Minimal k-rankings and the a-rank number of a path

Victor Kostyuk
Darren Narayan
Victoria Shults

Follow this and additional works at: http://scholarworks.rit.edu/article

Recommended Citation

This Article is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Articles by an authorized administrator of RIT Scholar Works. For more information, please contact ritscholarworks@rit.edu.
Minimal k-rankings and the a-rank number of a path

Victor Kostyuk*, Darren A. Narayan† and Victoria A. Shults*
Department of Mathematics and Statistics, Rochester Institute of Technology

August 17, 2003

Abstract

Given a graph G, a function $f : V(G) \to \{1, 2, ..., k\}$ is a k-ranking of G if $f(u) = f(v)$ implies every $u - v$ path contains a vertex w such that $f(w) > f(u)$. A k-ranking is minimal if the reduction of any label greater than 1 violates the described ranking property. The a-rank number of G, denoted $\psi_a(G)$, equals the largest k such that G has a minimal k-ranking. We establish new results involving minimal rankings of paths and in particular we determine $\psi_a(P_n)$, a problem suggested by Laskar and Pillone in 2000. We show $\psi_a(P_n) = \left\lceil \log_2 (n+1) \right\rceil + \left\lceil \log_2 \left(n+1 - \left(2^{\left\lceil \log_2 n - 1 \right\rceil}\right)\right) \right\rceil$.

1 Introduction

A labeling $f : V(G) \to \{1, 2, ..., k\}$ is a k-ranking of a graph G if and only if $f(u) = f(v)$ implies that every $u - v$ path contains a vertex w such that $f(w) > f(u)$. A k-ranking f is minimal if for all $v_i \in V(G)$, a function g satisfying $g(v) = f(v)$ when $v \neq v_i$ and $g(v_i) < f(v_i)$, is not a ranking. That is, if any label in a minimal ranking is replaced with a smaller label the new labeling is not a ranking. Note that for any ranking f there exists a minimal ranking h such that $h(v) \leq f(v)$ for every $v \in V(G)$. The rank number of a graph denoted $\chi_r(G)$, is defined to be the smallest k such that G has a minimal k-ranking, and the arank number of a graph denoted $\psi_a(G)$ is defined to be the largest k such that G has a minimal k-ranking. When the value of k is unimportant, we will refer to a k-ranking as simply a ranking.

The rank number of a graph has been well studied, partially due to its applications to VLSI (Very Large Scale Integration) Layouts and scheduling problems for manufacturing systems [1], [5], [8]. While the rank number has been determined for various families of graphs, the arank number is only known for a few classes of graphs, such as stars and split graphs. An important property of the arank number is that it implies a necessary condition for a given ranking to be minimal. That is, if a ranking contains a label greater than $\psi_a(G)$ it cannot be a minimal ranking.

The problem of determining the arank number of a path was suggested by Laskar and Pillone [7]. In Theorem 13 we provide a complete solution to this problem. In addition, we provide a general result involving necessary conditions for a ranking of a path to be minimal. In Theorem 7 we prove that more than half of the vertices in a minimal ranking of P_n must be labeled 1 or 2.

*Research partially supported by JetBlue Airways, Kay & Tony Carlisi, and Timothy Gilbert
†Partially supported by a 2002 RIT COS Dean’s Summer Research Fellowship Grant
2 Background

We will use P_n to denote the Hamiltonian path $v_1, v_2, ..., v_n$ and $(f(v_1), f(v_2), ..., f(v_n))$ to explicitly describe the labels in a ranking f. For a given ranking let S_i represent the independent set of all vertices labeled i. Given a graph G and a set $S \subseteq V(G)$ the reduction of G is a graph G^* such that $V(G^*) = V(G) - S$ and for vertices u and v, $(u, v) \in E(G^*)$ if and only if there exists a $u - v$ path in G. Note that if G is a path, G^* is also a path. An example of a reduction is given in Figure 1.

![Figure 1: A reduction with $G = P_7$ and $S = S_1$.](image)

For a ranking f of a graph G, f^*_G will represent the ranking of G^* where $f^*_G(v) = f(v) - 1$ for all $v \in V(G)$ with $f(v) > 1$. For any other undefined notation, see the graph theory text by D. B. West [9].

We continue with a series of lemmas involving the frequency and locations of small labels that must appear in a minimal ranking. We restate the following two lemmas from [2].

Lemma 1 Let G be a graph and f be a minimal ranking of G. If $x \in V(G)$ and $f(x) = 2$, then there exists a vertex u adjacent to x such that $f(u) = 1$.

Lemma 2 If x is a pendant vertex of a graph G and y is adjacent to x, then in any minimal ranking f of G, either $f(x) = 1$ or $f(y) = 1$.

In the context of paths, this last lemma states that for any minimal ranking one of the first two vertices (or last two) must be labeled 1. If $n \geq 4$, we can use operation of reduction to show that one of the first four (or last four) vertices must be labelled 2. This is presented in our next lemma.

Lemma 3 Let f be a minimum ranking of a path $P_n = v_1, v_2, ..., v_n$ with $n \geq 4$. Then $f(v_i) = 2$ for some $1 \leq i \leq 4$. Furthermore, if $f(v_i) \neq 2$ for $1 \leq i \leq 3$, then $f(v_1) = f(v_3) = 1$.

Proof. Assume the smallest i such that $f(v_i) = 2$ is greater than 4. Then at least two of the first four vertices in the path are labeled with integers greater than 2. It follows that in $f_{P_n^*}$ an end vertex and its neighbor will both have labels greater than 1, contradicting Lemma 2. For the second part, assume $f(v_i) \neq 2$ for $1 \leq i \leq 3$ and $f(v_4) = 2$. Suppose that either $f(v_1) \neq 1$ or $f(v_3) \neq 1$. Then two of the vertices v_1, v_2 and v_3 will have labels greater than 2. Then again, the pendant vertex and its neighbor will be mapped to a value greater then 1 by $f_{P_n^*}$, contradicting Lemma 2. ■

We next give a bound on the maximum size of a subpath with end vertices labeled w and all internal vertices labelled $z \neq w$.

2
Lemma 4 If \(f \) is a minimal ranking of \(P_n \) then any subpath of order \(2m+1 \) has a vertex \(v \) such that \(f(v) = m \).

Proof. The proof is by induction on \(m \). The case where \(m = 1 \) was shown in [7]. The inductive step follows using reduction. ■

It is not difficult to show that if \(P' \) is an induced subpath of a path \(P \), then \(\psi_r(P') \leq \psi_r(P) \). We restate a lemma from [4] which shows that this monotonicity property holds in general.

Lemma 5 Let \(H \) be an induced subgraph of graph \(G \). Then \(\psi_r(H) \leq \psi_r(G) \).

Proof. An alternate proof is found in [4]. Let \(f \) be a minimal \(k \)-ranking of \(H \). We construct a labeling of \(g \) where \(g(v) = f(v) \) for all \(v \in H \) and labeling all other vertices arbitrarily \(k+1, k+2, \ldots, k+|V(G)|-|V(H)| \).

To see that \(g \) is a ranking note that if two vertices in \(G \) have identical labels then both vertices must be in \(H \), and use the fact that \(f \) is a ranking. Although \(g \) may not be a minimal ranking, no label of a vertex in \(H \) may be replaced with a smaller label since \(f \) is a minimal ranking. Replacing labels in \(V(G)-V(H) \) with smaller labels, if needed, will result in a minimal ranking of \(G \) that uses at least \(k \) labels. ■

We conclude this section by restating a lemma from [2] that will play a central role later in our proof of Theorem 7.

Lemma 6 Let \(G \) be a graph and let \(f \) be a minimal \(\psi_r \)-ranking of \(G \). If \(S_1 = \{ x : f(x) = 1 \} \) then \(\psi_r(G_{S_1}^*) = \psi_r(G) - 1 \).

3 Minimal \(k \)-rankings of paths

In our last section we noted many necessary conditions for a given ranking of a path to be minimal in lemmas 2, 3, 4, and 6. All of these lemmas involve the proximity of vertices labeled 1 or 2 in a minimal ranking. This leads to our main result, which states that in any minimal ranking of a path, more than half of the vertices must be labeled 1 or 2.

Theorem 7 If \(f \) is a minimal ranking of \(P_n \) then \(|S_1 \cup S_2| > \frac{n}{2} \).

Proof. Let \(V(P_n) = v_1, v_2, \ldots, v_n \). The vertices in \(S_2 \) partition \(P_n \) into parts \(F_1, F_2, \ldots, F_M \) where each \(x \in S_2 \) is the last vertex in some part \(F_i \), \(1 \leq i \leq M-1 \) and \(F_M \) consists of the remaining vertices. We illustrate this in Figure 2.

![Figure 2. Partitioning of \(P_{12} \).](image-url)
We note that by Lemma 3, \(|V(F_i)| \leq 4 \) and by Lemma 4 \(|V(F_i)| \leq 8 \) for all \(i = 2, 3, \ldots, M \). Our strategy will be as follows: we will prove that \(|F_i \cap (S_1 \cup S_2)| > \frac{|V(F_i)|}{2} \) and \(|F_i \cap (S_1 \cup S_2)| \geq \frac{|V(F_i)|}{2} \) for all \(i = 2, 3, \ldots, M \). Combining these inequalities will yield \(|V(P_n) \cap (S_1 \cup S_2)| = |S_1 \cup S_2| > \frac{M}{2} \).

First we establish the inequality \(|F_i \cap (S_1 \cup S_2)| > \frac{|V(F_i)|}{2} \). By Lemma 3 the first 2 must appear somewhere among the first four vertices. We consider four cases and show the inequality holds in each one.

- \((f(v_1) = 2) \) Then \(F_i = v_1 \) and \(|V(F_i) \cap (S_1 \cup S_2)| > \frac{|V(F_i)|}{2} \).
- \((f(v_2) = 2) \) By Lemma 2 \(f(v_1) = 1 \) and \(|V(F_i) \cap (S_1 \cup S_2)| > 1 = \frac{|V(F_i)|}{2} \).
- \((f(v_3) = 2) \) By Lemma 2, either \(f(v_1) = 1 \) or \(f(v_2) = 1 \). Hence \(|V(F_i) \cap (S_1 \cup S_2)| > \frac{|V(F_i)|}{2} \).
- \((f(v_4) = 2) \) By Lemma 3, \(f(v_1) = 1 \) and \(f(v_3) = 1 \). Hence \(|V(F_i) \cap (S_1 \cup S_2)| > \frac{|V(F_i)|}{2} \).

We use a similar argument for \(F_M \) to show \(|V(F_M) \cap (S_1 \cup S_2)| \geq \frac{|V(F_M)|}{2} \). Next we show \(|V(F_i) \cap (S_1 \cup S_2)| \geq \frac{|V(F_i)|}{2} \) for all \(i = 2, 3, \ldots, M - 1 \). Consider \(F_i \) for some \(i, 2 \leq i \leq M \). Let \(v_{i1}, v_{i2}, \ldots, v_{i|V(F_i)|} \) be the vertices of \(F_i \) keeping the same ordering as in \(P_n \). The inequality is clear when \(|V(F_i)| = 2 \). By Lemma 4, \(|V(F_i)| \leq 8 \). We consider cases for the various possible lengths of \(F_i \). For completeness we include the details.

- \(6 \leq |V(F_i)| \leq 8 \). If \(|F_i \cap S_1| < |V(F_i)| - 4 \) then \(F_i \) contains at least four vertices with labels higher than 2. Then \(f_{P_n}^i \) contains labels for four consecutive vertices that are all greater than 1. By Lemma 4 \(f_{P_n}^i \) cannot be a minimal ranking, a contradiction. Hence \(|V(F_i) \cap S_1| \geq |V(F_i)| - 4 \) and \(|V(F_i) \cap (S_1 \cup S_2)| \geq |V(F_i)| - 3 \geq \frac{|V(F_i)|}{2} \).

- \(|V(F_i)| = 5 \). By Lemma 4 \(|V(F_i) \cap S_1| \geq 1 \) and the vertex labeled 1 can not be the first or fourth vertex of \(F_i \). Assume, without loss of generality, the second vertex is labeled 1. We use \(a, b, \) and \(c \) to denote the first, third and fourth vertices of \(F_i \) respectively. If \(f(c) > f(b) \), then \(f(b) \) can be set to 2 and \(f \) still is a ranking; thus \(f(c) < f(b) \), which implies \(f(c) \) can only equal 1 if the ranking \(f \) is minimal. Hence \(|V(F_i) \cap (S_1 \cup S_2)| \geq 3 \geq \frac{|V(F_i)|}{2} \).

- \(|V(F_i)| = 3 \) or 4. By Lemma 4, \(|V(F_i) \cap S_1| \geq 1 \Rightarrow |V(F_i) \cap (S_1 \cup S_2)| \geq 2 \geq \frac{|V(F_i)|}{2} \).

In our next section we use this result to completely determine the arank number of a path.
4 The a-rank number of a path

The a-rank number of a path denoted $\psi_r(P_n)$ has been determined for small values of n [2]. These values are given in Table 1.

<table>
<thead>
<tr>
<th>n</th>
<th>$\psi_r(P_n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 1: a-rank numbers for small paths

A recursive construction was given in [7] for creating a minimal $(2m - 1)$-ranking of path with $2^m - 1$ vertices and a minimal $(2m - 2)$-ranking of path with $2^m - 2^{m-2} - 1$ vertices. The same construction was used for both families of paths and it was conjectured that the rankings produced by this construction were ψ_r-rankings.

The case $m = 1$ is trivial and when $m = 3$, a minimal 3-ranking of a P_3 can be constructed simply by labeling the vertices $(3, 1, 2)$. Starting with a k-ranking of a path on w vertices, first delete the two end vertices. We next join two copies of the resulting path with a P_3 with labels, $(k - 1, k, k - 1)$. Finally add one vertex to each end of the path and label one of these vertices $k + 1$ and the other $k + 2$. An example showing the construction of a minimal 6-ranking of P_{11} is shown in Figure 2.

Figure 3. Construction of a minimal 6-ranking from a minimal 4-ranking.

A direct application of Lemma 6 can be used to show that the rankings produced by the construction are in fact ψ_r-rankings. We prove this in the following two lemmas.
Lemma 8 $\psi_r(P_{2^m-1}) = 2m - 1$ for all integers $m \geq 2$.

Proof. We proceed by induction on m. As seen in Table 1, $\psi_r(P_{2^2-1}) = 2(2) - 1 = 3$.
Assume the equality holds for m. Given a path on $2^{m+1} - 1$ vertices, using the construction from Laskar and Pillone we can produce a $(2m + 1)$-ranking. Hence $\psi_r(P_{2^{m+1}-1}) \geq 2m + 1$. To show the reverse inequality, we assume that $\psi_r(P_{2^{m+1}-1}) \geq 2m + 1$. Then there exists a minimal $2m + 2$-ranking for $P_{2^{m+i}-1}$, in which case reducing $P_{2^{m+i}-1}$ twice produces a path P with a $(2m)$-ranking. By Theorem 7, P must have less than $2^m - 1$ vertices. Then Lemma 5 implies $\psi_r(P_{2^m-1}) \geq 2m$ which contradicts our assumption. ■

Lemma 9 $\psi_r(P_{2^{m-2m-2}-1}) = 2m - 2$ for all integers $m \geq 2$.

Proof. We proceed by induction on m. As seen in Table 1, $\psi_r(P_{2^4-22-1}) = \psi_r(P_{11}) = 6 = 2(4) - 2$.
Assume the equality holds for m. Given a path on $2^{m+1} - 2^{m-1} - 1$ vertices, we can construct a $2m$-ranking. Hence $\psi_r(P_{2^{m+1}-2m-1}) \geq 2m$. To show the reverse inequality, we assume that $\psi_r(P_{2^{m+1}-2m-1}) = 2m$. Then there exists a minimal $2m + 1$-ranking for $P_{2^{m+1}-2m-1}$. Reducing $P_{2^{m+1}-2m-1}$ twice produces a path P with a $(2m - 1)$-ranking. By Theorem 7, P must have less than or equal to $2m - 2^{m-2} - 1$ vertices. Application of Lemma 5, yields $\psi_r(P_{2^{m-2m-2}-1}) \geq 2m - 1$, which contradicts our assumption. ■

Lemma 10 $\psi_r(P_{2^{m-2m-2}-1}) = 2m - 3$ for all integers $m \geq 2$.

Proof. We proceed by induction on m. As seen in Table 1, $\psi_r(P_{2^4-22-2}) = \psi_r(P_{10}) = 5 = 2(4) - 3$.
Assume the equality holds for m. Given a path on $2^{m+1} - 2^{m-1} - 2$ vertices, we can construct a $(2m + 1 - 3)$-ranking. Hence $\psi_r(P_{2^{m+1}-2m-1-2}) \geq 2m - 1$. To show the reverse inequality, we assume that $\psi_r(P_{2^{m+1}-2m-1-2}) = 2m$. Then there exists a minimal $2m$-ranking for $P_{2^{m+1}-2m-1-2}$. Reducing $P_{2^{m+1}-2m-1-2}$ twice produces a path P with a $(2m - 2)$-ranking. By Theorem 7, P must have less than or equal to $2m - 2^{m-2} - 2$ vertices. Then by Lemma 5 we have $\psi_r(P_{2^{m-2m-2}-2}) \geq 2m - 2$, a contradiction. ■

Lemma 11 $\psi_r(P_{2^{m-2}}) = 2m - 2$ for all integers $m \geq 2$.

Proof. We proceed by induction on m. As seen in Table 1, $\psi_r(P_{2^2-2}) = 2(2) - 2 = 2$.
Assume the equality holds for m. Given a path on $2^{m+1} - 2$ vertices, using the construction from Laskar and Pillone we can produce a $2m$-ranking. Hence $\psi_r(P_{2^{m+1}-2}) \geq 2m$. To show the reverse inequality, we assume that $\psi_r(P_{2^{m+1}-2}) \geq 2m + 1$. Then there exists a minimal $(2m + 1)$-ranking for $P_{2^{m+1}-2}$, in which case reducing $P_{2^{m+1}-2}$ twice produces a path P with a minimal $(2m)$-ranking. By Theorem 7, P must have less than or equal to $2m - 2$ vertices. Application of Lemma 5, $\psi_r(P_{2^{m-2}}) \geq 2m$, a contradiction. ■

As mentioned Laskar and Pillone established an upperbound for the arank number of a path. In our next theorem we combine the above four lemmas with Lemma 5 to show that their upper bounds from [7] are in fact tight.
Theorem 12 (arank number of P_n)

(i) $\psi_r(P_s) = 2m - 2$ for all integers s, $2m - 2^m - 1 \leq s \leq 2m - 2$.

(ii) $\psi_r(P_t) = 2m - 1$ for all integers t, $2^{m+1} - 2^{m-1} - 2 \leq t \leq 2m + 1 - 2^m - 2$.

Following algebraic manipulation, the above theorem can be restated as follows to give an explicit formula for the arank number of a path.

Theorem 13 Let P_n denote a path on n vertices. Then $\psi_r(P_n) = \left\lfloor \log_2 (n + 1) \right\rfloor + \left\lfloor \log_2 (n + 1 - (2^{\left\lfloor \log_2 n \right\rfloor - 1})) \right\rfloor$.

References

