Rochester Institute of Technology RIT Scholar Works

Presentations and other scholarship

Faculty & Staff Scholarship

8-1-2017

Computers in Ramsey Theory; Testing, Constructions and Nonexistence

Stanislaw Radziszowski Rochester Institute of Technology

Follow this and additional works at: https://scholarworks.rit.edu/other

Recommended Citation

Radziszowski, Stanislaw, "Computers in Ramsey Theory; Testing, Constructions and Nonexistence" (2017). Accessed from https://scholarworks.rit.edu/other/944

This Presentation is brought to you for free and open access by the Faculty & Staff Scholarship at RIT Scholar Works. It has been accepted for inclusion in Presentations and other scholarship by an authorized administrator of RIT Scholar Works. For more information, please contact ritscholarworks@rit.edu.

Computers in Ramsey Theory testing, constructions and nonexistence

Stanisław Radziszowski

Department of Computer Science Rochester Institute of Technology, NY, USA

Computers in Scientific Discovery 8 Mons, Belgium, August 24, 2017

Ramsey Numbers

- R(G, H) = n iff minimal n such that in any 2-coloring of the edges of K_n there is a monochromatic G in the first color or a monochromatic H in the second color.
- ▶ 2 colorings \cong graphs, $R(m, n) = R(K_m, K_n)$
- Generalizes to k colors, $R(G_1, \dots, G_k)$
- Theorem (Ramsey 1930): Ramsey numbers exist

Unavoidable classics

R(3,3) = 6

R(3,5) = 14 [GRS'90]

Bounds (Erdős 1947, Spencer 1975; Conlon 2010)

$$\frac{\sqrt{2}}{e}2^{n/2}n < R(n,n) < R(n+1,n+1) \le \binom{2n}{n}n^{-c\frac{\log n}{\log \log n}}$$

Conjecture (Erdős 1947, \$100)
 lim_{n→∞} R(n, n)^{1/n} exists.
 If it exists, it is between √2 and 4 (\$250 for value).

Asymptotics

Ramsey numbers avoiding K_3

 Kim 1995, lower bound Ajtai-Komlós-Szemerédi 1980, upper bound

$$R(3,n) = \Theta\left(\frac{n^2}{\log n}\right)$$

- Bohman/Keevash 2009/2013, triangle-free process
- Fiz Pontiveros-Griffiths-Morris, lower bound, 2013 Shearer, upper bound, 1983

$$\left(\frac{1}{4} + o(1)\right)n^2/\log n \le R(3,n) \le (1+o(1))n^2/\log n$$

Clebsch (3, 6; 16)-graph on $GF(2^4)$ (*x*, *y*) $\in E$ iff $x - y = \alpha^3$

Alfred Clebsch (1833-1872)

#vertices / #graphs

no exhaustive searches beyond 13 vertices

- 3 4
- 4 11
- 5 34
- 6 156
- 7 1044
- 8 12346
- 9 274668
- 10 12005168
- 11 1018997864
- 12 165091172592
- 13 50502031367952 $\approx 5 * 10^{13}$

-too many to process-

- 14 29054155657235488 $\approx 3 * 10^{16}$
- 15 31426485969804308768
- 16 64001015704527557894928
- $17 \ \ 245935864153532932683719776$

 $18~\approx 2*10^{30}$

Test - Hunt - Exhaust

Ramsey numbers

Testing: do it right.
 Graph G is a witness of R(m, n) > k iff
 |V(G)| = k, cl(G) < m and α(G) < n.
 Lab in a 200-level course.

- Hunting: constructions and heuristics. Given m and n, find a witness G for k larger than others. Challenge projects in advanced courses. Master: Geoffrey Exoo 1986–
- Exhausting: generation, pruning, isomorphism. Prove that for given m, n and k, there does not exist any witness as above. Hard without nauty/traces.

Master: Brendan McKay 1991-

Values and bounds on R(m, n)

two colors, avoiding K_m, K_n

	l	3	4	5	6	7	8	9	10	11	12	13	14	15
k														
2		6	0	14	14 18	22	20	26	40	47	53	60	67	74
5		0	9	14		25	20	50	42	50	59	68	77	87
4			18	25	36	49	59	73	92	102	128	138	147	155
4			10	25	41	61	84	115	149	191	238	291	349	417
5				43	58	80	101	133	149	183	203	233	267	269
				48	87	143	216	316	442	633	848	1138	1461	1878
6					102	115	134	183	204	256	294	347		401
0					165	298	495	780	1171	1804	2566	3703	5033	6911
7						205	217	252	292	405	417	511		
_ ^						540	1031	1713	2826	4553	6954	10578	15263	22112
							282	329	343			817		865
°							1870	3583	6090	10630	16944	27485	41525	63609
0								565	581					
9								6588	12677	22325	38832	64864		
10									798					1265
10									23556	45881	81123			

[SPR, EIJC survey Small Ramsey Numbers, revision #15, 2017, with updates]

Small R(m, n) bounds, references

two colors, avoiding K_m, K_n

	l	4	5	6	7	8	9	10	11	12	13	14	15
k													
3	2	GG	GG GG	Kérv	Ka2	GR	Ka2	Ex5	Ex20	Kol1	Kol1	Kol2	Kol2
				nay	GrY	McZ	GR	GoR1	GoR1	Les	GoR1	GoR1	GoR1
4		66	Ka1	Ex19	Ex3	ExT	Ex16	HaKr1	ExT	SuLL	ExT	ExT	ExT
-		00	MR4	MR5	Mac	Mac	Mac	Mac	Spe4	Spe4	Spe4	Spe4	Spe4
5		Ex4	Ex9	CaET	HaKr1	Kuz	ExT	Kuz	Kuz	Kuz	Kuz	ExT	
			AnM	HZ1	HZ1	Spe4	Mac	Mac	HW+	HW+	HW+	HW+	HW+
6			Ka2	ExT	ExT	Kuz	Kuz	Kuz	Kuz	Kuz		2.3.h	
0				Mac	HZ1	Mac	Mac	Mac	HW+	HW+	HW+	HW+	HW+
7					She2	XSR2	Kuz	Kuz	XXER	XSR2	XuXR		
'					Mac	HZ1	HZ2	Mac	HW+	HW+	HW+	HW+	HW+
0						BurR	Kuz	Kuz			XXER		2.3.h
°						Mac	Ea1	HZ2	HW+	HW+	HW+	HW+	HW+
0							She2	XSR2					
9						ShZ1	Ea1	HW+	HW+	HW+			
10								She2					2.3.h
10								Shi2	HW+	HW+			

[EIJC survey Small Ramsey Numbers, revision #15, 2017]

Small R(m, n), references

<i>R</i> (5, 5) ≤	48, Angeltv	/eit-McKay	2017.
-------------------	-------------	------------	-------

	l	4	5	6	7	8	9	10	11	12	13	14	15
k													
3	7	GG	GG	Kéry	Ka2	GR	Ka2	Ex5	Ex20	Kol l	Koll	Kol2	Kol2
2					GrY	McZ	GR	GoR I	GoR1	Les	GoRI	GoRI	GoRI
			Kal	Ex 19	Ex3	ExT	Ex 16	HaKrl	ExT	SuLL	ExT	ExT	ExT
4		GG	MR4	MR5	Mac	Mac	Mac	Mac	Spe-1	Spe-1	Spe-1	Spe1	Spet
5			Ex4	Ex9	CaET	HaKr]	Kuz	ExT	Kuz	Kuz	Kuz	Kuz	ExT
			AnM	HZI	<u>1121</u>	Spc4	Mac	Mae	HW	HW-	EDV-	LTW+	HW+
				Ka2	ExT	ExT	Kuz	Kuz	Kuz	Kuz	Kuz	ĺ	2.3.h
6				Mac	HZI	Mac	Mac	Mae	HW+	HW+	EDV+	EIW :	HW+
		1			She2	XSR2	Kuz	Kuz	XXER	XSR2	XuXR		
7					Mac	HZI	HZ2	Mac	HWI	HW-	ETW :	EPW +	- HW+
				1		BurR	Kuz	Kuz			XXER	1	2.3.h
8						Mac	Eal	1172	HW+	HW+	LEW+	LTW+	HW+
							She2	XSR2					
9							ShZl	Eal	HW+	HW	HW+		
								She2					2.3.h
10								Shi2	HW+	HW			

Spring 2017 avalanche of improved upper bounds after LP attack for higher *m* and *n* by Angeltveit-McKay.

Small $R(K_m, C_n)$

	C ₃	C4	C 5	C 6	C7	C 8	C 9	 C_n for $n \ge m$
<i>K</i> ₃	6 GG-Bush	7 ChaS	9 	11	13	15	17	 2n - 1 ChaS
<i>K</i> ₄	9 GG	10 ChH2	13 He4/JR4	16 JR2	19 YHZ1	22 	25	 3 <i>n</i> − 2 YHZ1
K ₅	14 GG	14 Clan	17 He2/JR4	21 JR2	25 YHZ2	29 BolJY+	33	 4 <i>n</i> - 3 BolJY+
<i>K</i> ₆	18 Kéry	18 Ex2-RoJa1	21 JR5	26 Schil	31	36	41	 5 <i>n</i> – 4 Schi1
K7	23 Ka2-GrY	22 RaT-JR1	25 Schi2	31 CheCZN	37 CheCZN	43 JaBa/Ch+	49 Ch+	 6 <i>n</i> – 5 Ch+
K ₈	28 GR-McZ	26 RaT	29-33 JaAl2	36 ChenCX	43 ChenCZ1	50 JaA11/ZZ3	57 BatJA	 7 <i>n</i> − 6 conj.
K ₉	36 Ka2-GR	30 RaT-LaLR					65 conj.	 8 <i>n</i> − 7 conj.
K ₁₀	40-42 Ex5-GoR1	36 LaLR						 9n − 8 conj.
K ₁₁	47-50 Ex20-GoR1	39-44 LaLR						 10 <i>n</i> – 9 conj.

Erdős-Faudree-Rousseau-Schelp 1976 conjecture: $R(K_m, C_n) = (m-1)(n-1) + 1$ for all $n \ge m \ge 3$, except m = n = 3.

Lower bound witness: complement of $(m-1)K_{n-1}$.

First two columns: $R(3, m) = \Theta(m^2/\log m)$, $c_1(m^{3/2}/\log m) \le R(K_m, C_4) \le c_2(m/\log m)^2$.

Known bounds on $R(3, K_s)$ and $R(3, K_s - e)$ $J_s = K_s - e, \Delta_s = R(3, K_s) - R(3, K_{s-1})$

S	$R(3, J_s)$	$R(3, K_s)$	Δ_s	S	$R(3, J_s)$	$R(3, K_s)$	Δ_s
3	5	6	3	10	37	40–42	4–6
4	7	9	3	11	42–45	47–50	5–10
5	11	14	5	12	47–53	53–59	3–12
6	17	18	4	13	55–62	60–68	3–13
7	21	23	5	14	60–71	67–77	3–14
8	25	28	5	15	69–80	74–87	3–15
9	31	36	8	16	74–91	82–97	3–16

 $R(3, J_s)$ and $R(3, K_s)$, for $s \le 16$ (Goedgebeur-R 2014, SRN 2017)

Conjecture and 1/2 of Erdős-Sós problem

Observe that $R(3, s+k) - R(3, s-1) = \sum_{i=0}^{k} \Delta_{s+i}$.

We know that $\Delta_s \ge 3$, $\Delta_s + \Delta_{s+1} \ge 7$, $\Delta_s + \Delta_{s+1} + \Delta_{s+2} \ge 11$.

Conjecture

There exists $d \ge 2$ such that $\Delta_s - \Delta_{s+1} \le d$ for all $s \ge 2$.

Theorem

If Conjecture is true, then $\lim_{s\to\infty} \Delta_s/s = 0$.

52 Years of *R*(5, 5)

			-	· · · · · · · · · · · · · · · · · · ·
year	reference	lower	upper	
1965	Abbott	38		quadratic residues in \mathcal{Z}_{37}
1965	Kalbfleisch		59	pointer to a future paper
1967	Giraud		58	LP
1968	Walker		57	LP
1971	Walker		55	LP
1973	Irving	42		sum-free sets
1989	Exoo	43		simulated annealing
1992	McKay-R		53	(4,4)-graph enumeration, LP
1994	McKay-R		52	more details, LP
1995	McKay-R		50	implication of $R(4,5) = 25$
1997	McKay-R		49	long computations
2017	Angeltveit-McKay		48	massive LP for (\geq 4, \geq 5)-graphs

History of bounds on R(5,5)

 $43 \leq R(5,5) \leq 48$

Conjecture. McKay-R 1997

R(5,5) = 43, and the number of (5,5;42)-graphs is 656.

- ► 42 < *R*(5,5):
 - Exoo's construction of the first (5, 5; 42)-graph, 1989.
 - Any new (5, 5; 42)-graph would have to be in distance at least 6 from all 656 known graphs, McKay-Lieby 2014.
- $R(5,5) \leq 48$, Angeltveit-McKay 2017:
 - ► Enumeration of all 352366 (4, 5; 24)-graphs.
 - Overlaying pairs of (4, 5; 24)-graphs, and completing to any potential (5, 5; 48)-graph, using intervals of cones.
 - Similar technique for the new bound $R(4,6) \leq 40$.

R(4, 4; 3) = 13

2-colorings of 3-uniform hypergraphs avoiding monochromatic tetrahedrons

- The only non-trivial classical Ramsey number known for hypergraphs, McKay-R 1991.
- Enumeration of all valid 434714 two-colorings of triangles on 12 points. $K_{13}^{(3)} t$ cannot be thus colored, McKay 2016.
- ► For size Ramsey numbers, the above gives

$$\widehat{R}(4,4;3) \leq 285 = \begin{pmatrix} 13\\ 3 \end{pmatrix} - 1,$$

which answers in negative a general question posed by Dudek, La Fleur, Mubayi and Rödl, 2015.

$$R_r(3)=R(3,3,\cdots,3)$$

- Much work on Schur numbers s(r) via sum-free partitions and cyclic colorings s(r) > 89^{r/4-clog r} > 3.07^r [except small r] Abbott+ 1965+
- ▶ $s(r) + 2 \le R_r(3)$
- $R_r(3) \ge 3R_{r-1}(3) + R_{r-3}(3) 3$ Chung 1973
- The limit $L = \lim_{r \to \infty} R_r(3)^{\frac{1}{r}}$ exists Chung-Grinstead 1983

$$(2s(r)+1)^{\frac{1}{r}} = c_r \approx_{(r=6)} 3.199 < L$$

R(3,3,3) = 17

two Kalbfleisch (3, 3, 3; 16)-colorings, each color is a Clebsch graph

[Wikipedia]

Four colors - $R_4(3)$ 51 $\leq R(3, 3, 3, 3) \leq 62$

year	reference	lower	upper
1955	Greenwood, Gleason	42	66
1967	false rumors	[66]	
1971	Golomb, Baumert	46	
1973	Whitehead	50	65
1973	Chung, Porter	51	
1974	Folkman		65
1995	Sánchez-Flores		64
1995	Kramer (no computer)		62
2004	Fettes-Kramer-R (computer)		62

History of bounds on $R_4(3)$ [from FKR 2004]

Four colors - $R_4(3)$

color degree sequences for $(3, 3, 3, 3; \ge 60)$ -colorings

n	orders of $N_{\eta}(v)$	
65	[16, 16, 16, 16]	Whitehead, Folkman 1973-4
64	[16, 16, 16, 15]	Sánchez-Flores 1995
63	[16, 16, 16, 14]	
	[16, 16, 15, 15]	
62	[16, 16, 16, 13]	Kramer 1995+
	[16, 16, 15, 14]	-
	[16, 15, 15, 15]	Fettes-Kramer-R 2004
61	[16, 16, 16, 12]	
	[16, 16, 15, 13]	
	[16, 16, 14, 14]	
	[16, 15, 15, 14]	
	[15, 15, 15, 15]	
60	[16, 16, 16, 11]	guess: doable in 2017
	[16, 16, 15, 12]	
	[16, 16, 14, 13]	
	[16, 15, 15, 13]	
	[16, 15, 14, 14]	
	[15, 15, 15, 14]	

- Why don't heuristics come close to $51 \le R_4(3)$?
- Improve on $R_4(3) \leq 62$

Diagonal Multicolorings for Cycles

Bounds on $R_k(C_m)$ in 2017 SRN

	т	3	4	5	6	7	8
k							
3		17	11	17	12	25	16
4		51 62	18	33 137	18 20	49	20
5		162 307	27 29	65	26	97	28
6		538 1838	34 43	129		193	

Table XIII. Known values and bounds for $R_k(C_m)$ for small k, m;

Columns:

- ► 3 just triangles, the most studied
- 4 relatively well understood, thanks geometry!
- ▶ 5 bounds on $R_4(C_5)$ have a big gap

What to do next?

computationally

 A nice, open, intriguing, feasible to solve case (Exoo 1991, Piwakowski 1997)

$$28 \leq R_3(K_4 - e) \leq 30$$

- improve on $20 \le R(K_4, C_4, C_4) \le 22$
- improve on $27 \le R_5(C_4) \le 29$
- improve on $33 \le R_4(C_5) \le 137$

Folkman Graphs and Numbers

For graphs F, G, H and positive integers s, t

- *F* → (*s*, *t*)^{*e*} iff in every 2-coloring of the edges of *F* there is a monochromatic *K_s* in color 1 or *K_t* in color 2
- F → (G, H)^e iff in every 2-coloring of the edges of F there is a copy of G in color 1 or a copy of H in color 2
- variants: coloring vertices, more colors

Edge Folkman graphs

 $\mathcal{F}_{e}(s,t;k) = \{F \mid F \to (s,t)^{e}, K_{k} \not\subseteq F\}$

Edge Folkman numbers

 $F_e(s, t; k)$ = the smallest order of graphs in $\mathcal{F}_e(s, t; k)$

Theorem (Folkman 1970)

If $k > \max(s, t)$, then $F_e(s, t; k)$ and $F_v(s, t; k)$ exist.

Test - Hunt - Exhaust

Folkman numbers

Hints.

- Inverted role of lower/upper bounds wrt Ramsey
- F_e tends to be much harder than F_v

Folkman is harder then Ramsey.

- Testing: $F \rightarrow (G, H)$ is Π_2^p -complete, only some special cases run reasonably well.
- Hunting: Use smart constructions.
 Very limited heuristics.
- Exhausting: Do proofs.
 Currently, computationally almost hopeless.

Bounds from Chromatic Numbers

Set
$$m = 1 + \sum_{i=1}^{r} (a_i - 1), M = R(a_1, \cdots, a_r).$$

Theorem (Nenov 2001, Lin 1972, others)

If $G \to (a_1, \dots, a_r)^v$, then $\chi(G) \ge m$. If $G \to (a_1, \dots, a_r)^e$, then $\chi(G) \ge M$.

Special Case of Folkman Numbers

is just about graph chromatic number $\chi(G)$

Note:
$$G \to (2 \cdots_r 2)^v \iff \chi(G) \ge r+1$$

For all $r \ge 1$, $F_v(2^r; 3)$ exists and it is equal to the smallest order of (r + 1)-chromatic triangle-free graph.

 $F_{v}(2^{r+1}; 3) \leq 2F_{v}(2^{r}; 3) + 1$, Mycielski construction, 1955

small cases

 $F_v(2^2; 3) = 5$, C_5 , Mycielskian, 1955 $F_v(2^3; 3) = 11$, the Grötzsch graph, Mycielskian, 1955 $F_v(2^4; 3) = 22$, Jensen and Royle, 1995 $32 \le F_v(2^5; 3) \le 40$, Goedgebeur, 2017

50 Years of $F_e(3, 3; 4)$

What is the smallest order n of a K_4 -free graph which is not a union of two triangle-free graphs?

year	lower/upper bounds	who/what
1967	any?	Erdős-Hajnal
1970	exist	Folkman
1972	10 —	Lin
1975	- 10 ¹⁰ ?	Erdős offers \$100 for proof
1986	$-8 imes 10^{11}$	Frankl-Rödl, almost won
1988	$-3 imes10^9$	Spencer, won \$100
1999	16 —	Piwakowski-R-Urbański, implicit
2007	19 —	R-Xu
2008	- 9697	Lu, eigenvalues
2008	- 941	Dudek-Rödl, maxcut-SDP
2012	- 100?	Graham offers \$100 for proof
2014	- 786	Lange-R-Xu, maxcut-SDP
2016	20 – 785	Bikov-Nenov / Kaufmann-Wickus-R

Most Wanted Folkman Number: $F_e(3, 3; 4)$

and how to earn \$100 from RL Graham

The best known bounds:

 $20 \leq F_e(3,3;4) \leq 785.$

- Upper bound 785 from a modified residue graph via SDP.
- ► Ronald Graham Challenge for \$100 (2012): Determine whether F_e(3, 3; 4) ≤ 100.

Conjecture (Exoo, around 2004):

- ▶ $G_{127} \rightarrow (3,3)^e$, moreover
- removing 33 vertices from G₁₂₇ gives graph G₉₄, which still looks good for arrowing, if so, worth \$100.
- Lower bound: very hard, crawls up slowly 10 (Lin 1972), 16 (PUR 1999), 19 (RX 2007), 20 (Bikov-Nenov 2016).

Graph G₁₂₇

Hill-Irving 1982, a cool K_4 -free graph studied as a Ramsey graph

$$G_{127} = (\mathcal{Z}_{127}, E)$$

$$E = \{ (x, y) | x - y = \alpha^3 \pmod{127} \}$$

Exoo conjectured that $G_{127} \rightarrow (3,3)^e$.

- resists direct backtracking
- resists eigenvalues method
- resists semi-definite programming methods
- resists state-of-the-art 3-SAT solvers
- amazingly rich structure, hence perhaps will not resist a proof by hand ...

Other Computational Approaches

each with some success

- Huele, 2005–17: SAT-solvers, VdW numbers, Pythagorean triples, Science of Brute Force, CACM August 2017.
- Codish, Frank, Itzhakov, Miller (2016): finishing R(3,3,4) = 30, symmetry breaking, BEE (Ben-Gurion Equi-propagation Encoder) to CNF, CSP.
- Lidický-Pfender (2017), using Razborov's flag algebras (2007) for 2- and 3-color upper bounds.
- Surprising new lower bounds by heuristics: Kolodyazny, Kuznetsov, Exoo, Tatarevic (2014–2017).
- Ramsey quantum computations, D-Wave? (2020–).

Papers to look at

- SPR, revision #15 of the survey paper Small Ramsey Numbers at the EIJC, March 2017.
- Xiaodong Xu and SPR, Some Open Questions for Ramsey and Folkman Numbers, in *Graph Theory, Favorite Conjectures and Open Problems*, Problem Books in Mathematics Springer 2016, 43–62.
- Rujie Zhu, Xiaodong Xu, SPR, A small step forwards on the Erdős-Sós problem concerning the Ramsey numbers R(3, k), DAM 214 (2016), 216–221.

Thanks for listening!

33/33 references