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Abstract—This paper investigates the feasibility of employing
artificial neural network techniques for solving fundamental
cryptography problems, taking quadratic residue detection
as an example. The problem of quadratic residue detection
is one which is well known in both number theory and
cryptography. While it garners less attention than problems
such as factoring or discrete logarithms, it is similar in both
difficulty and importance. No polynomial–time algorithm is
currently known to the public by which the quadratic residue
status of one number modulo another may be determined. This
work leverages machine learning algorithms in an attempt to
create a detector capable of solving instances of the problem
more efficiently. A variety of neural networks, currently at the
forefront of machine learning methodologies, were compared to
see if any were capable of consistently outperforming random
guessing as a mechanism for detection. Surprisingly, neural
networks were repeatably able to achieve accuracies well in
excess of random guessing on numbers up to 20 bits in length.
Unfortunately, this performance was only achieved after a
super–polynomial amount of network training, and therefore
we do not believe that the system as implemented could scale
to cryptographically relevant inputs of 500 to 1000 bits. This
nonetheless suggests a new avenue of attack in the search for
solutions to the quadratic residues problem, where future work
focused on feature set refinement could potentially reveal the
components necessary to construct a true closed–form solution.

1. Introduction

Artificial Neural Networks (ANNs) have proven use-
ful in solving many challenging problems across a wide
range of fields. In addition to solving pragmatic problems
such as image recognition, ANNs have also been brought
to bear against fundamental math and science problems.
Unfortunately, progress in these more fundamental spaces
has been slow compared to the rapid advancements in the
applied domain. Nevertheless, there are many open problems
in number theory where practical solutions would have an
enormous impact on cryptography and computer security
(factoring, discrete logarithms, etc.). No asymptotically ef-
ficient algorithms for these problems have yet been found.

This paper investigates the possibility of employing ANNs
in the search for a solution to the quadratic residues (QR)
problem, which is defined as follows:

Suppose that you have two integers a and b. Then a is
a quadratic residue of b if and only if the following two
conditions hold: [1]

1) The greatest common divisor of a and b is 1, and
2) There exists an integer c such that c2 ≡ a (mod b).

The first condition is satisfied automatically so long as
a ∈ Z∗b . There is, however, no known polynomial–time (in
the number of bits of a and b) algorithm for determining
whether the second condition is satisfied. The difficulty and
significance of this problem will be discussed in more detail
in Section 1.3.

1.1. Machine Learning Background

For all that it is generally believed to be both an im-
portant and difficult problem, it is not clear that anyone has
yet published any attempts to find a solution for quadratic
residue detection using modern machine learning (ML) tech-
niques. This project sought to remedy the apparent short-
coming in the contemporary literature by seeking evidence
for the potential tractability of quadratic residue detection
within an ML context.

ANNs have garnered a great deal of attention in the liter-
ature recently for their achievements in a variety of domains.
In the field of game AI, ANNs have been able to successfully
learn to play Chess [2] and recently even the game Go [3] –
a feat which had previously been considered well beyond the
capacity of modern machine learning. In such applications
it appears that these neural networks are able to collapse
what would otherwise be an exponentially large search tree
down into a polynomial–time approximation function.

ANNs, and in particular Convolutional Neural Networks
(CNNs), have also been extremely successful in pattern
recognition. Their stunning success in the image processing
domain, in particular on the well known database ImageNet,
has inspired a great deal of interest in CNN development.
[4] In fact, since its publication in 2012 this early proof of
CNN effectiveness has been cited over 5000 times. What is
perhaps most surprising, however, is that CNNs have been



shown recently to support transfer learning – the ability to
train a CNN on one dataset and then use it on another with
very minimal retraining required. [5] [6] [7] Such networks
are so effective that they can outperform systems which have
been developed and tuned for years on a specialized problem
set. [7] This power comes from the fact that many of the
hidden layers within a CNN serve to perform generic feature
extraction – removing the need for humans to generate
creative data representations in order to solve a problem.
Once this feature extractor has been created, the final layer
or two of a CNN is all that needs to be adjusted in order to
move between different application areas – a process which
requires relatively little time and data. It was hoped that this
ability to transfer learning between problem sets would help
to create a network able to detect residues for any number n
with minimal retraining required. The drawback, however,
is that the inputs to a CNN must be meaningfully related
to one–another, for example having pixel ‘A’ be above and
to the left of pixel ‘B’, in order for patterns derived from
the relative positions of those inputs to be meaningful.
While it is not clear how to satisfy such a constraint when
dealing with a number theory problem, the principles and
effectiveness of the transfer learning paradigm were still of
interest in this study.

The success of ANNs is not without theoretical prece-
dent. The universality theorem, a well known result in
machine learning, suggests that neural networks with even a
single hidden layer may be used to approximate any contin-
uous function to arbitrary accuracy (given certain constraints
on network topology). [8] Based on this premise, if there
were a continuous function capable of testing quadratic
residues, it ought to be possible to mimic it using a neural
network. While such a function, if one exists, might well
be discontinuous and therefore beyond the purview of the
theorem, there is still hope that a continuous approximation
might suffice.

While the theoretical results are interesting, one could
argue that such a network would be impossible to train in
practice. This was indeed at least a partial motivation behind
the deep networks that have become popular in modern
literature. There are, however, concrete results suggesting
that shallow networks really are capable of learning the same
behavior as their deeper counterparts. [9] In their work, Ba
and Caurana are able to train shallow networks very effec-
tively by leveraging the outputs produced by a deep network
for ground truth scoring as opposed to using the original
supervised labeling. While this is not immediately useful
since it still requires a trained deep network, it suggests that
if such a deep network can be developed it could potentially
then be simplified in order to improve performance.

1.2. Mathematics Background

Although there is not yet a known polynomial–time
QR detection algorithm, there are methods for efficiently
computing partial solutions. For example, for a prime p, the
residue status, r, of an integer a is given by r = a

p−1
2

(mod p). If the result is 1 then a is a quadratic residue of

p. If the result is -1 then a is a non–residue, and if the
result is 0 then a and p are not relatively prime. [10] This
value, also known as the Legendre symbol of a with respect
to p, forms the basis of the Jacobi symbol: a generalized
approximation of quadratic residues for composite numbers.

Suppose n =
k∏

i=1

peii . Then the Jacobi symbol for an integer

a is defined as
(
a
n

)
=

k∏
i=1

reii , where ri is the i–th Legendre

symbol. While clearly trivial to compute given the factoriza-
tion of n, this value may also be computed using the Jacobi
algorithm which has running time O(log(n)2) and does not
require knowledge of the factorization of n. [11] The Jacobi
algorithm provides the basis for the feature set investigated
during this work, so it is given for reference as Algorithm
1.

Algorithm 1 Jacobi Symbol Computation ( an ) [11]
Jacobi(a, n):
if a == 0 then

return 0
else if a == 1 then

return 1
end if
Let e, a1 such that a = 2e ∗ a1, a1 odd
s = 0
if e mod 2 == 0 then

s = 1
else

comparator = n mod 8
if comparator == 1 or comparator == 7 then

s = 1
else if comparator == 3 or comparator == 5 then

s = -1
end if

end if
if n mod 4 == 3 and a1 mod 4 == 3 then

s = -s
end if
n1 = n mod a1
if a1 == 1 then

return s
end if
return s*Jacobi(n1, a1)

Unfortunately, knowing the Jacobi symbol
(
a
n

)
is not

sufficient to determine whether a is a quadratic residue of
n. Consider the case where n = p ∗ q. Then if

(
a
n

)
= −1

it holds that a is not a quadratic residue of n. If, however,(
a
n

)
= 1, then it could either be that both rp and rq are

positive, in which case a is a residue of n, or it could be
that both rp and rq are negative, in which case a is not a
residue of n. Either case is equally likely, meaning that if the
Jacobi symbol evaluates to 1 there will be a 50% chance that
the number will be a quadratic residue. There are no known
polynomial–time algorithms which are capable of improving
on this estimate. Thus any system capable of outperforming



random guessing in such a case would represent a highly
significant result in number theory and cryptography.

1.3. Cryptography Background

While less well known than factoring, the quadratic
residue problem also has great significance in cryptography.
As seen in Section 1.2, QR detection is clearly not more
difficult than factoring. While no polynomial–time reduction
from the QR decision problem to factoring is known, it is
conjectured to be of similar difficulty. This conjecture has
been proven within the context of generic ring algorithms,
but not for full Turing machines. [12] This proof, however,
is not strong evidence since computation of Jacobi symbols
is also provably hard for generic ring algorithms despite the
polynomial–time algorithm for integers provided in Section
1.2. It could therefore be the case that QR detection is
polynomial–time computable while factoring is not. [12]
Despite this possibility, it has become common practice for
researchers to assume the difficulty of QR detection when
attempting to prove the intractability of other less studied
problems in computer science and cryptography. [13] [14]

The closely related problem of actually computing the
square roots of a quadratic residue, however, has been
proven to be as hard as factoring. To see this, suppose that
you had an algorithm capable of computing the square root
of a QR in polynomial–time. The number of distinct square
roots for a residue of some composite number n is equal
to 2L, where L is the number of distinct primes in the
factorization of n. [10] Thus for standard cryptographically
relevant composites of the form n = pq, there will be 4 roots
for every quadratic residue. Pick any number x from 1 to
n−1 and square it mod n. Use the polynomial–time square
root algorithm to find a square root of x2. Since there are
four possible solutions, the algorithm will return a root x′
distinct from x with probability 3

4 . Of these distinct values,
one will be −x (mod n), but two will be other values. So
long as x′ 6= x and x′ 6= −x, then it may be used to
compute gcd(x−x′, n) which will return a non–trivial factor
of n. This algorithm therefore succeeds with probability 1

2
which means that after several iterations one can expect
to find a non–trivial factor of n. Since the algorithm has
no way of knowing which x value you started with, even
an algorithm that returns solutions with unequal probability
should succeed if run starting with several different values
for x.

RSA is a well known encryption algorithm which relies
on the difficulty of factoring numbers of the form n = pq. It
has not been proven, however, that breaking RSA encryption
actually requires the ability to factor n. [15] There are
encryption schemes, however, which are provably as secure
as the modular square root problem – and hence as secure
as factoring. One such protocol is the Rabin Cryptosystem.
In this scheme, a private key of two large primes p and q
is generated. The public key n is then posted. To encrypt
a message m into ciphertext c = m2 (mod n). Since the
private key contains knowledge of the factorization of n, it

can then be used to compute the four square roots of c, one
of which will be m. [15]

While the generic problem of factoring is believed to
be hard, its difficulty can depend on the particular val-
ues of p and q which form the prime decomposition. In
particular, a notion of ‘strong’ primes has been proposed
where p and q are considered strong if p − 1 and q − 1
have large prime factors. Such primes are more difficult for
certain factoring algorithms to contend with, though the best
modern algorithms are not significantly impacted by such
conditions. [16] Nonetheless, the use of strong primes is
required by ANSI standards in an effort to create a system
which is as secure as possible. One way to ensure that the
strong prime criterion is met is to pick p and q such that
p = 2r + 1 and q = 2t + 1, where r and t are also prime.
This project restricts its analysis to primes of this form since
they represent the most difficult class of numbers to handle
and therefore give a better indication of the cryptographic
significance of any solutions encountered.

1.4. Problem Statement and Goal

The objective of this work was to use neural networks to
aid in the search for a solution to the problem of quadratic
residue detection. If a neural network can be found which
is capable of solving QR, then by selectively editing the
network inputs and architecture it might be possible to
infer a previously unknown closed–form algorithm. Neural
networks are often viewed as black–box solutions, but where
humans have not been able to find a solution, such a black–
box could provide helpful constraints on the solution space.
Even if no progress can be made on that front, the existence
of a black–box solution to quadratic residue detection would
present a deep challenge to conventional wisdom in cryp-
tography, and open the way for applying neural networks to
other open problems in mathematics.

2. Data Generation

There are two significant factors which may influence
the difficulty of quadratic residue detection. The first is the
composition of the modular base being considered. This
base could be prime, in which case a polynomial–time
solution is known, or the product of multiple primes, in
which case a polynomial–time solution is unknown. The
number of prime factors composing the base controls both
the number of quadratic residues which are present in the
modular ring, and also how many roots each residue will
have.

The second factor which was expected to contribute to
the difficulty of the problem is the size of the modular
base. As the length of this number increases, more elements
are added to the modular space. This could make it more
difficult for the system to learn any underlying patterns in
the data, but also allows for an increased number of poten-
tial training instances. Cryptographically relevant numbers
contain hundreds of digits, so even if machine learning is
capable of discriminating QRs with high accuracy on small



numbers it might not pose a threat to modern encryption
schemes.

For each base, n, training and testing data are required.
For small bases the complete set of residues and non–
residues can be easily enumerated and randomly sampled. In
order to generate data for the larger bases, random numbers
were selected from Zn. These numbers were squared mod
n in order to acquire values which are guaranteed to be
quadratic residues. In order to acquire non–residues, random
numbers were drawn from Zn until a non–residue was
found. This check is possible in polynomial–time since the
prime factorization for each base is known. Non–residues
were only included into the dataset if they had Jacobi symbol
equal to 1, since said symbol already provides a method to
discriminate between residues and non–residues having the
alternative sign. The testing datasets were comprised of 50%
residues and 50% non–residues, meaning that any system
which improve upon 50% accuracy by a notable margin is
at least a partial success.

3. Experimental Results

We examined the behavior of ANN architectures, imple-
mented using the TensorFlow library, using data generated
as described in Section 2. The networks considered two
integers a and n corresponding to the question: “Is a a
quadratic residue of n?” There are several important consid-
erations when building a network to attempt to answer this
question. First and foremost is what feature representations
should be used in order to attempt to find the solution.
Different network architectures may also be more or less
effective at finding a viable solution. Before taking on the
challenging task of detecting quadratic residues relative to a
composite modular base, experiments were completed on a
prime modular basis. For each case, a 50/50 random guess
procedure was run on the testing data 10 times. The resulting
accuracy along with standard deviation was recorded so that
the neural network’s performance can be compared to see
whether it is significantly better than what one would expect
from chance.

3.1. Primes

The first network architecture investigated was a Mul-
tiLayer Perceptron (MLP) with 4 hidden layers, each con-
taining 100 neurons employing hyperbolic tangent activation
functions. These units also employ a dropout layer before
the softmax output layer in an effort to combat overfitting.
A variety of input feature combinations were then explored
in the search for potentially useful inputs. As discussed
in Section 1.2, the quadratic residue problem for prime
bases can be solved explicitly using the Jacobi symbol, so
this symbol value was not considered as a potential input.
For initial tests, all residues and non–residues from 1 to n
were taken for the data set, with 80% being assigned to
training data and the remaining 20% held out for testing. A
cryptographically relevant system would need to be capable

TABLE 1. ANN PERFORMANCE ON n = 1000667

Trial
Iterations to 98%
Testing Accuracy

Final
Training
Accuracy

Final
Testing

Accuracy
1 1,081,000 100.00% 99.93%
2 1,177,000 99.45% 99.71%
3 1,728,000 98.62% 98.02%

of learning off of a small subset of this data, but that is not
necessary for feature viability exploration.

For each feature set, three networks were independently
initialized and trained in order to study the sensitivity of
the final system to variations in starting configuration. An
n value of 1000667 was selected since it is a strong prime
(see Section 1.3) which is large enough to allow for plentiful
training instances, but not so large as to make network
training times prohibitively long.

To establish a performance baseline, a network was
trained given only the binary representations of a and n.
This network was not able to outperform random guessing
on the test data set. Switching to a feature set inspired
by the Jacobi symbol algorithm gave more promising re-
sults. Using variable names as outlined in Algorithm 1,
these features included e (mod 2), n (mod 8), n (mod 4),
a1 (mod 4), and n (mod a1) – each normalized to the
range [0,1]. For better numerical stability and transferability
of learning, the n (mod a1) feature was computed as a
boolean corresponding to the question “is n (mod a1) equal
to 1”. These features were computed at every level of the
recursive algorithm, which is feasible since the maximum
recursive depth of the algorithm is dlog2 ne. Since five
features are provided per iteration, the total feature count
is still polynomial in the length of the input, and therefore
represents a cryptographically viable feature space. One
consideration when implementing this feature set is that
normally the recursive algorithm would terminate after a1
reaches a value of 1 or 0. Since all feature vectors to the
neural network must be the same length, once a1 reaches one
of these termination values the feature vector [0,1,2,2,1] is
appended until the necessary number of iterations has been
completed. These values were chosen since they would leave
the output of the true Jacobi algorithm unchanged if they
were to appear during one of its iterations. Initial training
results are given in Table 1.

While the results in Table 1 make it clear that the neural
networks were not a computationally efficient substitute
for simply using the plain Jacobi algorithm, the trained
networks were able to re-train to other values of n triv-
ially, indicating that they are finding the generalizable rules
we know to exist from the Jacobi algorithm. The transfer
training results are given in Table 2.



TABLE 2. ANN PERFORMANCE WHEN RETRAINED FOR NEW n

Network
ID

n
Initial
Testing

Accuracy

Training
Iterations to
98% Testing

Accuracy

Final
Testing

Accuracy

1 524387 99.97% 0 99.97%
1 786803 99.93% 0 99.82%
1 1048127 66.43% <1,000 99.92%
2 524387 99.75% 0 99.86%
2 786803 99.66% 0 99.84%
2 1048127 66.33% <1,000 99.75%
3 524387 98.70% 0 98.49%
3 786803 98.10% 0 98.64%
3 1048127 64.98% 22,000 98.31%

The networks here appear to transfer more readily to
smaller values of n than to larger ones. This is likely due to
the fact that, when trained on smaller n values, the final fea-
tures (representing the maximum possible recursion depth)
are not necessary and so not tuned properly. Nevertheless the
networks appear to be able to quickly integrate them once
they become necessary. Also worth noting is that networks
which take longer to reach peak performance also tend to
have lower peak performance, as well as requiring longer
to retrain. Such networks are likely finding locally optimal
solutions which are more complex than the true algorithm,
suggesting that it is worthwhile to try multiple initializations
when searching for more complex solutions in the composite
case.

3.2. Composites

3.2.1. Jacobi Algorithm Features. While the Jacobi sym-
bol is an effective mechanism for differentiating quadratic
residues from non–residues in a prime modular base, it is
insufficient for a composite modular base, providing only
a 50% probability of success if n = pq where p and
q are prime. This does not mean, however, that a neural
network trained with the modular discriminants used by
the Jacobi symbol algorithm will necessarily fail. With that
in mind, the inputs which led to the results summarized
in Table 1 were employed to train new networks for the
composite case given the basis 347∗359 = 124573. For this
experiment the dataset consisted exclusively of residues and
non–residues with Jacobi symbol equal to one, meaning that
simply mimicking the Jacobi algorithm would not be of any
help in solving the problem. These results are summarized
in Table 3.

TABLE 3. ANN PERFORMANCE ON n = 124573

Trial Iterations to 60%
Testing Accuracy

Training
Accuracy

Testing
Accuracy

1 116,700 88.00% 65.77%
2 146,000 86.22% 64.58%
3 103,100 88.89% 64.66%

Surprisingly, the accuracy of the neural networks was
well in excess of 50% despite that the Jacobi algorithm
itself should have been of no use. In an effort to determine

whether final accuracy was impacted by network architec-
ture, the experiment was rerun in several different configu-
rations. First, the hyperbolic tangent activation function was
exchanged for a rectified linear one (RELU-6), resulting in
network performance given in Table 4.

TABLE 4. ANN PERFORMANCE ON n = 124573 USING THE RELU–6
ACTIVATION FUNCTION.

Trial Iterations to 60%
Testing Accuracy

Training
Accuracy

Testing
Accuracy

1 44,100 83.56% 63.88%
2 27,300 84.89% 64.67%
3 140,400 71.56% 61.39%

It appears that despite the recent popularity of the RELU
activation function in image processing applications, the hy-
perbolic tangent function is more suitable for our particular
application; providing on average an absolute gain of 2.5%
testing accuracy. The RELU networks did, however, train
dramatically faster than the hyperbolic tangent networks.
The third trial was an exception, taking a very long time
to reach 60% accuracy. This appears to be due to the fact
that it became stuck in a very unfavorable local minimum,
causing 60% to be close to its asymptotic final performance
level. If training speed is desired over final performance,
initializing a large number of RELU networks and keeping
the best one may be the optimal choice.

Another key parameter of network architecture is size,
both in the form of hidden layer depth and hidden layer
breadth. To explore the impact of the former variable, hidden
layer count was increased from 4 to 5. The result was
virtually no change in testing accuracy over the baseline.
To investigate the latter variable, a network having 125
neurons per layer (rather than 100) was also trained. It
too failed to show accuracy improvements any larger what
would be expected from random noise, despite being much
more computationally intensive to train. This being the case,
the smaller system was deemed suitable for the purposes of
the investigation.

Although the Jacobi symbol itself should be of no use
when testing against a composite base, it was conjectured
that networks pretrained on the Jacobi algorithm would
provide a better starting point than random initialization for
differentiating quadratic residues. To determine whether this
was indeed the case, the networks from Table 1 were used
as the starting points for training the new quadratic residue
detection systems. The results of this experiment are given
in Table 5.

TABLE 5. ANN PERFORMANCE ON n = 124573 INITIALIZED FROM
JACOBI NETWORKS

ID Iterations to 60%
Testing Accuracy

Training
Accuracy

Testing
Accuracy

1 39,700 93.78% 65.25%
2 40,600 93.33% 65.17%
3 24,200 93.33% 64.84%



Although the pre-initialized networks did not attain a
higher testing accuracy than those which were randomly
initialized, they did approach this value 3 times faster,
requiring approximately 74,000 fewer iterations to reliably
exceed 60%. Although the network training started out much
faster based on this pre–training, hundreds of thousands of
iterations were still required to fully re–train the network.
This is weak evidence that whatever data property is being
exploited by the system is not directly connected to the
decisions made in the Jacobi algorithm, though something
about the architecture of networks which have learned that
algorithm is clearly valuable.

One obvious problem with these approaches is that the
number of training iterations needed to achieve better than
random guessing is larger than the value of n being tested.
In order to be useful for cryptographic applications, a neural
network would need to be trained on one value of n and then
be re–tasked to different n values with minimal retraining.
To determine whether this is feasible, a network was first
trained on n = 124573 and then was retrained on an n value
of 263*479 = 125977. The outcome is recorded in Table 6.

TABLE 6. ANN PERFORMANCE ON n = 125977 TRANSFERED FROM
PRE–TRAINED NETWORKS

Trial Iterations to 60%
Testing Accuracy

Training
Accuracy

Testing
Accuracy

1 14,500 90.22% 64.23%
2 17,300 88.00% 64.07%
3 16,200 93.33% 64.68%

Although the final testing accuracy of the transfer learn-
ing system was no better than before, the training accuracy
did increase towards this asymptote much more rapidly.
Whereas the original training required an average of 108966
iterations to achieve 60% testing accuracy, the retrained
system was able to achieve this accuracy after an average
of only 16000 iterations: nearly 7 times faster. This pro-
cesses is still slower than simply factoring n, but if the
underlying pattern being exploited by the network can be
better understood it may be possible to either extract an
explicit algorithm or else design networks which retrain
more quickly in the future.

Finally, additional features can also be added on top
of the Jacobi algorithm comparators in an effort to boost
performance. Since it is not yet known how the neural
networks are achieving their improved performances, it is
not clear what features should be added. Testing a variety
of modular comparators at random, however, reveals that
computing n (mod 7) at each stage of recursion has a
substantive impact on accuracy. These improvements are
summarized in Table 7.

TABLE 7. ANN PERFORMANCE ON n = 124573 WITH ADDITIONAL
FEATURE: n (mod 7)

Trial Iterations to 60%
Testing Accuracy

Training
Accuracy

Testing
Accuracy

1 54,800 99.56% 70.71%
2 65,800 98.22% 70.10%
3 56,700 99.11% 71.17%

Adding a single feature, n (mod 7), at each level of
recursion lead to an average testing accuracy increase of
4.77%, significantly beyond the influence of random noise
variations for the system. It also cut the required training it-
erations to reach 60% accuracy nearly in half. Other features
were also investigated, computing n and a against modular
bases of 3, 6, 9, 11, 13, and 17. The even/odd parity of a
was also investigated as a feature. None of these individually
yielded gains as significant as did the introduction of n
(mod 7), though in combination these features pushed the
testing accuracy up to 75.02%. It is hoped that other as–
of–yet unexplored features might be able to further increase
testing accuracies.

In preparation for testing on a wider variety of n values,
the network architecture was modified so that each hidden
layer contains a number of neurons equal to the number
of input features. For the values of n previously discussed
this means 102 neurons, an insignificant change given that
an increase to 125 neurons was already shown to have
very little impact. Performance for these various n values is
summarized in Table 8.

TABLE 8. ANN PERFORMANCE VARIOUS n

n Factors
Iterations to
60% Testing

Accuracy

Final
Testing

Accuracy
124,573 347 * 359 54,800 70.71%
125,321 7 * 17903 <100 100.00%
126,109 23 * 5483 49,100 71.72%
603,241 719 * 839 130,500 80.13%
848,329 863 * 983 460,000 79.29%
854,941 839 * 1019 1,530,000 62.81%
995,893 839 * 1187 1,857,000 61.15%

1,076,437 839 * 1283 2,239,000 61.82%
1,307,377 1019 * 1283 >3,262,000 50.67%
1,551,937 1019 * 1523 >4,821,100 57.38%

There are several interesting phenomena captured in
Table 8. First, there was a network which achieved 100%
performance, and did so extremely quickly. It is believed
that this high level of performance was achieved because
one of the factors of n was 7, and the data mod 7 is one of
the feature values computed along the way. To see whether
small factors in general lead to high performance, an n value
was tested having 23 as one of its factors. This network
behaved virtually identically to the network trained on an n
with two factors around 350, beating out the larger–factor
network by only 1%. While this might have indicated a weak
pattern of decline proportional to factor size, a network with
factors of 719 and 839 managed a testing accuracy of over
80%. It’s not clear why the performance jumped so high for



this value of n, but it does indicate that the system is able
to handle at least certain subsets of larger factors. On the
other hand, system performance took a precipitous hit on
larger numbers, to the point where it could do barely better
than random guessing for n = 1307377. These results are
complicated by the fact that the n values above 603241
were trained using a different implementation of the system
which generated data on the fly in order to reduce memory
consumption. When that same technique was applied to
n = 1551937 it also failed; the 57% accuracy instead being
achieved by a highly memory intensive implementation.
This may indicate that the decrease in performance observed
for the largest n values is a byproduct of implementation
difficulties rather than representative of any trend inherent to
the problem. Larger n values of 32188213, 860755297, and
25840758901 were also tested, but they had to be terminated
due to resource constraints before any significant progress
was made.

This brings to the forefront a significant drawback of
these results: even if the observed ability to achieve greater
than 50% accuracy holds for cryptographically sized val-
ues of n, it would be completely infeasible to train such
networks. Furthermore, experiments providing the neural
networks with only a small (log n or

√
n) subset of the

available data for training consistently failed. This could
be evidence that, when successful, the networks are only
memorizing patterns unique to each value of n rather than
learning a generalizable set of rules for detection. On the
other hand, if that were the case then pretraining a network
on one n value should not have improved the learning rate
when transferring to other n values, as it did in Tables 5
and 6. Unfortunately, efforts to demonstrate transferability
of learning amongst the larger n values failed. When at-
tempting to re–train networks which had previously been
trained for n = 603241, n = 854941, and n = 1076437, all
attempts failed to even move beyond a training accuracy of
50%, let alone having any impact on testing performance.
This is what one would expect to see if the step size
employed on each training iteration was forced to be very
small, a potential byproduct of the way in which the Tensor-
Flow library handles reloading of saved networks. Finding a
work–around for this problem and further investigating the
transferability of systems at large n values could provide
useful insights for future work seeking to discover how
these networks are able to generate such unexpectedly high
accuracies.

3.2.2. Alternative Features. A fundamentally different ap-
proach to quadratic residue detection is to compute ax

(mod n) for various values of x and use the resulting values
for features. Such features are inspired by the fact that
for prime n, a

n−1
2 (mod n) perfectly separates quadratic

residues from non–residues. It appears, however, that not
all possible powers x contain information useful for solving
the quadratic residue problem. Consider an n of the form
n = pq where p = 2r + 1 and q = 2t + 1. Based
on network performance testing, features of the form ax

(mod n) appear to be useful if and only if x is of the form

m ∗ r or m ∗ t for m ∈ Z+. Features of the form m ∗ r+ y
and m ∗ t+ y can also be useful when paired with y. If no
features of those forms are provided then the network is held
around 50% testing accuracy. No method was found which
could reliably acquire useful features without introducing
O(
√
n) candidates to the feature space, at which point trial

division is more efficient.
Several other input feature schemes were also consid-

ered, none of which lead to effective ANNs. First was the
use a (mod i) and n (mod i) for a logarithmic number of
small values of i ∈ Z+. The hope was that the system
would find a pattern based on some previously unconsidered
implication of the Chinese Remainder Theorem, though the
neural networks were unable to make any headway there.

A wide variety of Fibonacci sequence values modulo
different bases were also considered, for example Fiba+1

(mod n). These were tested since similar features appear
in an unproven primality testing heuristic titled the PSW
conjecture, and it was hoped that their utility might extend
to other number theory problems. Unfortunately the neural
networks were unable to make effective use of these features
either.

4. Conclusion

This work has shown that neural networks are capable
of learning to mimic the Jacobi symbol algorithm in a way
which is transferable to modular bases on which the network
was not trained. While these networks are less efficient
than the standard Jacobi algorithm, and therefore not of
any pragmatic utility, this serves as another example of
the ability of neural networks to converge on a moderately
complicated algorithm. More importantly, this system also
provides a launching point for addressing more complex
problems.

Using Jacobi algorithm features to drive machine learn-
ing, it appears that a significant improvement over random
guessing may be achieved in the problem of quadratic
residue detection for composite numbers of the form n = pq.
Such a result challenges the conventional wisdom of the
community, which suggests that quadratic residue detection
is as unguessable as a coin toss. [13] [14] There are several
key considerations, however, which restrain the impact of
this apparent result. First and foremost is that cryptograph-
ically relevant n values tend to be on the order of 500 to
1000 bits. The numbers tested during this investigation are
only on the order of 17 to 21 bits. It is possible, therefore,
that any patterns detected on the small scale are not present
at the larger scale. This would have been investigated in
greater detail if not for a second problem: training the
neural networks from scratch appears to require O(n) data
instances and iterations. Using only a personal computer, it
is not possible to train a network on such a large set of data
due to both memory and time constraints. To fully train
a network on a cryptographically relevant scale would be
intractable even on a supercomputer unless a more efficient
convergence mechanism can be constructed. Based on the
experiments presented here, using a deeper network with



simpler activation functions could be one way to cut down
the training iteration requirement. Another possible avenue
of attack would be to take a random–forest style approach to
the problem, providing numerous neural networks with only
a small amount of training and then taking a majority vote
to generate the classification. One potential problem with
such a method is that, if the networks are learning some
underlying algorithm for residue detection, their errors may
be interdependent and thus the ensemble system may not
see improved performance. Moreover, it may still require
O(n) training iterations simply to exceed 50% accuracy, in
which case the ensemble method can offer no advantage.

Given the relatively small size of the numbers investi-
gated during this study, and the resource–intensive training
requirements of the neural networks, a much faster solution
to quadratic residue detection would have been to simply
factor n and then directly compute the residue status. It is
worth noting, however, that factoring algorithms have been
under development for centuries whereas neural networks
provide new avenues of possibilities. Just as factoring al-
gorithms have become more and more efficient over time,
it is possible that this methodology might be significantly
improved upon in order to decrease resource requirements
and further improve accuracy. Over the course of a relatively
small number of experiments, features were discovered
which provided an absolute testing accuracy performance
boost of up to 10% on top of what was already provided by
the Jacobi symbol features. If a polynomial–time algorithm
for QR detection exists, neural networks of this form could
allow for an easy way to identify what sort of computations
are involved in it. By studying the impact of different
features on network performance, it may be possible to
discover a previously unknown algorithm. This would in
turn make the computational resource requirement of the
neural networks a moot point and allow for solutions to even
cryptographically sized inputs. Although neural networks
are conventionally treated as black–box systems, there is no
reason that they could not be used as relevant–feature detec-
tors. Future work should therefore focus on the search for
additional features, as well as on performance optimizations
so that applicability on larger n may be investigated.
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