{2\pi i \rho(|z|)/p'} - 1 \right| + \sup_{|z| \leq 1} \left| z \left(\frac{2\pi i d\rho(|z|)}{p'} \right) e^{2\pi i \rho(|z|)/p'} \right|
\]

\[
< \frac{\epsilon}{4} + \frac{1}{p'} \sup_{|z| \leq 1} \left| z \left(\frac{2\pi i d\rho(|z|)}{d^i} \right) e^{2\pi i \rho(|z|)/p'} \right|
\]

The function $\left| z \left(\frac{2\pi i d\rho(|z|)}{d^i} \right) e^{2\pi i \rho(|z|)/p'} \right|$ is continuous on $|z| \leq 1$ so it achieves its max $M = \sup_{|z| \leq 1} \left| z \left(\frac{2\pi i d\rho(|z|)}{d^i} \right) e^{2\pi i \rho(|z|)/p'} \right|$ on this set. Hence choosing $p' > \frac{4M}{\epsilon}$ gives

\[
\sup_{|z| \leq 1} \left| \frac{d^i \phi(z) - z}{dx^i} \right| < \frac{\epsilon}{4} + \frac{1}{p'} \sup_{|z| \leq 1} \left| z \left(\frac{2\pi i d\rho(|z|)}{d^i} \right) e^{2\pi i \rho(|z|)/p'} \right|
\]

\[
< \frac{\epsilon}{4} + \frac{\epsilon}{4} = \frac{\epsilon}{2}.
\]

For $i > 1$, we can write

\[
\sup_{|z| \leq 1} \left| \frac{d^i \phi(z) - z}{dx^i} \right| = \frac{1}{p'} \sup_{|z| \leq 1} |F(z)|
\]

where $F : \mathbb{Z} \to \mathbb{Z}$ is a continuous function. Hence $|F(z)|$ achieves its max on $|z| \leq 1$ and if p' is large enough,

\[
\sup_{|z| \leq 1} \left| \frac{d^i \phi(z) - z}{dx^i} \right| = \frac{\epsilon}{2}.
\]
This proves that if \(p' \) is large enough then both of the terms on the right hand side of Equation 4 are less than \(\epsilon /2 \), which finishes the proof of (3).

Denote the function \(\phi : \mathbb{C} \rightarrow \mathbb{C} \) associate with positive integers \(p, k \), real numbers \(0 < a < b < 1 \), and \(\epsilon > 0 \) by

\[
\phi_{p,k,(a,b),\epsilon} : \mathbb{C} \rightarrow \mathbb{C}.
\]

Denote the \(n \)th roots of unity by

\[
\{u_k^n = e^{k2\pi i/n}\}_{k=1}^n
\]

Define

\[
f_1(z) = \phi_{1,1,(1,1),1/2}.
\]

So \(f_1 \) rotates the unit disk by \(2\pi/p'_1 \) for some prime number \(p'_1 > 1 \), \(f_1 \) is the identity outside of the disk of radius 1.1 centered at the origin, and \(||f_1(z) - z||_{C1} < 1/2 \). Choose \(0 < a_1 < b_1 < 1 \) such that \(|1/2 u_i^{p'_1} - 1/2 u_j^{p'_1}| > 2b_1 \) for all \(i \neq j \). Define the points

\[
c_i = \frac{1}{2} u_i^{p'_1}, \text{ for } i = 0, ..., p'_1 - 1,
\]

and the disks

\[
D_i = B_{a_1} (c_i), \text{ for } i = 0, ..., p'_1 - 1,
\]

\[
\overline{D_i} = B_{b_1} (c_i), \text{ for } i = 0, ..., p'_1 - 1,
\]

where \(B_r(c) \) is the ball of radius \(r \) centered at the point \(c \). Notice that

\[
f_1(D_i) = D_{i+1 \mod (p'_1)}.
\]

Define

\[
\psi_i(z) = \phi_{p'_1,2,(a_1,b_1),1/4}(z - c_i) + c_i.
\]

for some prime number \(p'_2 > p'_1 \), and let

\[
f_2(z) = \psi_{p'_1} \circ \cdots \circ \psi_0(z).
\]

So \(f_2 \) rotates each disk \(D_i \) by \(2\pi/p'_2 \) for some prime number \(p'_2 > p'_1 \), \(f_2 \) is the identity outside of the disks \(\overline{D_i} \), and \(||f_2(z) - z||_{C2} < 1/4 \). For each \(i = 0, 1, ..., p'_1 \) and \(j = 0, 1, ..., p'_2 \), define

\[
c_{(i,j)} = c_i + \frac{a_2}{2} u_j^{p'_2}
\]

Notice that \(f_1(c_{(i,j)}) = c_{(i+1 \mod (p'_1),j)} \) and \(f_2(c_{(i,j)}) = c_{(i,j+1 \mod (p'_2))} \). Hence, \(f_2 \circ f_1(c_{(i,j)}) = c_{(i+1 \mod (p'_1),j+1 \mod (p'_2))} \). Choose \(0 < a_2 < b_2 < 1 \) such that \(|c_{(i_1,j_1)} - c_{(i_2,j_2)}| > 2b_2 \) for all \((i_1,j_1) \neq (i_2,j_2) \). Define the disks

\[
D_{(i,j)} = B_{a_2} (c_{(i,j)}), \text{ for } i = 0, ..., p'_1 - 1,
\]

\[
\overline{D_{(i,j)}} = B_{b_2} (c_{(i,j)}), \text{ for } i = 0, ..., p'_1 - 1.
\]

Notice that \(f_2(D_{(i,j)}) = D_{(i,j+1 \mod (p'_2))} \) and hence,

\[
f_2 \circ f_1(D_{(i,j)}) = D_{(i+1 \mod (p'_1),j+1 \mod (p'_2))}.
\]
We continue by induction as described in Section 1. Suppose maps $f_1, f_2, \ldots, f_{i-1}$ are given with disks $D_{(x_1, x_2, \ldots, x_{i-1})}$ and $D_{(x_1, x_2, \ldots, x_{i-1})}$ centered at $C_{(x_1, x_2, \ldots, x_{i-1})}$, with $D_{(x_1, x_2, \ldots, x_{i-1})}$ centered at $C_{(x_1, x_2, \ldots, x_{i-1})}$, such that

- Each f_j rotates each $D_{(x_1, x_2, \ldots, x_{j})}$ by $2\pi/p'_j$ for some prime number $p'_j > p'_{j-1}$.
- For every f_j, $||f_j(z) - z||_C < 1/2^j$.
- Each f_j is the identity outside of the disks $\overline{D_{(x_1, x_2, \ldots, x_{j})}}$.
- For $(x_1, x_2, \ldots, x_{j}) \neq (y_1, y_2, \ldots, y_{j})$, $D_{(x_1, x_2, \ldots, x_{j})} \cap \overline{D_{(y_1, y_2, \ldots, y_{j})}} = \emptyset$.
- For every $(x_1, \ldots, x_{j}) \in \mathbb{Z}_{p'_1} \times \cdots \times \mathbb{Z}_{p'_j}$, $f_j \circ \cdots \circ f_1(D_{(x_1, \ldots, x_{j})}) = D_{(x_1+1 \pmod{p'_1}, \ldots, x_{j}+1 \pmod{p'_j})}$.

- There exist $0 < a_{i-1} < b_{i-1} < 1$ such that $|c_{(x_1, x_2, \ldots, x_{i-1})} - c_{(y_1, y_2, \ldots, y_{i-1})}| > 2b_{i-1}$ for all $(x_1, x_2, \ldots, x_{i-1}) \neq (y_1, y_2, \ldots, y_{i-1})$.

For each $(x_1, \ldots, x_{i-1}) \in \mathbb{Z}_{p'_1} \times \cdots \times \mathbb{Z}_{p'_{i-1}}$ define

$$\psi_{(x_1, \ldots, x_{i-1})}(z) = \phi_{p'_1, i-1}(a_{i-1}, b_{i-1}) \cdot 1/2^i |z - c_{(x_1, \ldots, x_{i-1})}| + c_{(x_1, x_2, \ldots, x_{i-1})}.$$

for some prime number $p'_i > p'_{i-1}$, and let

$$f_i(z) = \circ_{(x_1, \ldots, x_{i-1})} \in \mathbb{Z}_{p'_1} \times \cdots \times \mathbb{Z}_{p'_{i-1}} \psi_{(x_1, \ldots, x_{i-1})} \in \mathbb{Z}_{p'_i}(z).$$

That is, f_i is the composition of all of the $\psi_{(x_1, \ldots, x_{i-1})}$, where $(x_1, \ldots, x_{i-1}) \in \mathbb{Z}_{p'_1} \times \cdots \times \mathbb{Z}_{p'_{i-1}}$, and the order of composition does not matter because for any $(x_1, \ldots, x_{i-1}) \neq (y_1, y_2, \ldots, y_{i-1})$, the set of points for which $\psi_{(x_1, \ldots, x_{i-1})}$ is not the identity is disjoint from the set of points for which $\psi_{(y_1, \ldots, y_{i-1})}$ is not the identity. So f_i rotates each disk $D_{(x_1, \ldots, x_{i-1})}$ by $2\pi/p'_i$ for some prime number $p'_i > p'_{i-1}$, f_i is the identity outside of the disks (x_1, \ldots, x_{i-1}), and $||f_i(z) - z||_C < 1/2^{i+1}$. For each $(x_1, \ldots, x_i) \in \mathbb{Z}_{p'_1} \times \cdots \times \mathbb{Z}_{p'_i}$ and define

$$c_{(x_1, \ldots, x_i, x_{i+1})} = c_{(x_1, \ldots, x_{i+1}, x_{i})} + \frac{a_{i-1}}{2} u_{x_i}^{p'_i}.$$

Notice that $f_i(c_{(x_1, \ldots, x_i, x_{i+1})}) = c_{(x_1, \ldots, x_{i+1}, x_{i+1})} \pmod{(p'_i)}$. Hence,

$$f_i \circ f_{i-1} \circ \cdots \circ f_1(c_{(x_1, \ldots, x_{i+1}, x_{i+1})}) = c_{x_1+1} \pmod{(p'_1), \ldots, x_{i+1}+1 \pmod{(p'_i)}}.$$

Choose $0 < a_i < b_i < 1$ such that $|c_{(x_1, \ldots, x_{i+1})} - c_{(y_1, y_2, \ldots, y_{i+1})}| > 2b_i$ for all $(x_1, \ldots, x_{i+1}) \neq (y_1, y_2, \ldots, y_{i+1})$. Define the disks

$$D_{(x_1, \ldots, x_{i+1}, x_{i+1})} = B_{a_i}(c_{(x_1, \ldots, x_{i+1}, x_{i+1})}), \text{ for each } (x_1, \ldots, x_i) \in \mathbb{Z}_{p'_1} \times \cdots \times \mathbb{Z}_{p'_i},$$

$$D_{(x_1, x_2, \ldots, x_{i+1}, x_{i+1})} = B_{b_i}(c_{(x_1, x_2, \ldots, x_{i+1}, x_{i+1})}), \text{ for each } (x_1, \ldots, x_i) \in \mathbb{Z}_{p'_1} \times \cdots \times \mathbb{Z}_{p'_i},$$

Notice that $f_i(D_{(x_1, \ldots, x_{i+1}, x_{i+1})}) = D_{(x_1, \ldots, x_{i+1}, x_{i+1})} \pmod{(p'_i)}$. Hence,

$$f_i \circ f_{i-1} \circ \cdots \circ f_1(D_{(x_1, \ldots, x_{i+1}, x_{i+1})}) = D_{(x_1+1 \pmod{(p'_1)}, \ldots, x_{i+1}+1 \pmod{(p'_i)})}.$$
REFERENCES

