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Ramsey Numbers

I R(G,H) = n iff
minimal n such that in any 2-coloring of the edges of Kn there is
a monochromatic G in the first color or a monochromatic H in the
second color.

I 2− colorings ∼= graphs, R(m,n) = R(Km,Kn)

I Generalizes to k colors, R(G1, · · · ,Gk )

I Theorem (Ramsey 1930): Ramsey numbers exist
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Unavoidable classics

R(3,3) = 6 R(3,5) = 14 [GRS’90]
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Asymptotics
diagonal cases

I Bounds (Erdős 1947, Spencer 1975; Conlon 2010)
√

2
e

2n/2n < R(n,n) < R(n + 1,n + 1) ≤
(

2n
n

)
n−c log n

log log n

I Conjecture (Erdős 1947, $100)
limn→∞ R(n,n)1/n exists.
If it exists, it is between

√
2 and 4 ($250 for value).
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Asymptotics
Ramsey numbers avoiding K3

I Kim 1995, lower bound
Ajtai-Komlós-Szemerédi 1980, upper bound

R(3,n) = Θ

(
n2

log n

)
I Bohman/Keevash 2009/2013, triangle-free process
I Fiz Pontiveros-Griffiths-Morris, lower bound, 2013

Shearer, upper bound, 1983(
1
4

+ o(1)

)
n2/log n ≤ R(3,n) ≤ (1 + o(1))n2/log n
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Clebsch (3,6;16)-graph on GF (24)
(x , y) ∈ E iff x − y = α3

[Wikipedia]

Alfred Clebsch (1833-1872)
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#vertices / #graphs
no exhaustive searches beyond 13 vertices

3 4
4 11
5 34
6 156
7 1044
8 12346
9 274668
10 12005168
11 1018997864
12 165091172592
13 50502031367952 ≈ 5 ∗ 1013

——————–too many to process——————–
14 29054155657235488 ≈ 3 ∗ 1016

15 31426485969804308768
16 64001015704527557894928
17 245935864153532932683719776
18 ≈ 2 ∗ 1030
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Test - Hunt - Exhaust
Ramsey numbers

I Testing: do it right.
Graph G is a witness of R(m,n) > k iff
|V (G)| = k , cl(G) < m and α(G) < n.
Lab in a 200-level course.

I Hunting: constructions and heuristics.
Given m and n, find a witness G for k larger than others.
Challenge projects in advanced courses.
Master: Geoffrey Exoo 1986–

I Exhausting: generation, pruning, isomorphism.
Prove that for given m,n and k , there does not exist any witness
as above. Hard without nauty/traces.
Master: Brendan McKay 1991–
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Values and bounds on R(m,n)
two colors, avoiding Km,Kn

[SPR, ElJC survey Small Ramsey Numbers, revision #15, 2017, with updates]
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Small R(m,n) bounds, references
two colors, avoiding Km,Kn

[ElJC survey Small Ramsey Numbers, revision #15, 2017]
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Small R(m,n), references

R(5, 5) ≤ 48, Angeltveit-McKay 2017.

Spring 2017 avalanche of improved upper bounds
after LP attack for higher m and n by Angeltveit-McKay.
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Small R(Km,Cn)

Erdős-Faudree-Rousseau-Schelp 1976 conjecture:
R(Km,Cn) = (m − 1)(n − 1) + 1 for all n ≥ m ≥ 3, except m = n = 3.

Lower bound witness: complement of (m − 1)Kn−1.

First two columns: R(3,m) = Θ(m2/log m),
c1(m3/2/log m) ≤ R(Km,C4) ≤ c2(m/log m)2.
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Known bounds on R(3,Ks) and R(3,Ks − e)
Js = Ks − e, ∆s = R(3,Ks)− R(3,Ks−1)

s R(3, Js) R(3,Ks) ∆s s R(3, Js) R(3,Ks) ∆s

3 5 6 3 10 37 40–42 4–6
4 7 9 3 11 42–45 47–50 5–10
5 11 14 5 12 47–53 53–59 3–12
6 17 18 4 13 55–62 60–68 3–13
7 21 23 5 14 60–71 67–77 3–14
8 25 28 5 15 69–80 74–87 3–15
9 31 36 8 16 74–91 82–97 3–16

R(3, Js) and R(3,Ks), for s ≤ 16
(Goedgebeur-R 2014, SRN 2017)
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Conjecture
and 1/2 of Erdős-Sós problem

Observe that
R(3, s + k)− R(3, s − 1) =

∑k
i=0 ∆s+i .

We know that
∆s ≥ 3, ∆s + ∆s+1 ≥ 7, ∆s + ∆s+1 + ∆s+2 ≥ 11.

Conjecture
There exists d ≥ 2 such that ∆s −∆s+1 ≤ d for all s ≥ 2.

Theorem
If Conjecture is true, then lims→∞∆s/s = 0.
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52 Years of R(5,5)

year reference lower upper
1965 Abbott 38 quadratic residues in Z37

1965 Kalbfleisch 59 pointer to a future paper
1967 Giraud 58 LP
1968 Walker 57 LP
1971 Walker 55 LP
1973 Irving 42 sum-free sets
1989 Exoo 43 simulated annealing
1992 McKay-R 53 (4, 4)-graph enumeration, LP
1994 McKay-R 52 more details, LP
1995 McKay-R 50 implication of R(4, 5) = 25
1997 McKay-R 49 long computations
2017 Angeltveit-McKay 48 massive LP for (≥ 4,≥ 5)-graphs

History of bounds on R(5, 5)
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43 ≤ R(5,5) ≤ 48

Conjecture. McKay-R 1997
R(5,5) = 43, and the number of (5,5; 42)-graphs is 656.

I 42 < R(5,5):
I Exoo’s construction of the first (5, 5; 42)-graph, 1989.
I Any new (5, 5; 42)-graph would have to be in distance at least 6

from all 656 known graphs, McKay-Lieby 2014.

I R(5,5) ≤ 48, Angeltveit-McKay 2017:
I Enumeration of all 352366 (4, 5; 24)-graphs.
I Overlaying pairs of (4, 5; 24)-graphs, and completing to any

potential (5, 5; 48)-graph, using intervals of cones.
I Similar technique for the new bound R(4, 6) ≤ 40.
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R(4,4;3) = 13
2-colorings of 3-uniform hypergraphs avoiding monochromatic tetrahedrons

I The only non-trivial classical Ramsey number
known for hypergraphs, McKay-R 1991.

I Enumeration of all valid 434714 two-colorings of triangles on 12
points. K (3)

13 − t cannot be thus colored, McKay 2016.

I For size Ramsey numbers, the above gives

R̂(4,4; 3) ≤ 285 =

(
13
3

)
− 1,

which answers in negative a general question posed
by Dudek, La Fleur, Mubayi and Rödl, 2015.
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Rr(3) = R(3,3, · · · ,3)

I Much work on Schur numbers s(r)
via sum-free partitions and cyclic colorings
s(r) > 89r/4−c log r > 3.07r

[except small r ]

Abbott+ 1965+

I s(r) + 2 ≤ Rr (3)

I Rr (3) ≥ 3Rr−1(3) + Rr−3(3)− 3
Chung 1973

I The limit L = limr→∞ Rr (3)
1
r exists

Chung-Grinstead 1983

(2s(r) + 1)
1
r = cr ≈(r=6) 3.199 < L
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R(3,3,3) = 17
two Kalbfleisch (3, 3, 3; 16)-colorings, each color is a Clebsch graph

[Wikipedia]
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Four colors - R4(3)
51 ≤ R(3, 3, 3, 3) ≤ 62

year reference lower upper
1955 Greenwood, Gleason 42 66
1967 false rumors [66]
1971 Golomb, Baumert 46
1973 Whitehead 50 65
1973 Chung, Porter 51
1974 Folkman 65
1995 Sánchez-Flores 64
1995 Kramer (no computer) 62
2004 Fettes-Kramer-R (computer) 62

History of bounds on R4(3) [from FKR 2004]
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Four colors - R4(3)
color degree sequences for (3, 3, 3, 3;≥ 60)-colorings

n orders of Nη (v)

65 [ 16, 16, 16, 16 ] Whitehead, Folkman 1973-4
64 [ 16, 16, 16, 15 ] Sánchez-Flores 1995
63 [ 16, 16, 16, 14 ]

[ 16, 16, 15, 15 ]
62 [ 16, 16, 16, 13 ] Kramer 1995+

[ 16, 16, 15, 14 ] –
[ 16, 15, 15, 15 ] Fettes-Kramer-R 2004

61 [ 16, 16, 16, 12 ]
[ 16, 16, 15, 13 ]
[ 16, 16, 14, 14 ]
[ 16, 15, 15, 14 ]
[ 15, 15, 15, 15 ]

60 [ 16, 16, 16, 11 ] guess: doable in 2017
[ 16, 16, 15, 12 ]
[ 16, 16, 14, 13 ]
[ 16, 15, 15, 13 ]
[ 16, 15, 14, 14 ]
[ 15, 15, 15, 14 ]

I Why don’t heuristics come close to 51 ≤ R4(3)?
I Improve on R4(3) ≤ 62
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Diagonal Multicolorings for Cycles
Bounds on Rk (Cm) in 2017 SRN

Columns:
I 3 - just triangles, the most studied
I 4 - relatively well understood, thanks geometry!
I 5 - bounds on R4(C5) have a big gap
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What to do next?
computationally

I A nice, open, intriguing, feasible to solve case
(Exoo 1991, Piwakowski 1997)

28 ≤ R3(K4 − e) ≤ 30

I improve on 20 ≤ R(K4,C4,C4) ≤ 22
I improve on 27 ≤ R5(C4) ≤ 29
I improve on 33 ≤ R4(C5) ≤ 137
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Folkman Graphs and Numbers

For graphs F ,G,H and positive integers s, t
I F → (s, t)e iff in every 2-coloring of the edges of F

there is a monochromatic Ks in color 1 or Kt in color 2
I F → (G,H)e iff in every 2-coloring of the edges of F

there is a copy of G in color 1 or a copy of H in color 2

I variants: coloring vertices, more colors

Edge Folkman graphs
Fe(s, t ; k) = {F | F → (s, t)e, Kk 6⊆ F}

Edge Folkman numbers
Fe(s, t ; k) = the smallest order of graphs in Fe(s, t ; k)

Theorem (Folkman 1970)
If k > max(s, t), then Fe(s, t ; k) and Fv (s, t ; k) exist.
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Test - Hunt - Exhaust
Folkman numbers

Hints.
I Inverted role of lower/upper bounds wrt Ramsey
I Fe tends to be much harder than Fv

Folkman is harder then Ramsey.

I Testing: F → (G,H) is Πp
2-complete,

only some special cases run reasonably well.

I Hunting: Use smart constructions.
Very limited heuristics.

I Exhausting: Do proofs.
Currently, computationally almost hopeless.
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Bounds from Chromatic Numbers

Set m = 1 +
∑r

i=1(ai − 1), M = R(a1, · · · ,ar ).

Theorem (Nenov 2001, Lin 1972, others)

If G→ (a1, · · · ,ar )v , then χ(G) ≥ m.
If G→ (a1, · · · ,ar )e, then χ(G) ≥ M.
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Special Case of Folkman Numbers
is just about graph chromatic number χ(G)

Note: G→ (2 · · ·r 2)v ⇐⇒ χ(G) ≥ r + 1

For all r ≥ 1, Fv (2r ; 3) exists and it is equal to
the smallest order of (r + 1)-chromatic triangle-free graph.

Fv (2r+1; 3) ≤ 2Fv (2r ; 3) + 1, Mycielski construction, 1955

small cases

Fv (22; 3) = 5, C5, Mycielskian, 1955

Fv (23; 3) = 11, the Grötzsch graph, Mycielskian, 1955

Fv (24; 3) = 22, Jensen and Royle, 1995

32 ≤ Fv (25; 3) ≤ 40, Goedgebeur, 2017
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50 Years of Fe(3,3;4)

What is the smallest order n of a K4-free graph
which is not a union of two triangle-free graphs?

year lower/upper
bounds who/what

1967 any? Erdős-Hajnal
1970 exist Folkman
1972 10 – Lin
1975 – 1010? Erdős offers $100 for proof
1986 – 8× 1011 Frankl-Rödl, almost won
1988 – 3× 109 Spencer, won $100
1999 16 – Piwakowski-R-Urbański, implicit
2007 19 – R-Xu
2008 – 9697 Lu, eigenvalues
2008 – 941 Dudek-Rödl, maxcut-SDP
2012 – 100? Graham offers $100 for proof
2014 – 786 Lange-R-Xu, maxcut-SDP
2016 20 – 785 Bikov-Nenov / Kaufmann-Wickus-R
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Most Wanted Folkman Number: Fe(3,3;4)
and how to earn $100 from RL Graham

The best known bounds:

20 ≤ Fe(3,3; 4) ≤ 785.

I Upper bound 785 from a modified residue graph via SDP.
I Ronald Graham Challenge for $100 (2012):

Determine whether Fe(3,3; 4) ≤ 100.

Conjecture (Exoo, around 2004):
I G127 → (3, 3)e, moreover
I removing 33 vertices from G127 gives graph G94,

which still looks good for arrowing, if so, worth $100.

I Lower bound: very hard, crawls up slowly 10 (Lin 1972),
16 (PUR 1999), 19 (RX 2007), 20 (Bikov-Nenov 2016).
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Graph G127
Hill-Irving 1982, a cool K4-free graph studied as a Ramsey graph

G127 = (Z127,E)
E = {(x , y)|x − y = α3 (mod 127)}

Exoo conjectured that G127 → (3,3)e.

I resists direct backtracking
I resists eigenvalues method
I resists semi-definite programming methods
I resists state-of-the-art 3-SAT solvers
I amazingly rich structure,

hence perhaps will not resist a proof by hand ...
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Other Computational Approaches
each with some success

I Huele, 2005–17: SAT-solvers, VdW numbers, Pythagorean
triples, Science of Brute Force, CACM August 2017.

I Codish, Frank, Itzhakov, Miller (2016):
finishing R(3,3,4) = 30, symmetry breaking, BEE (Ben-Gurion
Equi-propagation Encoder) to CNF, CSP.

I Lidický-Pfender (2017), using Razborov’s flag algebras (2007) for
2- and 3-color upper bounds.

I Surprising new lower bounds by heuristics:
Kolodyazny, Kuznetsov, Exoo, Tatarevic (2014–2017).

I Ramsey quantum computations, D-Wave? (2020–).
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Papers to look at

I SPR, revision #15 of the survey paper
Small Ramsey Numbers at the ElJC, March 2017.

I Xiaodong Xu and SPR,
Some Open Questions for Ramsey and Folkman Numbers,
in Graph Theory, Favorite Conjectures and Open Problems,
Problem Books in Mathematics
Springer 2016, 43–62.

I Rujie Zhu, Xiaodong Xu, SPR,
A small step forwards on the Erdős-Sós problem concerning the
Ramsey numbers R(3, k),
DAM 214 (2016), 216–221.
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Thanks for listening!
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