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Abstract

This investigation examines the quality of finite element analysis

(FEA) results based on the use of tetrahedron elements. For some classes

of problems analyzed by the finite element method (FEM), the use of

various polynomial order tetrahedra is considered quite acceptable.

However, in other classes of problems, particularly stress analysis, users

have a strong bias against these types of elements. Various case studies

are performed, comparing results based on several types of
three-

dimensional elements.
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Chapter 1. Introduction

The finite element method is one of the numerical techniques

used for the approximate solution of engineering problems. The

procedures for FEA can be divided into three stages:

1. Pre-processor

2. Processor

3. Post-processor

The Pre-processor is the stage to make geometry (model), create

elements (mesh) and apply the boundary conditions. The processor is a

numerical solver which solves the FEA model. The post-processor is a

tool which allows the user to see the results. Once the FEA model is

finished, the user can only send it to the solver (processor) and check

the result (post-processor) after that. The user has no control at the

processor and the post processor stages.

The most critical stage is the pre-processor. At this stage, the user

must fully understand the problem and use all the tools which are

provided by the FEA program. A single mistake can adversely effect the

FEA result. If the user fully understands the problem, the only thing that

can impede the results are the tools of pre-processor which are provided

by the program.

Finite element solvers can give solutions to rather complex

problems and have traditionally been used for analysis of components

with complicated shapes and boundary conditions (loads and constrains).
Various solvers exist which will give reasonably accurate and reliable

results for these problems. All the finite element computer packages

require an input of a finite element mesh, loads, boundary conditions

(constraints) and material properties. The finite element mesh describes

to the program, the discrete geometry of the domain to be analyzed.

Communicating this mesh to the finite element solver has normally been
done manually and thus has been time-consuming and error-prone.

The usefulness of geometric modelers for finite element mesh

generation is readily apparent. Since a finite element mesh

communicates the geometry of the domain to be analyzed, it seems

appropriate that it could be constructed from the geometry of the

domain in question. The geometry of parts and assemblies are stored on

computers using programs called geometric modelers [1,2].
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Geometric modelers

The geometric modelers can be classified into various types

according to the way they store the geometry of a object.

1) Wire frame modelers

The object is represented by its edges. Imagine putting awire for

every edge in the object. The resulting representation is a wire frame. No

information is present regarding the surface. Because it does not

completely represent an object with a surface, it could lead to an

ambiguous object, a example is given in Figure 1.1.

^^ y
/ /

^s /

s

Top to bottom? Front to back ?

&
w

Wireframe

Figure 1.1 Wire frame representation

2) Surface modelers

The object may be represented by its surfaces, curved surfaces can

be represented and objects are unambiguous. There is no information

regarding what is inside or outside the object. Thus it is not possible to

compute the volume or other properties of the object.

3) Solid modelers

The object may be represented in various ways but it is defined

unambiguously and it should be possible to compute volume, mass, etc.

There is information regarding the inside and outside of the object. In

other words, the object can be represented completelywithout
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ambiguity. Most solid modelers store the geometry data in a way that can

be classified in one of the three categories or their combinations.

Constructive Solid Geometry (CSG)

The object is built by performing Boolean operations (union,

difference, and intersection) on simple pre-defined objects called

primitives, such as blocks, cones, cylinders, tube, spheres, etc. The actual

boundary of the object is usually not stored but can be computed at any

time. An example is given in Figure 1.2.

Figure 1.2 Constructive Solid Geometry modeler

Boundary Representation (bRep)

The boundary of the object is stored inwhat is called boundary file
in a structured manner such that it is possible to identify the regions
inside or outside the object. The boundary of the boundary of the body
will usually be an ordered set of surfaces, faces, loops edges and vertices.
An example is given in Figure 1.3.

Cell Decomposition's and Spatial Enumeration

The object is represented by decomposing it into a bunch of cells,
cubes or blocks, which can be thought of as building up the object. The
domain of the objects is represented by a tree structure, quadtree in 2-
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dimension and octree in 3-dimension, with status of the cells (partial,
full and empty), see Figure 1.4. for example. The boundary of an object

can be approximated by the cells.

Object

Figure 1.3 Boundary representation modeler

The early systems that simply computerized the drafting
process do not contain all the geometric information needed to allow

applications to operate automatically. Therefore ,
the more recent solid

modeling systems employ complete and unique geometric

representations. These systems contains all the geometric information

needed to allow any finite element mesh generation techniques to

automated.

Z

1

o 0

Figure 1.4 3-dimensional octree modeler

The early systems that simply computerized the drafting process
do not contain all the geometric information needed to allow
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applications to operate automatically. Therefore ,
the more recent solid

modeling systems employ complete and unique geometric

representations. These systems contain all the geometric information

needed to allow any finite element mesh generation technique to be

automated.

Approaches to mesh generation

The problem ofmesh generation [3] is to convert the geometry
from one of the geometric modelers to a form understood by a finite

element solver, in amanner as automatic as possible. The increase in the

level of automation will allow the finite element method to be used by
engineers to provide reliable analysis results to their problem. There are

various popular ways of generating these meshes and they can be

classified into the following categories.

1. Laplacian method,

2. mapping methods,

3. point placement followed by triangulation,
4. removal of individual sub-domain,

5. recursive subdivision of the domain, and

6. spatial decomposition followed by sub domain meshing.

An automatic mesh generator is an systematic procedure capable

of producing a valid finite element mesh in a domain of arbitrary

complexity given no input past the computerized geometric

representation of the domain to be meshed. The Laplacianmethod and

mapping method are not the real automatic mesh generation

techniques. But both two methods are widely used (especially for

quadratic brick (Hex) element or linear brick element) in the finite

element method.

Laplacian Method

A set of simultaneous nonlinear equations for the position vectors

of the interior nodes with respect to the neighboring nodes is solved

using iterative techniques. A starting grid is required. The laplacian

method iteratively replaces the interior node Pj
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NJ

Pi = "Pj Eq. 1.1

7=1

;'*i

where Nj is the number of nodes to which Pj is connected and Pj are the
node points of the connected nodes. The process has proven useful in

mesh generation algorithms and smoothes the mesh into one with better

proportioned elements. This may be used to smooth meshes created

using other methods.

MappingMethods

A function is used to map the given geometry into a simple

geometry, usually a square in two dimensions and a cube in three

dimensions. This simple geometry is meshed and all the node points are

mapped back to the original geometry. Various mapping functions have

been used, the trans-finite mapping are most commonly used for

mapped mesh generation. Mapping methods do impose a number of

restrictions on the geometry of the object. Whenmapping methods are

used, the geometry of the object is constructed by gluing together the

individual, fixed topology, mesh patches (see Figure 1.5).

Therefore, the geometric representation is explicitly defined in terms of

mesh patches. The user is responsible for defining a valid set of mesh

patches, which implicitly define the geometric representation and

explicitly provide the geometry necessary for meshing to occur. The

mesh generators are, therefore, not concerned with the actual geometry

a. Body coordinate b. Mapped on a unit cube c. Mesh generated

Figure 1.5 A 3-dimensional mapping mesh generation
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of the object. This is however, not the case for an automatic mesh

generator which is given a complete geometric representation of the

domain of interest and is responsible for decomposing it into a valid set

of elements. This paper will not discuss this other than to say that the

mapping techniques have been found to be rather inadequate for

automatically generating meshes on arbitrary complex geometry.

Automatic Mesh Generation Techniques

The other mesh generationmethods are fully automatic mesh

generation procedures, which are fully 3-dimensional or the extension

from 2-dimensional to 3-dimensionalmesh generation appears possible.

Currently, these mesh generation techniques only use tetrahedron

elements in 3-dimension; no other type of elements are available.

1. Point placement followed by domain triangulation

This type of mesh generator involves two independent process

[6,7,8,9]. First, node points must be insertedwithin and on the boundary
of the structure to be meshed. Secondly, the node points are

automatically triangulated to form a network of well-proportioned

elements. The triangulated algorithms function in both 2- and 3-

dimensional settings producing meshes of triangular and tetrahedral

elements, respectively. These two algorithms function independently of

each other, so that there are many ways to triangulate the elements. For

ease of exposition, we first discuss amesh triangulation algorithm.

Recent efforts [6,10,11,12] employ the properties of the geometric

constructs of Dirichlet tessellation and more importantly for mesh

generation, the Delaunay triangulation of given set of points, consider

first the 2-dimensional case. Let Pj, P2,...,Pn be distinct points in the

plane, and define the sets Vi( l<i<N, where

Vr{X: IX-Pil < IX-Pjl for all j*i} Eq. 1.2

where |.| denotes Euclidean distance in the plane. Vj represents a region
of the plane whose points are nearer to node Pj than to any other nodes.
Thus Vj is an open convex polygon (usually called a Voronoi polygon)
whose boundaries are portions of the perpendicular bisectors of the

lines joining node Pj to node Pj when% and Vj are contiguous. The
collection of Voronoi polygons is called the Dirichlet tessellation. In

general, a vertex of a Voronoi polygon is shared by two other polygons so
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that connecting the three generating points associated with such

adjacent polygons form a triangle, say T^. This set of triangles n_} is

called the Delaunay Triangulation. See Figure 1.6 for example.

Figure 1.6 Dirichlet tessellation and Delaunay triangulation

The construct can be shown to be a triangulation of the convex

hull of the node points. An important property of 2-dimensional

Delaunay Triangulation which makes it suitable for use as a finite

element that its triangles are as close or equilateral as possible for the

given set of nodes. Consequently, ill-conditioned and thin triangles are

avoided whenever possible. There are many approaches to the

construction of a Delaunay triangulation. A currently popular approach

is a version proposed byWatson[8].

In two dimensions, Watson's algorithm turns upon the simple

observation that three given node points will form a Delaunay triangle if

and only if the circumdisk defined by these nodes contains no other
node points in its interior. The algorithm is initialized by calculating the
coordinates of three node points which form a triangle Tq that
surrounds all the node points to be inserted. The circumcentre

coordinates and circumradius of the circumcircle defined by T0 are also
calculated and recorded. The node points are then introduced one at a

time. The algorithm operates bymaintaining a list of triplets of node
points which represent completedDelaunay triangles. Associatedwith

each such triangles are the coordinates of its circumcentre and

circumradius. For each new node point entered, a search is made of all

current triangles to identify those whose circumdisks contain the new

point. For such disks, the associated triangles are flagged to indicate

removal. As shown in Figure 1.7, the union of all such triangles forms

what we call an insertion polygon containing the new node point. It can
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be shown that no previously inserted node is contained in the interior of

the polygon and that each boundary node of the polygon may be
connected to the new node by a straight line lying entirelywithin the
polygon. Thus, a new triangulation of the region enclosed by the polygon
is formed. Repeated use of this insertion algorithm permits all node

points to be entered, while ensures that at each step the triangulation

retains its Delaunay properties.

a. New point insertion b. Element deletion c. New mesh generated

Figure 1.7 Watson's Algorithm

In three dimensions, Watson's Algorithm starts with a tetrahedron

To containing all points to be inserted, and new internal tetrahedron are

formed as the points are entered one at a time. At a typical stage of the

process, a new point is tested to determine which circumspheres of the

existing tetrahedron contains the point. The associated tetrahedra are

removed, leaving an insertion polyhedron containing the new point.

Edges connecting the new point to all triangular faces of the surface of

the insertion polyhedron are created, defining tetrahedralwhich fill the

insertion polyhedron. Combining these with the tetrahedral outside the

insertion polyhedron produces a new Delaunay triangulationwhich

contains the newly added point.

There are a number ofways that node points can be inserted

within the domain. For instance, one of these methods used in [6] is to

cut planes through the structure, say P1,P2,...,Pn. It is within each of

these cross-sections that node points will be defined. Figure 1.8

illustrates the steps to define the node points in a space. In summary ,

node points are defined interactively a plane-at-a-time. Within each

plane, the user has control over local node densities. It is possible to

automate this node insertion process further.
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Figure 1.8 A way to define the node points in space

Although Delaunay triangulation performs very well in two

dimensions, several problems exist withWatson's approach in 3-D. The

first one is the existence of degenerate cases. These occur in practice

when a newly inserted node appears to he on the surface of a

circumsphere associated with some existing tetrahedron. The problem

becomes apparent whenever the distance from a newly entered nodal

point to an existing circumsphere is less than e, where e is the expected

accumulated computer truncation error. This in turn produces

structural inconsistencies in the triangulation, that is over lapping
tetrahedral or gap in the mesh.

Delaunay
tedrahdron

circumsphere

Figure 1.9 The distorted Delaunay tetrahedron,
"silver"

Another serious problem which arises in the three dimensions,
and which also requires modification of the Delaunay Triangulation,
occurs with the creation of tetrahedron we call "silver". In this case (see

Figure 1.9),
"silver"

will defines a badly distorted Delaunay tetrahedron

whose faces are well-proportioned triangles, but whose volume can be
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made arbitrary small. Therefore, these methods which use Delaunay
Triangulation need checking criterion to eliminate those ill-shaped

elements after the mesh elements have been generated.

i -

_--->

4.1

!

Figure 1.10 Surrounding algorithm

Other rule-based procedures of triangulation have been developed

[7,8]. For instance, in two dimensions, a method binges on the principle

of fully surrounded points. Starting with node 1, each node is

surrounded in turn with triangular elements.When a node is being
surrounded, new triangles are only formed with nodes of higher node

number which is registered by a special scanning procedure. This

automatically ensures that triangles do not overlap. The process starts

by selecting the nearest

point to node 1 and thus estabkshing a side lj where j is the node

number of the nearest point.When surrounding another point i, the first

side is established only after checking whether i is already part of an

existing triangle. If this is the case, the existing triangle is used to

provide this starting side. The side ij is then used to seek a node k such

that the angle i-k-j is maximum and i-j-k is an anti clockwise sequence.

This new point k becomes j and the process is repeated and so on. If a

node 1 is found such that triangle ikl already exists this routine is

omitted and 1 becomes the new point i. The process stops when a

triangle is obtained containing the side from which the process began

and the point is thus completely surrounded (see Figure 1.10 for detail.)
The extension to 3-dimension could be in [9]. In this approach, the

surrounding a given point with triangular element is replaced with

surrounding a line between two points with elements and then move on

to another line until the mesh is complete. A flow chart of this routine is

shown in Figure 1.11.
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START

Determing the line

to be surrounded [1-2]

Determing the basic

triangle [1-2-3]
<r

Looking for the optimum

point [4] and forming the

the tetrahedron [1-2-3-4]
>1

|3]=[4]

End

= Surrounding angle

Figure 1.11 The flow chart of the 3-dimensional surrounding algorithm

The node insertion of the surrounding algorithm mentioned above uses

a slightly different scheme. The node point number is recorded in

sequence by a specific scanning procedure. When all the
"true"

node

points have been recorded, the number of the last node is noted and

then start to record
"ghost"

points outside the boundaries of the

structure, see Figure 1.12 The use of
"ghost"

points removes the need for

the identification of nodes on external boundaries. Ghost points must be

placed so that each element side which is on an external boundary can
form a triangle with a ghost point. Otherwise, the mesh generation

program will form a triangle which does not exist on the structure

between the boundary node points. These
"ghost"

triangles will be

removed after the meshes have been generated.

Though these algorithms use properly constructed set of rules

capable of producing a well-conditioned meshwithin a domain, they
require extensive searching and large number of checks, such as

degenerate and overlapping cases, manymore than other mesh

generating techniques. In addition, it is difficult to develop a set of
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triangulation rules that would insure the elements generated satisfy a

given shape criterion.

Ghost points

/

Figure 1.12 The
"Ghost"

point for boundary definition

2. Mesh generation based on Sub-domain removal

Automatic mesh generation procedures in this method [13,14,15,

16] operate by removing individual pieces from the domain one at a time

until the domain is reduced to one remaining acceptable piece. Element

removal meshing procedures employ a specific set of element removal

operators that are capable of removing a single element from an object.

They operate by first examining the topological features of the object

testing a specific set of geometric measures to see if any of the element

removal operators can be applied. There is a pre-specified hierarchy in
which the various operators are applied. They typically employ a

boundary representation of the domain and operate by searching for
entities of specific type that satisfy a set of conductivity and geometric

requirements. Two examples of this kind are represented as followed.

Figure 1.13 Subdivision of a multilateral domain

The first approach is an subdivision of a planar polygon by
triangular elements [13]. Given a certain domainwith a number of nodes
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around its boundary, we start by deterrmning the most well-conditioned
elements which can be formed at each corner of the domain. Having
finished this step, the elements formed are considered to be cut out

from the original area and the same concept is applied to the remaining
area and so on. The level equals unity. Subdivision at a corner node of

level equals unity generates nodes of level equals to two and so on. The

subdivision of domain is per formed in successive stages. In each stage, A

continuous boundary layers is cut out. This is shown (Ungrammatically in
Figure 1.13 & 1.14. Starting with the nodes around the original
boundary, Triangular elements are generated and a new set of nodes of

level equals two are obtained. The first stage is known to be complete

when all the nodes bounding the area to be subdivided become of level
equals two. Again, starting with these nodes, a new set of nodes of level

equals three are generated and so on. The mesh generation process is

known to be complete when the number of nodes around the boundary
of the remaining area reach three. This means that the remaining area is

one single triangular element and hence no more subdivision is

required.

Contour |

Figure 1.14. Nodal levels

The second approach [14] is a 3-dimensional subdivision of object

which is extended from an 2-dimensional procedure. Consider the basic

element removal operators used to mesh a 3-dimensional subdivision

domain without void. The first operator, VERTEX_REMOVAL is applied by
searching the object for vertices with only three edges coming into it.

Any such vertex satisfies a set of geometric interference requirements

can be validly removed from the object. The removal of vertex carves a

tetrahedron from the object. In cases where all vertices have more than

three vertices, a second operator, EDGE_REMOVAL, is applied. In this

case, tetrahedron containing the selected edge is carved from the object.

Since this operation reduces the number of edges connected to two of
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the vertices by one of each, it eventually reduces the complexity of the
object until the first operator can be applied again. In case where neither

of the first two operators can be applied a third operator,

FACE_REMOVAL, can be applied. In this case, a tetrahedron containing a
face of the object and connecting the three vertices that bound the face

being removed. These operators are illustrated in the Figure 1.15.

(A) VERTEXJIEMOVAL (B) EDGE_REMOVAL (C) FACE_REMOVAL

Figure 1.15 Element removal operators

A topological-based element by element removal procedure
appears ideally suited for the construction of optimal h-p ( HEX element)

finite element meshes where coarse, exponentially graded meshes are

desired. Since the amount of computation required for the application of

each removal operation is high, these procedures are not

computationally efficient for the creation of a fine mesh. The

development of an algorithm that decomposes the domain into large

chunks by removing them one at a time is an attractive way to consider

the automation of the current methods ofmesh generationwhere the

user interactively decomposes the domain of interest into mappable

regions and invokes amapping mesh generator which we have

mentioned at the beginning [4,5]. The difficulty in developing such an

approach is the identification and implementation of a set of rules that

would examine a geometry to determine how to decompose it into

mappable regions that will yield the type of mesh generations desired as

well as providing a satisfactorymesh topology.

3. Mesh generation by recursive subdivision

The recursive subdivision mesh generators [17,18,19] operate by
the repeated splitting of a domain into simpler parts until the individual

parts are single elements, or, possibly, simple regions inwhich elements

can be quickly generated. The Triquamesh technique is one of the wide

used recursive subdivision method in this area. The Triquamesh

technique is based on the surface/volume triangulation. It can be used to

create triangular or quadrilateral meshes on surface. It can also be

broken up into hexahedrons. The whole technique is based on two basic

laws of analytic geometry at this time:
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Every polygon is divisible into triangles.

Every polyhedron is divisible into tetrahedron.

It follows that we will be able to create a mesh consisting of

triangles of any surface. Also, we will be able to create amesh consisting
of tetrahedral in any volume. To explain the working of this method, we

start with a description in 2-dimensions [18]. The extension to 3-

dimension is then straight forward.

Any area can be divided by the user into a certain number of
sub-

area. Each sub-area needs to be coherent, that is, a closed loop. An area

with n-fold incoherence can be made coherent by n-1 cuts. The first step
involves obtaining a convex polygon. So, if the polygon is already convex,
we move to the next step. Otherwise, This polygon is successively

subdivided, until a bunch of convex polygons are obtained. This process

of subdividing a concave polygon into more than one convex polygons is

controlled by certain heuristics, which have essentially been obtained by
trial and error. The aim is to get a split line which will pass through a

concavity in the concave polygon and which is likely to yield good
elements. These split lines have to be chosen rather carefully because

these later become the boundaries of the elements. Once a polygon is

divided into two by using a split line, see Figure 1.16, we need to create

nodes on the split lines. The problem now reduces to meshing two

polygons. This process is continued as long as we have polygons. Once

we have convex polygons, they are taken up one by one. An attempt is

made to chop off layers from the polygon, where the polygon has a sharp

angle. These layers yield elements. These layers are chopped

successively, such that each of the layers yields good elements. Again,
this is done using certain heuristics. Once no more sharp corners are

found, the polygon is again cut into two by use of a split line as

plit line

Figure 1.16 Cutting concave polygon using splitting line

explained earlier and this process continues until the mesh completed,

see Figure 1.17 for details.
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Figure 1.17 chopping off layers yield elements

The same concepts are extended to 3-dimension A surface in 3-

dimension is projected (or transformed) to 2-dimension and the above

meshing is done. For solid elements, tetrahedron are generated. These

can later be subdivided into hexahedrons. We will now be dealing with
convex polyhedra instead of polygons and split planes instead of split

lines then same procedures from 2-dimensional mesh applied until the

mesh complete.

As in the sub-domain removal procedures, this class ofmesh

generator typically operates off a boundary representation of the domain
to be meshed, looking for candidate topological features meeting specific

conductivity and geometric requirements. Some structures which this

method cannot split should be transformed or sub-divided to those that

can be split.

4. Spatial decomposition followed by sub-domain meshing

The basic idea behind this approach [10,11,14,19,20,21,22,23] is
use an efficient procedure to decompose, in a controlledmanner, the

domain of interest into a set of simple cells and to then mesh the

individual cells in such a manner that the resulting mesh is valid. The

one spatial decomposition approach that has been applied to mesh

generation is the quadtree in 2-dimensions and the octree in 3-

dimensions. The entire structure is stored in a hierarchic tree as shown

in figure 1.18.

One algorithm to building a 3 dimensionalmesh generator using
this basic tree representation is themodified-octree (modified-quadtree

in 2-dimension) [21,22,23]. the basic steps in the modified-octree mesh

generating processes are :

a. Set up an integer coordinate system that contains the object to be

meshed.
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b. Generate the modified-octree representation of the object accounting
for the mesh gradation information specified with the geometric

model.

c. Break the modified-octree up into a valid finite element mesh.

d. Pull the nodes on the boundary of the modified-octree to the
appropriate vertices, edges and faces of the original geometry.

e. Smooth the locations of the node points to create a better

conditioned finite element mesh.

iff

%

m

%

m

s_r

QUADTREE REPRESENTATION

TOP FOUR LEVELS OF TREE

FULL EMPTY PARTIAL
MOOlflEO

OUAOTREE REPRESENTATION

Figure 1.18 The quadtree and modified quadtree representations

The essential difference between an octree and a modified- octree

is that the modified-octree allows for the definition of a cut octant. Since

the size of octree cubes desired for use in the finite element mesh

generation are large with respect to the geometric details of the object, it

is necessary to deal in a specific manner with those octree cubes that

contain the boundary of the object and are neither fully inside nor

outside the object. The cut octants, which is the octants containing the

boundary of the object, is completed by qualifying which side of the

discrete boundary existing in the octant is inside the object. To maintain

the integer tree storage and to limit the number of cut octant cases to a

manageable number, only the corners and half-points of an octant cases

are used in the cutting process. This operation requires a specific set of

geometric checks [23]. With IN/OUT information of these points, the

sharp of faces of the octant that are cut by the cutting surface are

defined. One approach to define the cutting surface is to allow only

single planar cuts. However, for many objects there will be situations
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when the cutting surface points are not coplanar. In these situations, the

surface representationwill have a discontinuity, which will lead to
problems when the finalmesh modifications are performed. Therefore, it
is necessary to include amore extensive set of octant cutting surfaces.

The IN/OUT information can be properly representedwith an addition of

a set of two planar cut octants and a limited number of three planar

cuts, see Figure 1.19. After the octant on the boundary are defined, the
interior octants within the boundary are then quickly filled by a simple
tree traversal process. Once the modified-octree is available, it is broken

into a set of valid finite elements. After an integer finite element mesh is

available, the final steps include pulling (or assign) nodes to the

boundary and smoothing the nodal locations to ensure the best possible
element sharps for the given element topology.

One planar cut octant examples

Two planar cut octant examples

Figure 1.19 Examples of cut octants used in the modified octree algorithm

Another approach based on spatial decomposition uses the

combination of Octree and Delaunay Triangulation [10,11,12]. The basis

of the scheme are introduced briefly as follows (see figure 1.20 for
details):

a. Tree building. Given a geometric model, generate its octree

representation. Each octant is classified inside, outside, or on the

boundary of the object. An octant is classified on the boundarywhen

any of its features (vertices, edges, or faces) is classified on or

intersects the boundary.

b. Octree triangulation. Each octant classified inside or on the

boundary is triangulated using templates or Delaunay procedure.

c. Intersection point triangulation. The octree triangulation serves as

the initial triangulation for the intersection point triangulation . In
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this step the intersection points generated during tree building are
incorporated into the triangulation using the Delaunay property.

Classification and compatibility. The geometric triangulation

requires that the mesh entities are classified against the model

geometry and that topological compatibility is assured. If an

incompatibility is identified, it resolved either through a local
resolution procedure or by refining the octree.

Mesh improvements. A point reposition procedure, such as Laplacian

method, may be used to improve the quality of the mesh elements.

Rg
_:?"^

\\
\y*

Original Geometry Tree Building Octree triangulation Intersection points Classification &

Triangulation Comparability

Figure 1.20 A overview of octree/Delaunay triangulation method

Control of the element distribution

In addition to the ability to generate a valid mesh for any

geometry, automatic mesh generators must permit the types of mesh

gradations necessary to produce efficient finite element models. Ideally,

the mesh control device should allow for the convenient specification of

both a priori and a posterior mesh generation information. A priori

mesh control device are used to specify the distribution of elements in

the initial finite element model. Since the basic input to an automatic

mesh generator is a geometric representation., any priori mesh control

device must be tied to the geometric representation. This means that a

priori mesh control can also be a function of the particular geometric

modeling approach used. A posterior mesh control devices are used an

adaptive analysis process to improve the mesh as indicated by the results

on the overall discretization error in one or more solution norms. The

primary function of a posterior error estimators are to provide a

convergent and accurate measure of the discretization error of a given

finite element solution. To used most effectively, the mesh generation

procedures must be coupled with adaptive analysis procedure that can

insure that the final mesh yields the requested degree of accuracy.

Without adaptive analysis procedures based on reliable a posterior error

estimators, the analyst will need to use a priori mesh control techniques

to generate the desired element distributions.
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Chapter 2. Test Cases

The benchmark is based on two types of analyses (static state and
modal analysis). Each type of analysis will given two geometries and

meshes by linear and quadratic tetrahedron and quadrilateral elements.
All the FEA results will be comparedwith hand calculation.

Static State

Cantilever (square) beam

1000 lbf

10"xl"xl"

Material : Steel E = 3e7 psi u =
.3

Figure 2.1

Cantilver (round) beam

1000 lbf

D=1",L=10"

Material : Steel - E = 3e7 psi u
=
.3

Figure 2.2
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Modal Analysis

Square flat plate all edges fixed

10"

x
10"

x
0.5"

Material : Steel - E = 3e7 psi u =
.3

Figure 2.3

All edges fixed

Circular flat plate with a edge fixed

Edges fixed

OD =

10"

t =
0.5"

Material : Steel E = 3e7 psi u = .292

Figure 2.4
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Chapter 3. Analytical Solutions

Cantilever (square) beam

smmmmmm

;'-;.>:";"-'::*':-"'
a";v":;"

::: ';'':-::;

1000 lbf

10"

x
1"

x
1"

Material : Steel - E = 3e7 psi o =
.3

Figure 3.1

I = -- = -- = 0.08333 in* Eq. 3.1

12 12

37

lOOO(lO)3

3H

= -0.1333 in Eq. 3.2
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Cantilver (round) beam

:^:v^^^^
->^ -^ '^
A^^^^^^v.^^^s\^^^^^s<^s^^^'.^<;";^^s^^<s^^<^^^W;^...,

;^;->X^:^: -^^^^
v^v.^^^^^^^^^^^^^v^A^^^<sW^6^^^s^s^Ww^S^^^^v..,

^^:^^^^^:>-^^^
^^^^^^^^^v.^v.-.^^^^^^<^.^W:0^<4s^vvl.^^ss.,

'^^^^^^^^;-^-^^^^.^^^v^.,.iA^^^.^^^^s^v^.
v^.^^*-^v.X<.vA^^^y^v^^^X^.^^J^^v.,

....-...v.s..^:.-.Xw.w:-:.:---.:-:.. :..::...::; .> . . -... t... >>:. .-.-.:*.

1000 lbf

D-1",L-10"

Material : Steel - E = 3e7 psi o =
.3

Figure 3.2

j =m _

H5T
= Q Q491 in4

^ 33

^mav =- = - 0.226354 in Eq. 3.4

37

Page 24

GBT 08/03/92



Square flat plate all edges fixed

10"

x
10"

x
0.5"

^-AU edges fixed

Material : Steel - E = 3e7 psi u =
.3

Figure 3.3

fn
2nn\waA

Eq3.5

where kl = 36 fundamental
k2 = 73.4 one nodal diameter

k3 = 108.3 two nodal diameter
D = Et3/i2(l-v2)

g
=

gravity

w = wt./area = densityx thickness
a = length ofedge

So

Et3

3el(0 5V

w= pt
-

0.283(0.5) = 0.1415(lb./in2) Eq 3 7

Therefore

\Dg /341628.6228(3"86iy ,n,.a>(n/.

fW
=

V 0.1415(10)4

= 35-434 (1/m-Sec) *"
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/ = ^fJ-^r = ^(305.434) (cycle/sec -> Hz) Eq 3.9
2n\wa 2n

fx =(305.434) = 1750.008 (cycle/sec) Mode 1
2n

Mode 1

Figure 3.4

f2 =211(305.434)
- 3568.07238 (cycle/sec) Mode 2&3

2n

Mode 2 & 3

Figure 3.5

/; = (305.434) = 5264.608 (cycle/sec) Mode 4&5
3

2n__

+

I IIHIHM lljf|'"li MllilMM.IVWW.llwy

Mode 4 & 5

Figure 3.6

Mode 6

Figure 3.7
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So

Circular flat plate all edges fixed

Edges fixed

OD t =
0.5"

Material : Steel - E = 3e7 psi o= .292

Figure 3.8

/.-%-M *

2n\ vwr

where kl = 10.2 fundamental

k2 = 21.3 one nodal diameter

k3 = 34.9 two nodal diameter

k4 = 39.8 one nodal circle

D =Et3/12(l-v2)

g
=

gravity

w = wt./area = density x thickness

r = radius

D =

Et
=

3e7(0.5)
= 341628.6229 (lb.-in) Eq. 3.14

12(1-
v2) 12(l-(0.292)2)

w = pt = 0.283(0.5) = 0.1415 (lb./in2) Eq 3.15

Therefore

H*
_

1341628.6228(386.4)
_ 122L736237 (1/in.sec) ^ 316

ywr4 i
0.1415(5)4
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k \Ds k
fn =

2~n\^

=

^(1221.736237) (cycle/sec -> Hz) Eq. 3.17

, 10 2

/,=-r (1221.736237) = 1983.34 (cycle/sec) Mode 1

^^*^^s_ nil
'

Mode 1

Figure 3.9

f2 =^(1221.736237) = 4141.69 (cycle/sec) Mode 2&3
2n

Mode 2 & 3

Figure 3.10

/3 =(1221.736237) = 6786.14 (cycle/sec) Mode 4&5
2n

m 'JK1'

j^^^^^

V^^W:;,,,:,:-,,,,,,,,:::.:",--
-

^mmf^^

Mode 4 & 5

Figure 3.11

3Q 8

/, = (1221.736237) = 7738.93 (cycle/sec) Mode 6
In

C
_______^"*""-,--*w i hi mir.._.

Mode 6

Figure 3.12
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Chapter 4. FEA Results

All the geometries and FEA models are created by Aries Concept
software. Ansys is used for the solver. All the tests will use four different

types of elements which are shown below:

Type of Elements

Linear Quadrilateral Element

(LQ)
8 nodes

Quadratic Quadrilateral Element

(QQ)

20 Nodes

Linear Tetrahedron Element

(LT)

4 Nodes

Qudaratic Tetrahedron Element

(QT)

10 Nodes

Figure 4.1 Type of elements
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Cantilever (square) beam

Type

of

Element

#

of

Elements

#

of

Nodes

Displacement

(inch)

LQ 40 99 0.13148

320 525 0.13288

QO 40 321 0.13272

320 1865 0.13378

LT 71 52 0.03164

532 207 0.087087

703 248 0.079731

4095 1061 0.11817

7947 1848 0.12262

QT 71 224 0.1318

532 1129 0.13363

703 1408 0.13383

Table 4.1
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Linear Quadrilateral Element (LQ)

Figure 4.2 Maximum displacements w/ 40 LQ elements.

Figure 4.3 Maximum displacementsw/ 320 LQ elements.
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Quadratic Quadrilateral Element (QQ)

Figure 4.4 Maximum displacements w/ 40 QQ elements.

Figure 4.5 Maximum displacements w/ 320 QQ elements.
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Linear Tetrahedron Element (LT)

Figure 4.6 Maximum displacements w/ 71 LT elements.

Figure 4.7Maximum displacements w/ 532 LT elements.

Figure 4.8 Maximum displacements w/ 703 LT elements.

Figure 4.9 Maximum displacements w/ 4095 LT elements.

Figure 4.10Maximum displacements w/ 7947 LT elements.
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Quadratic Tetrahedron Element (QT)

Figure 4.11 Maximum displacements w/ 71 QT elements.

Figure 4.12 Maximum displacementsw/ 532 QT elements.

Figure 4.13 Maximum displacements w/ 703 QT elements.
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Cantilever (rmind) beam

1 Type

of

Element

#

of

Elements

#

of

Nodes

Displacement

(inch)

LQ 48 65 0.39421

192 221 0.26144

432 432 0.23948

648 703 0.24373

QQ 48 229 0.22742

192 841 0.22561

LT 77 53 0.23451

328 138 0.16722

659 253 0.16946

1937 547 0.20261

5977 1447 0.21293

QT 77 232 0.21433

328 721 0.2256

Table 4.2
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Linear Quadrilateral Element (LQ)

Figure 4.14 Maximum displacements w/ 65 LQ elements.

Figure 4.15 Maximum displacements w/ 221 LQ elements.

Figure 4.16 Maximum displacementsw/ 432 LQ elements.

Figure 4.17Maximum displacements w/ 703 LQ elements.
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Quadratic Quadrilateral Element (QQ)

Figure 4.18Maximum displacements w/ 48 QQ elements.

Figure 4.19 Maximum displacementsw/ 192 QQ elements.
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Linear Tetrahedron Element (LT)

Figure 4.20Maximum displacements w/ 77 LT elements.

Figure 4.21 Maximum displacements w/ 328 LT elements.

Figure 4.22 Maximum displacementsw/ 659 LT elements.

Figure 4.23 Maximum displacements w/ 1937 LT elements.

Figure 4.24 Maximum displacementsw/ 5977 LT elements.
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Quadratic Tetrahedron Element (QT)

Figure 4.25 Maximum displacements w/ 77 QT elements.

Figure 4.26Maximum displacementsw/ 328 QT elements.
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Square flat plate

Type

of

Element

#

of

Elements

#

of

Nodes

Mode 1

(Hz)

Mode 2

(Hz)

Mode 3

(Hz)

Mode 4

(Hz)

Mode 5

(Hz)

LQ 25 72 2078.5 5345.7 5356.5 9313.4 13734

100 242 1762.6 3685.6 3692.1 5442.2 6956

225 512 1730.4 3535.2 3537.2 5161.6 6412.4

400 882 1720.4 3486.1 3487.9 5080.7 6240.1

QQ 25 228 1856 3905.6 3905.6 5825.6 7413.8

100 803 1747.4 3515 3516.7 5108.2 6204.2

225 1728 1731.5 3473.6 3475.2 5051.5 6103.3

LT 176 74 8311.9 1463 14507 17360 19556

626 242 4018.1 7152.8 8398 11372 12308

2567 914 3049.5 5621.3 6369.5 8833.3 9397.3

19320 5062 2104.7 4201.8 4228.7 6125.5 7402.3

QT 176 393 2170.7 4731.5 4736 7528.6 8877.9

626 626 1754.1 3532.8 3563.4 5204 6261.8

2567 2567, 1724.1 3478.9 3481.8 5104.5 6190.4

Table 4.3
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Linear Quadrilateral Element (LQ)

Figure 4.27-4.32 Square flat plate model and mode 1-5 mode shape w/
25 LQ elements.

Figure 4.33-4.38 Square flat plate model and mode 1-5 mode shape w/
100 LQ elements.

Figure 4.39-4.44 Square flat plate model and mode 1-5 mode shape w/
225 LQ elements.

Figure 4.45-4.50 Square flat plate model andmode 1-5 mode shapew/
400 LQ elements.
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Quadratic Quadrilateral Element (QQ)

Figure 4.51-4.56 Square flat plate model andmode 1-5 mode shape w/
25 QQ elements.

Figure 4.57-4.62 Square flat plate model and mode 1-5 mode shape w/

100 QQ elements.

Figure 4.63-4.68 Square flat plate model and mode 1-5 mode shape w/

225 QQ elements.
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Linear Tetrahedron Element (LT)

Figure 4.69-4.74 Square flat plate model and mode 1-5 mode shape w/
176 LT elements.

Figure 4.75-4.80 Square flat platemodel and mode 1-5 mode shape w/
626 LT elements.

Figure 4.81-4.86 Square flat plate model andmode 1-5 mode shape w/
2567 LT elements.

Figure 4.87-4.92 Square flat plate model and mode 1-5 mode shapew/

19320 LT elements.
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Quadratic Tetrahedron Element (QT)

Figure 4.93-4.98 Square flat plate model and mode 1-5 mode shape w/
176 QT elements.

Figure 4.99-4.104 Square flat plate model and mode 1-5 mode shape

w/ 626 QT elements.

Figure 4.105-4.110 Square flat plate model and mode 1-5 mode shape

w/ 2567 QT elements.
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Circular flat plate

Type

of

Element

#

of

Elements

#

of

Nodes

Mode 1

(Hz)

Mode 2

(Hz)

Mode 3

(Hz)

Mode 4

(Hz)

Mode 5

(Hz)

Mode 6

(Hz)

LQ 20 42 3699.3 12742 13289 15243 15808 17781

40 82 2412.9 5249.4 5411.9 10177 10533 11580

100 202 2102.2 4411.8 4418.2 7517.3 7530.8 8949.2

140 282 2045 4242.1 4248.1 7047.7 7072.9 8194.4

300 602 1990.6 4094.4 4099.8 6660.8 6669.6 7720.5

600 1202 1973.6 4042.2 4042.6 6561.3 6563.4 7435.2

QQ 20 143 2158.1 4958.7 4966 8757 8862.3 10613

40 283 2028.5 4202.5 4205.1 6917.1 6919.2 7823.2

80 563 2009.2 4128.4 4129.8 6672.6 6675.7 7692.1

140 983 1977.8 4039.8 4041.3 6502.4 6506.6 7420.9

600 4203 1957.5 3995.6 3995.6 6434.9 6435.9 7320.2

LT 141 59 7768.4 15123 15434 17693 20043 20876

209 86 6845.2 14532 15214 15428 15783 19387

729 241 4531.7 8342.4 9319.9 13765 14440 14689

2300 784 3606 7058.9 7298 11139 11298 12772

16088 4133 2422.9 4921.1 4976.1 7956.8 7983.8 9019.8

QT 141 312 2246.1 5108.8 5250.2 9327.8 9562.8 11115

209 464 2120 4578.1 4643.9 7795.4 7953.5 9095.7

729 1394 1986 4077.4 4117.1 6638.2 6667.2 7590.7

2300 4543 1963 4010.8 4023.1 6481.6 6500.4 7392.9

3055 6248 1963.2 4025.3 4044.6 6555.3 6593.1 7521.7

11021 18660 1952.3 3998 4007 6505.1 6513.9 7433.6

Table 4.4
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Linear Quadrilateral Element (LQ)

Figure 4.111-4.117 Circular flat plate model andmode 1-6 mode shape

w/ 20 LQ elements.

Figure 4.118-4.124 Circular flat plate model andmode 1-6 mode shape

w/ 40 LQ elements.

Figure 4.125-4.131 Circular flat plate model and mode 1-6 mode shape

w/ 100 LQ elements.

Figure 4.132-4.138 Circular flat plate model and mode 1-6 mode shape

w/ 140 LQ elements.

Figure 4.139-4.145 Circular flat plate model and mode 1-6 mode shape

w/ 300 LQ elements.

Figure 4.146-4.152 Circular flat plate model and mode 1-6 mode shape

w/ 600 LQ elements.
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Quadratic Quadrilateral Element (QQ)

Figure 4.153-4.159 Circular flat plate model and mode 1-6 mode shape

w/ 20 QQ elements.

Figure 4.160-4.166 Circular flat plate model and mode 1-6 mode shape

w/ 40 QQ elements.

Figure 4.167-4.173 Circular flat plate model and mode 1-6 mode shape

w/ 80 QQ elements.

Figure 174-4.180 Circular flat plate model and mode 1-6 mode shape

w/ 140 QQ elements.

Figure 4.181-4.187 Circular flat plate model and mode 1-6 mode shape

w/ 600 QQ elements.

Page 198

GBT 08/03/92



Linear Tetrahedron Element (LT)

Figure 4.188-4.194 Circular flat plate model andmode 1-6 mode shape

w/ 141 LT elements.

Figure 4.195-4.201 Circular flat plate model and mode 1-6 mode shape

w/ 209 LT elements.

Figure 4.202-4.208 Circular flat plate model and mode 1-6 mode shape

w/ 729 LT elements.

Figure 4.209-4.215 Circular flat plate model andmode 1-6 mode shape

w/ 2300 LT elements.

Figure 4.216-4.222 Circular flat plate model and mode 1-6 mode shape

w/ 16088 LT elements.
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Quadratic Tetrahedron Element (QT)

Figure 4.223-4.229 Circular flat plate model and mode 1-6 mode shape

w/ 141 QT elements.

Figure 4.230-4.236 Circular flat plate model and mode 1-6 mode shape

w/ 209 QT elements.

Figure 4.237-4.244 Circular flat plate model andmode 1-6 mode shape

w/ 729 QT elements.

Figure 4.245-4.251 Circular flat plate model and mode 1-6 mode shape

w/ 2300 QT elements.

Figure 4.252-4.258 Circular flat plate model andmode 1-6 mode shape

w/ 3055 QT elements.

Figure 4.259-4.265 Circular flat plate model and mode 1-6 mode shape

w/ 11021 QT elements.
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Chapter 5. Discussion Results

In the following results, the
"+"

% of error means that the FEA

results are stiffer than the analytical solutions. The
"-"

% of error means

that the FEA results are weaker than the analytical solutions.

Cantilever (square) beam

From the FEA results shown, the linear tetrahedron element has

most deviation in its performance. The percentage of errors range from

-76.26% to -8.0196 with 71 to 7947 elements. The quadratic quadrilateral

element out-performs other types of elements with -0.44% and 0.36%

error with 40 and 320 elements. The linear quadrilateral element has

1.37% and -0.32% error with 40 and 320 elements. The quadratic

tetrahedron element gives errors of -1.13%, 0.25% and 0.4% with 71, 532

and 703 elements. See table 5.1 and figure 5.1 for details.

# of Elements vs. % of Error

# of elements LQ QQ LT QT

40 -1.37%

320 -0.32%

40 -0.44%

320 0.36%

71 -76.26%

532 -34.67%

703 -40.19%

4095 -11.35%

7947 -8.01%

71 -1.13%

532 0.25%

703 0.40%

Table 5.1
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From another point of view, the quadratic quadrilateral element

gives errors of -0.44% and 0.36% with 321 and 1865 nodes. The linear

tetrahedron has the percentage of errors from -76.26% to -8.01% with 52

to 1848 nodes. The Linear quadrilateral element gives errors of -1.37%

and -0.32% with 99 and 525 nodes. The quadratic tetrahedron element

gives errors of -1.13%, 0.25% and 0.4% with 224, 1129 and 1408 nodes.

See table 5.2 and figure 5.2 for details.

# of Nodes vs. % of Error

1 # ofNodes LQ QQ LT QT |
99 -1.37% 1

525 -0.32%

321 -0.44%

1865 0.36%

52 -76.26%

207 -34.67%

248 -40.19%

1061 -11.35%

1848 -8.01%

224 -1.13%

1129 0.25%

1408 0.40%

Table 5.2
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Cantilever (round) beam

From the FEA results shown, there is not much difference between

the square beam and the round beam. The linear tetrahedron element

has percentage of errors 3.6% and from -26.12% to -5.97%with 77 to 5977

elements. The quadratic quadrilateral element out-performs other types

of elements, 0.47% and -0.33% error with 48 and 192 elements. The

Linear quadrilateral element gives error range from 74.16% to 7.68%

with number of elements from 48 to 648 elements. The quadratic

tetrahedron element gives error of -5.31% and -0.33%with 77 and 328

elements. See table 5.3 and figure 5.3 for details.

# of Elements vs. % of Error

# ofElements LQ QQ LT QT

48 74.16%

192 15.50%

432 5.80%

648 7.68%

48 0.47%

192 -0.33%

77 3.60%

328 -26.12%

659 -25.13%

1937 -10.49%

5977 -5.93%

77 -5.31%

328 -0.33%

Table 5.3
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From another point of view, the quadratic quadrilateral element

gives errors of 0.47% and -0.33% with 229 and 841 nodes. The linear

tetrahedron has the percentage of errors 3.60% and from -26.12% to

-5.91% with number of nodes from 53 to 1447 nodes. The Linear

quadrilateral element gives errors of 74.16% to 5.80%with 65 and 703

nodes. The quadratic tetrahedron element has -5.31% and -0.33%

deviationwith 232 and 721 nodes. See table 5.4 and figure 5.4 for details.

# of Nodes vs. % of Error

# ofNodes LQ QQ LT QT

65 74.16%

221 15.50%

432 5.80%

703 7.68%

229 0.47%

841 -0.33%

53 3.60%

138 -26.12%

253 -25.13%

547 -10.49%

1447 -5.93%

232 -5.31%

721 -0.33%

Table 5.4
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Linear Tetrahedron Element

The percentage of errors shown from FEA results by linear
tetrahedron element are: mode 1 from 374.96% to 20.27%

,
mode 2 from

100.47% to -59%, mode 3 from 306.58% to 18.51%, mode 4 from 229.75%

to 16.35% and mode 5 from 271.46% to 40.60% with 176, 626, 2567 and

19320 elements and 74, 242, 914 and 5062 nodes. See table 5.7 and

figure 5.9 & 5.10 for details.

# of Elements & Nodes vs. % of Error

# ofElements # ofNodes Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

176 74 374.96% -59.00% 306.58% 229.75% 271.46%

626 242 129.60% 100.47% 135.37% 116.01% 133.79%

2567 914 74.26% 57.54% 78.51% 67.79% 78.50%

19320 5062 20.27% 17.76% 18.51% 16.35% 40.60%

Table 5.7

Quadratic Tetrahedron Element

The percentage of errors shown from FEA results by Quadratic

Tetrahedron element are: mode 1 from 24.04% to -1.48%
,
mode 2 from

32.61% to -2.5%, mode 3 from 32.73% to -2.42%, mode 4 from 43% to --

3.04% and mode 5 from 68.63% to 17.59% with 176, 626 and 2567

elements and 393, 1349 and 5274 nodes. See table 5.8 and figure 5.11 &

5.12 for details.

# of Elements & Nodes vs. % of Error

# ofElements # ofNodes Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

176 393 24.04% 32.61% 32.73% 43.00% 68.63%

626 1349 0.23% -0.99% -0.13% -1.15% 18.94%

2567 5274 -1.48% -2.50% -2.42% -3.04% 17.59%

Table 5.8
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Circular flat plate

Linear Quadrilateral Element

The percentage of errors shown from FEA results by linear
Quadrilateral element are: mode 1 from 86.52% to -0.49% ,

mode 2 from

207.65% to -2.4%, mode 3 from 220.86% to -2.39%, mode 4 from 124.62%

to -3.31%, mode 5 from 132.95% to -3.28% and mode 6 from 129.76% to

-3.92% with the elements from 20 to 600 and the nodes from 42 to 1202.

See table 5.9 and figure 5.13 & 5.14 for details.

# of Elements & Nodes vs. % of Error

# ofElements # ofnodes Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

20 42 86.52% 207.65% 220.86% 124.62% 132.95% 129.76%

40 82 21.66% 26.75% 30.67% 49.97% 55.21% 49.63%

100 202 5.99% 6.52% 6.68% 10.77% 10.97% 15.64%

140 282 3.11% 2.42% 2.57% 3.85% 4.23% 5.89%

300 602 0.37% -1.14% -1.01% -1.85% -1.72% -0.24%

600 1202 -0.49% -2.40% -2.39% -3.31% -3.28% -3.92%

Table 5.9

Quadratic Quadrilateral Element

The percentage of errors shown from FEA results by quadratic

quadrilateral element are: mode 1 from 8.81% to -1.3%
,
mode 2 from

19.73% to -3.53%, mode 3 from 19.90% to -3.53%, mode 4 from 29.04% to

-5.18%, mode 5 from 30.59% to -5.16% and mode 6 from 37.14% to

-5.41% with the elements from 20 to 600 and the nodes from 143 to

4203. See table 5.10 and figure 5.15 & 5.16 for details.

# of Elements & Nodes vs. % of Error

# ofElements # ofnodes Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

20 143 8.81% 19.73% 19.90% 29.04% 30.59% 37.14%

40 283 2.28% 1.47% 1.53% 1.93% 1.96% 1.09%

80 563 1.30% -0.32% -0.29% -1.67% -1.63% -0.61%

140 983 -0.28% -2.46% -2.42% -4.18% -4.12% -4.11%

600 4203 -1.30% -3.53% -3.53% -5.18% -5.16% -5.41%

Table 5.10
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Linear Tetrahedron Element

The percentage of errors shown from FEA results by linear
tetrahedron element are: mode 1 from 291.68% to 22.16% ,

mode 2 from

265.14% to 18.82%, mode 3 from 272.65% to -20.15%, mode 4 from

160.72% to 17.25%, mode 5 from 195.35% to 17.65% and mode 6 from

169.75% to -5.41% with the elements from 141 to 16088 and the nodes

from 59 to 4133. See table 5.11 and figure 5.17 & 5.18 for details.

# of Elements _ Nodes vs. % of Error

# ofElements # ofnodes Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

141 59 291.68% 265.14% 272.65% 160.72% 195.35% 169.75%

209 86 245.13% 250.87% 267.34% 127.35% 132.58% 150.51%

729 241 128.49% 101.43% 125.03% 102.84% 112.79% 89.81%

2300 784 81.81% 70.44% 76.21% 64.14% 66.49% 65.04%

16088 4133 22.16% 18.82% 20.15% 17.25% 17.65% 16.55%

Table 5.11

Quadratic Tetrahedron Element

The percentage of errors shown from FEA results by quadratic

tetrahedron element are: mode 1 from 13.25% to -1.57%
,
mode 2 from

23.35% to -3.47%, mode 3 from 26.76% to -3.25%, mode 4 from 37.45% to

-4.14%, mode 5 from 40.92.35% to -4.01% and mode 6 from 43.62% to

-3.95% with the elements from 141 to 11021 and the nodes from 312 to

18660. See table 5.12 and figure 5.19 & 5.20 for details.

# of Elements & Nodes vs. % of Error

# ofElements # ofnodes Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

141 312 13.25% 23.35% 26.76% 37.45% 40.92% 43.62%

209 464 6.89% 10.54% 12.13% 14.87% 17.20% 17.53%

729 1394 0.13% -1.55% -0.59% -2.18% -1.75% -1.92%

2300 4543 -1.03% -3.16% -2.86% -4.49% -4.21% -4.47%

3055 6248 -1.02% -2.81% -2.34% -3.40% -2.84% -2.81%

11021 18660 -1.57% -3.47% -3.25% -4.14% -4.01% -3.95%

Table 5.12
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original geometry. An increase in the number of elements in cross-

section of the enclosed model is required (close to original geometry).

Why does this situation not appear in FEA model created by quadratic
elements? The quadratic element has 3 nodes on each element edge

unlike the linear element which has only 2 nodes at each element edge.

The mid-point node can follow the geometric profile. In other words, this

means that the edge of a quadratic element can be curved. That's why
the quadratic element does not have such problems associatedwith
linear elements.

The linear tetrahedron element's errors start from a larger

negative number, increasing and closing to 0% . This situation is seen in

square and round beammodels (even quadratic tetrahedron element has

the same situation). Why does this happen different than quadrilateral
element? Before I answer this question, let us take look at a different

point of view. In figure 6.1, which shows a square cantilever beam (same

conditions as shown above) mesh with linear quadrilateral elements

(10x2x2 mesh). As the results show, the maximum displacement is

0.13156 inch ( the analytical solution is 0.1333 inch). In figure 6.2 is

shown a model which is the same as a previous model except this model

is meshed with 6 node point wedge elements and more elements. The

result shows a displacement of 0.09376 inches. This result is stiffer than

the linear quadrilateral model in which we increased the number of

elements 4 times (same number of nodes) over the previous model and

the result did not get better. In figure 6.3, which rotate the wedge

element's face from top to side, the result becomes worse than in the

previous two models (0.04693 inch).

Let us create a different mesh for the model. We may attempt to

get better results. In figure 6.4 the wedge elements were reoriented and

it follows that the result is not much different from there of previous

models (0.09315 inch vs. 0.09376) in figure 6.3. In figure 6.5, inwhich the

wedge element's face were changed from top to side, the result shown is

0.05517 inch. From these examples, once the cross-section face of FEA

model of elements are changed, then the result also changed

dramatically. Ideally the quadrilateral element will be the best element to

use. Once we change to wedge elements, even the model has more

elements than the model with linear quadrilateral elements. The result is

stiffer than the actual solution. Also, ifwe rotate the element face from

top to side, the results appear
much stiffer than it actually was. Here, we

can draw a conclusion which states that the orientation of the element

mesh face affects the FEA result.

Let us take a look at an element's shape. The linear quadrilateral

element has 8 nodes, the linear wedge element has 6 nodes and the
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linear tetrahedron element has 4 nodes (see figure 6.6). The wedge

element's shape are verymuch like the tetrahedron element, but it has 2

more nodes than tetrahedron elements. Here, we can conclude that this

is the reason why FEA models created by tetrahedron elements are much

stiffer than those using other types of elements, even though they utilize

the same number of nodes in the FEA model.

Linear Quadrilateral Element

(LQ)
8 nodes

Linear Wedge Element

(LW)

6 nodes

Linear Tetrahedron Element

(LT)

4 Nodes

Figure 6.6 Type of elements

From modal analyses, the results follow the conclusions we found

for the cantilever beam problems. For the square flat plate, the mode

sharp 2, 3, 4 and 5 of FEA model with 176 linear tetrahedron elements

(74 nodes) are wrong. Because there are not enough elements applied on

the model causing the error to appear. It disappears after the elements

(nodes) are increased in the next model.

The mode shapes 4, 5 and 6 of the linear quadrilateral elements

FEA model which with 20 elements (42 nodes), The mode shape 4, 5 and

6 utilizing linear
quadratic element are wrong. This model contains 20
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elements (42 nodes). Same results using linear tetrahedron elements are

also wrong. There models consisted of the mode shapes 2, 3, 4, 5 and 6

of model with 141 elements (59 nodes), mode shapes 4, 5 and 6 with 209

elements (86 nodes) and the mode shape 6 with 729 elements (241

nodes) In all cases, the results are improved after the elements (nodes)
are increased. See table 6.1-6.12 and figure 6.7-6.18 for details.
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Mode 1

# of Elements vs. % of Error

# ofElements 00 QT LQ LT 1
20 8.81% 86.52%

40 2.28% 21.66%

80 1.30%

100 5.99%

140 -0.28% 3.11%

141 13.25% 291.68%

209 6.89% 245.13%

300 0.37%

600 -1.30% -0.49%

729 0.13% 128.49%

2300 -1.03% 81.81%

3055 -1.02%

11021 -1.57%

16088 22.16%

able 6.1

# of Nodes vs. % of Error

# ofNodes QQ QT LQ LT

42 86.52%

82 21.66%

202 5.99%

282 3.11%

602 0.37%

1202 -0.49%

143 8.81%

283 2.28%

563 1.30%

983 -0.28%

4203 -1.30%

59 291.68%

86 245.13%

241 128.49%

784 81.81%

4133 22.16%

312 13.25%

464 6.89%

1394 0.13%

4543 -1.03%

6248 -1.02%

18660 -1.57%

Table 6.2
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CM1 XLS Chart 4

Mode 1 ofCircular plate
~ # ofElements vs. % ofError --
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Figure 6.7
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Mode 2

# of Elements vs. % of Error

j# ofElements QQ QT LQ LT

20 19.73% 207.65%

40 1.47% 26.75%

80 0.32%

100 6.52%

140 -2.46% 2.42%

141 23.35% 265.14%

209 10.54% 250.87%

300 -1.14%

600 -3.53% -2.40%

729 -1.55% 101.43%

2300 -3.16% 70.44%

3055 -2.81%

11021 -3.47%

16088 18.82%

Table 6.3

# of Nodes vs. % of Error

# ofNodes QQ QT LQ LT

42 207.65%

82 26.75%

202 6.52%

282 2.42%

602 -1.14%

1202 -2.40%

143 19.73%

283 1.47%

563 -0.32%

983 -2.46%

4203 -3.53%

59 265.14%

86 250.87%

241 101.43%

784 70.44%

4133 18.82%

312 23.35%

464 10.54%

1394 -1.55%

4543 -3.16%

6248 -2.81%

18660 -3.47%

Table 6.4
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CM2.XLS Chart 4

Mode 2 ofCircular plate
- # ofElements vs. % ofError
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Mode 3

# of Elements vs. % of Error

# ofElements QQ QT LQ LT

20 19.90% 220.86%

40 1.53% 30.67% |
80 -0.29% |
100 6.68%

140 -2.42% 2.57%

141 26.76% 272.65%

209 12.13% 267.34%

300 -1.01%

600 -3.53% -2.39%

729 -0.59% 125.03%

2300 -2.86% 76.21%

3055 -2.34%

11021 -3.25%

16088 20.15%

Table 6.5

# ofNodes vs. % of Error

# ofNodes QQ QT LQ LT

42 220.86%

82 30.67%

202 6.68%

282 2.57%

602 -1.01%

1202 -2.39%

143 19.90%

283 1.53%

563 -0.29%

983 -2.42%

4203 -3.53%

59 272.65%

86
_^

267.34%

241 125.03%

784 76.21%

4133 20.15%

312 26.76%

464 12.13%

1394 -0.59%

4543 -2.86%

6248 -2.34%

18660
i '

-3.25%

Table 6.6
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CM3.XLS Chart 4
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Mode 4

# of Elements vs. % of Error

i# ofElements QQ QT LQ LT

20 29.04% 124.62%

40 1.93% 49.97%

80 -1.67%

1 10 10.77%

141 37.45% 160.72%

209 14.87% 127.35%

300 -1.85%

600 -5.18% -3.31%

729 -2.18% 102.84%

2300 -4.49% 64.14%

3055 -3.40%

11021 -4.14%

16088 17.25%

Table 6.7

# ofNodes vs. % of Error

# ofNodes QQ QT LQ LT

42 124.62%

82 49.97%

202 10.77%

282 3.85%

602 -1.85%

1202 -3.31%

143 29.04%

563 -1.67%

983 -4.18%

4203 -5.18%

59 160.72%

86 127.35%

241 102.84%

784 64.14%

4133 17.25%

312 37.45%

464 14.87%

1394 -2.18%

4543 -4.49%

6248 -3.40%

18660 -4.14%

Table 6.8
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Mode 5

# of Elements vs. % of Error

# ofElements QQ QT LQ LT

20 30.59% 132.95%

40 1.96% 55.21%

80
-1.63%

100 10.97%

140
-4.12% 4.23%

141 40.92% 195.35%

209 17.20% 132.58%

300
-1.72%

600 -5.16% -3.28%

729 -1.75% 112.79%

2300 -4.21% 66.49%

3055 -2.84%

11021 -4.01%

16088 17.65%

Table 6.9

# of Nodes vs. % of Error

# ofNodes QQ QT LQ LT

42 132.95%

82 55.21%

202 10.97%

282 4.23%

602 -1.72%

1202 -3.28%

143 30.59%

283 1.96%

563 -1.63%

983 -4.12%

4203 -5.16%

59 195.35%

86 132.58%

241 112.79%

784 66.49%

4133 17.65%

312 40.92%

464 17.20%

1394 -1.75%

4543 -4.21%

6248 -2.84%

18660 -4.01%

Table 6.10
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CM5.XLS Chart 4

Mode 5 ofCircular plate
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Mode 6

# of Elements vs. % of Error

# ofElements QQ QT LQ LT

20 37.14% 129.76%

40 1.09% 49.63%

80 -0.61%

100 15.64%

140 -4.11% 5.89%

141 43.62% 169.75%

209 17.53% 150.51%

300 -0.24%

600 -5.41% -3.92%

729 -1.92% 89.81%

2300 -4.47% 65.04%

3055 -2.81%

11021 -3.95%

16088 16.55%

Table 6.11

# ofNodes vs. % of Error

# ofNodes QQ QT LQ LT

42 129.76%

82 49.63%

202 15.64%

282 5.89%

602 -0.24%

1202 -3.92%

143 37.14%

283 1.09%

563 -0.61%

983 -4.11%

4203 -5.41%

59 169.75%

86 150.51%

241 89.81%

784 65.04%

4133 16.55%

312 43.62%

464 17.53%

1394 -1.92%

4543 -4.47%

6248 -2.81%

18660 -3.95%

Table 6.12
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CM6.XLS Chart 4

Mode 6 ofCircular plate
~ # ofElements vs. % ofError

-20.00%

300

# of ELEMENTS

11021
16088

i--' LT

y-LQ

'"qt

QQ
1

;_; QQ

QT

LQ

Qlt

Figure 6.17

Page 367



h a
i- o

II
"

o o

?

_

3i

catu
2_,

_JO

Oso

us
r

W

Cm

_i o

O !

in
LU

a
o 00

cu
S-

zz

CD

(00 1 x) HOUH3 P %



From the square flat plate modal analysis, the FEA result for mode

5, with all types of elements, are way off from the analytical solution (LQ

with 160.87%
, 32.87%, 21.80% and 18.53%, QQwith 40.82%, 17.85% and

15.93%, LT with 271.46% . 133.79%, 78.50% and 40.60%, QT with 68.63%,
18.94% and 17.59%). The mode 5's FEA results appear to be at around

6200 Hz and the analytical solution is 5264.6 Hz. This situation did not

appear with the circular flat plate. So chances are, either the solution

is wrong or the software has a bug in it

From the FEA result of the modal analysis, it appears that the FEA

solutions are below the analytical solutions (negative percentage of

error). The frequency equation for a square flat plate is shown below:

/.-T^-T Eq.3.5

2n \wa

where kl = 36 fundamental

k2 = 73.4 one nodal diameter

k3 = 108.3 two nodal diameter

D = Et3/12(l-v2)

g
=

gravity

w = wt./area = densityx thickness

a = length of edge

The frequency equation for a circular flat plate is shown below:

2n \wr

where kl = 10.2 fundamental

k2 = 21.3 one nodal diameter

k3 = 34.9 two nodal diameter

k4 = 39.8 one nodal circle

D =Et3/12(i-v2)

g
-

gravity

w = wt./area = density x thickness
r = radius

The solution for each mode depends on the value of the constant kn.

These constants are given in a handbook, based on the zeroes of Bessel

functions. For example, fcj for a circular plate is 10.2. The estimate for f1

is shown below:
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/, =(1221.736237) = 1983.34 Hz(cycle/sec) Mode 1
2tv

If kj has a round-off error, let us assume that kj = 10.19, then the result
shows

fl = 1981.40 Hz.

It has -0.098% error compared with the solution using the value 10.2. If

ki = 10.15, then the result leads to

fl = 1973.62 Hz.

It has -0.5% error compared with the solution using the constant 10.2.

These negative percentage of errors appear because of the round-off

error. If we have round-off error in the material density, constant of

gravity and constant of kn then this error margin will increase. As long
as the solutions are converging, then the difference between the FEA

results and analytical solutions can be assumed to be caused by round

off error.
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Chapter 7. Summary

This investigation has reviewed various automatic finite element

mesh generation techniques along with uses of geometric modelers. The

developments in automatic mesh generation reduce the involvement of
the user in the tedious mesh generation process. The future efforts are

expected to further reduce the time spent in the modeling process, in

obtaining better finite element models and modifying the element

densities based on results obtained from an initial run.

This paper has examined the quality of tetrahedron elements in

various classes of problems. How does the automatic mesh generator and

tetrahedron element perform with real problems? The figure 7.1 - 7.8 are

shown a housing part and two cases of finite elements analyses which
were done by using linear and quadratic tetrahedron elements.

For this part, the two FEA models are almost 100% identical to the

actual parts and are almost impossible to create bymapped meshing due

to the details required. Each model took less than 4 hours to mesh (due

to individual experiences). The linear model took 43.3 minutes to solve.

The quadratic model took 5 hours and 33.6 minutes to solve. The linear

element model has 9181 LT elements and 2052 nodes. The quadratic

element model has 9109 QT elements and 14270 nodes. From these

results, the model created by linear elements only has 50% - 40% of the

values of stress obtained by using quadratic elements.

The stress distributions (contours) of these two models are almost

identical to each other (except the stress numbers) and match the stress

coating results. The stresses shown on the quadratic element model are

less than 10 % in error compared with actual test results. This suggests

that the quadratic tetrahedron element yields a very high quality FEA

result. For this portion of the analysis, from creating the model to

getting the FEA results, it only takes less than two days to complete. For

the entire project, it took two weeks to complete (including four

different design parts and twelve FEA models). I have a similar design

done bymapped meshing which took a full two weeks to complete one

FEA model. It would take the same amount of time to complete for each

redesign.

As all the test results show, the linear tetrahedron element is way

off the actual solutions. But the stress distributions (contour) of linear

tetrahedron element models are very close to other models which were

done using other types of elements. The computer time is less than one
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fifth of that need for quadratic elements.What if, we use the linear

tetrahedron elements for a first try out of the designmodel. Use the

automatic mesh generator to create a FEA model to find out the areas of

stress concentration. Thus, we can understand the first design and find

out the potential problems which may appear. Then, use this

information to redesign and create a FEA model using quadratic

elements. At this time, we should have a precise solution from FEA and

within a shorter period of time.

This paper has reviewed and examined the various types of

elements. I found:

The tetrahedron elements are stiffer than other types of

elements.

The FEA results done by linear tetrahedron elements are un

acceptable, but the stress distributions (contours) are same as

these results down by other type of elements.

The mesh generated by automatic mesh generator is much

closer to the actual model compared with those obtained by

mapped meshing.

The finite elements analysis results are dependent on the

number of nodes, not the number of elements.

. The time required to mesh amodel using the automatic mesh

generator is less than 25% of the time required when using

mapped meshing.

The other important aspect is that of adaptive mesh generation.

Currently, the user has to specify the density of elements at various

locations In the model. More elements are placed in the higher stress

gradients. If the program does it automatically, the user's interaction in

this regard can be eliminated. The program can start with a uniform

mesh. This will not give very good results, but will give some indication

of regions with high stress gradients. These can be used to decide on the

element densities of the next mesh. After a few attempts, it should be

possible to get the desired mesh density withminimal effort of the user.

Currently, solid modelers are widely used in industry. A solid

model can show the design before making the prototype model and FEA

can take the solid model
to analyze (only with tetrahedron elements) the

design. Once the design is completed, we can use the solid model to

perform stereo lithography which can make a plastic prototype over-

"
"
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night or as input to the CNC machine for machining. All the procedures

can work continuously without any paperwork.
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