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Performance analysis of improved methodology for incorporation of
spatial/spectral variability in synthetic hyperspectral imagery

Neil W. Scanlan, John R. Schott, and Scott D. Brown
Rochester Institute of Technology, Center for Imaging Science

Digital Imaging and Remote Sensing Laboratory
54 Lomb Memorial Drive, Rochester, NY, USA 14623

ABSTRACT

Synthetic imagery has traditionally been used to support sensor design by enabling design engineers to pre-evaluate
image products during the design and development stages. Increasingly exploitation analysts are looking to synthetic
imagery as a way to develop and test exploitation algorithms before image data are available from new sensors. Even
when sensors are available, synthetic imagery can significantly aid in algorithm development by providing a wide range
of "ground truthed" images with varying illumination, atmospheric, viewing and scene conditions. One limitation of
synthetic data is that the background variability is often too bland. It does not exhibit the spatial and spectral variability
present in real data. In this work, four fundamentally different texture modeling algorithms will first be implemented as
necessary into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model environment. Two of the
models to be tested are variants of a statistical Z-Score selection model, while the remaining two involve a texture
synthesis and a spectral end-member fractional abundance map approach, respectively. A detailed comparative
performance analysis of each model will then be carried out on several texturally significant regions of the resultant
synthetic hyperspectral imagery. The quantitative assessment of each model will utilize a set of three performance
metrics that have been derived from spatial Gray Level Co-Occunence Matrix (GLCM) analysis, hyperspectral Signal-
to-Clutter Ratio (5CR) measures, and a new concept termed the Spectral Co-Occurrence Matrix (SCM) metric which
permits the simultaneous measurement of spatial and spectral texture. Previous research efforts on the validation and
performance analysis of texture characterization models have been largely qualitative in nature based on conducting
visual inspections of synthetic textures in order to judge the degree of similarity to the original sample texture imagery.
The quantitative measures used in this study will in combination attempt to determine which texture characterization
models best capture the correct statistical and radiometric attributes of the corresponding real image textures in both the
spatial and spectral domains. The motivation for this work is to refine our understanding of the complexities of texture
phenomena so that an optimal texture characterization model that can accurately account for these complexities can be
eventually implemented into a synthetic image generation (SIG) model. Further, conclusions will be drawn regarding
which of the candidate texture models are able to achieve realistic levels of spatial and spectral clutter, thereby
permitting more effective and robust testing ofhyperspectral algorithms in synthetic imagery.

Keywords: Hyperspectral image simulation, DIRSIG, co-occurrence matrix, texture synthesis, image texture

1. INTRODUCTION

1.1 The DIRSIG Model

The Digital Imaging and Remote Sensing Image Generation (DIRSIG) Model is an integrated complex collection of
independent first principles based radiation propagation submodels which work in conjunction to produce radiance field
images with high radiometric fidelity in the 0.3 — 20 micron region of the electromagnetic spectrum.1 It is comprised of
five main submodels which are designed to allow for a high degree of flexibility and interchangeability of sensor
configurations, scene geometry, bi-directional reflectance distribution function (BRDF) predictions, and atmospheric
conditions. The DIRSIG model has demonstrated the capability to produce radiometrically rigorous imagery exhibiting
properties observed in real imagery such as the simulation of mixed pixels, complex in-situ illumination loadings, and
overall spectral statistics2, however it has been determined that in general, synthetic imagery required significant
improvements in order to realistically capture the spatial and spectral complexity present in real image data.3
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1.2 Motivation

The necessity of characterizing textures correctly in a mathematical and statistical sense, both spatially and spectrally
cannot be overstated. One of the most powerful advantages offered through the use of synthetic imagery is the ability to
test spatial and spectral exploitation algorithms with great flexibility, while avoiding the logistical and technical
challenges associated with field collection efforts. But in order to reap the benefits of synthetic imagery for algorithm
testing and development, realistic levels of spatial and spectral clutter must be achieved so that we can reliably estimate
how these algorithms will perform on real-world imagery. Otherwise, unrealistically benign backgrounds lacking in
spatial and spectral variability and structure will inevitably produce overly optimistic indications of hyperspectral
algorithm performance. One must keep in mind that the purpose of mathematically modeling texture (or any
phenomenon for that matter) is not to simplify the problem, but rather to be able to understand and include within the
model the very complexities that make texture such a challenging problem.

This paper will first briefly describe the theory behind the Single Bandpass (SBP) and Multiple Bandpass (MBP) Z-
Score Selection texture models, the Texture Synthesis (TS) model, and the Fraction Map (FM) texture characterization
model, after which the texture model performance evaluation metrics that will be used in the assessment of each of these
models will be introduced. The results of rendered synthetic imagery of Hyperspectral Digital Imagery Collection
Experiment (HYDICE) imagery using the four texture characterization models will then be presented, followed by the
quantitative comparative performance analysis of the fidelity of spatial and spectral texture achieved by each model
through the application of the GLCM, 5CR, and SCM texture metrics. The scope of this paper is limited to the reflective
region of the electromagnetic spectrum.

2. METHODOLOGY

2.1 Texture Model Background Theory

Image texture is an intuitive concept with an elusive formal definition that depends on the context of the situation. While
the computer graphics community tends to define texture in terms of structural primitives subject to syntactic grammars
and placement rules4, the field of remote sensing describes texture as the structure of the variation in brightness within or
between objects of interest. These textures often arise from variations in target reflectance, since most targets are
composed of heterogeneous mixtures of materials exhibiting variable spectral reflectance properties. Further affecting
the appearance of image texture is topographic effects such as sun-target angles and BRDF and shadowing effects.5 Due
to the diverse interpretations of image texture phenomena, there are accordingly numerous exceptionally complex and
widely varying approaches to quantitatively modeling texture, four of which have been adopted for this work and are
described below.

2.1.1 SBP Texture Model
The SBP texture model utilizes a z-score selection algorithm within a two-tiered approach to apply spatial-spectral
variability to each pixel of the output synthetic image.2'5 The first tier consists of the generation of a material class map
of the image to be rendered in the DIRSIG environment. For this work, the Gaussian Maximum Likelihood (GML)
classification algorithm provided the best separability between the eight end member materials of the HYDICE ARM
scene. A lookup table (LUT) then assigns a second-tier texture map to each region in the material map in order to
introduce spatial variations for a specified wavelength region. The statistical z-score is computed for each pixel in the
single bandpass (SBP) texture image in order to drive the selection of a spectral reflectance curve from a large database
of ground truth measurements for each material class. The z-scores of the texture image and of each reflectance curve
are compared within the texture image bandpass in order to apply spectral variability to each pixel for all wavelength
regions of the output SIG image. The SBP texture model clearly requires the existence of thorough and accurate ground
truth data in order to adequately characterize the true spatial and spectral variability of all materials present in the scene
to be rendered. Although the z-score selection mechanism intelligently relates the spatial-spectral variations of the
texture image to those of the spectral database, it only does so for a single bandpass region and thus selects pixel spectra
based on the spectral behavior within the specified bandpass region. This carries the potential of selecting spectral
curves that are not truly representative of the spectral character of materials in non-correlated spectral bands.
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2.1.2 MBP Texture Model

In order to alleviate this concern, the MBP texture model6 permits the user to select multiple (and ideally uncorrelated)
bandpasses so that the spectral character of the pixel can be represented with more fidelity in all spectral bands. This
obviously possesses a theoretical advantage over the SBP model, since it will be less likely that a reflectance curve will
be chosen that exhibits significantly different behavior than that in the bandpasses from which the curve has been
selected. Figure 1 illustrates how a composite weighted z-score is calculated using texture images in three bandpasses.
Ideally, the additional bandpasses used should be selected such that they are not well-correlated with the original single
bandpass used in the SBP model. Note that the use of additional bandpasses accordingly places the burden on the user to
have access to multiple bands of imagery to model the spatial texture of the material class of interest.

Figure 1 : The MBP Texture Model uses multiple texture image bandpasses in order to calculate a composite weighted z-score for each
curve (column list, right) and compares these scores to each ofthe texture image pixel composite z-scores. The curve with the z-score

value closest to that of each pixel in the texture image is selected to characterize the spectral behavior of that pixel for the entire
spectral extent of the image.

2.1.3 Texture Synthesis Model

The third model to be tested is derived from a texture synthesis-by-analysis technique that iteratively enforces a set of
statistical constraints over the output of a complex analytic filter bank by extracting multiresolution scale and space
information from a sample monochrome texture.4 This model has been refined to synthesize multi/hyperspectral textures
in the DIRSIG environment.7 The algorithm begins with a white noise image, and iteratively coerces it to converge into
the form of the desired output synthesized texture through a series of statistical constraints, including that of spectral
covariance. This method proceeds in an iterative, coarse-to-fine fashion over a variant of the steerable pyramid
resampling technique which uses a compact multiresolution representation to analyze the sample texture, by using a set
of four oriented complex analytic filters at each level of the pyramid so that local phase information can be used to detect
the polarity of edges and boundary transitions. A synopsis of this model is illustrated in Figure 2. This approach has the
attractive feature of forcing a solution that matches the desired spectral covariance and spatial correlation statistics in one
band. However it cannot assure that the areal spatial patterns within a particular texture region will be reproduced.

2.1.4 Fraction Map Texture Model

The fourth and final model to be tested in this work is derived from the production of fractional abundance maps for end
members within the scene to be rendered through the use of a choice of spectral unmixing tools. DIRSIG is able to
accept any number of fraction planes and re-mix them in accordance with their fractional abundances on a pixel-by-pixel
basis. Each pixel in the resultant DIRSIG image is simply a linear combination of weighted end member spectra, which
thereby creates spatial and spectral structure and variability as illustrated in Figure 38 Eight end member fraction maps
were produced using simple Linear Spectral Unmixing (LSU) for the HYDICE ARM scene to be rendered. The DIRSIG
imagery results using each of the four texture characterization models are presented in Section 3.
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Figure 2: Order of statistical constraint enforcement used within the Texture Synthesis model.
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Figure 3: FM Texture Characterization Model. On a pixel-by-pixel basis, the fraction maps corresponding to each end member are re-
mixed in order to create spatial and spectral variability in the resultant DIRSIG image.

2.2 Texture Model Performance Metrics

2.2.1 Spatial GLCM Metric

In order to assess the spatial fidelity of each of the SIG images, a metric derived from the popular GLCM measure of
spatial texture has been adopted.9 The GLCM tool has demonstrated a high level of success in the classification,
segmentation, and texture feature extraction literature, and has proven to possess among the best discriminatory powers
of spatial textural patterns. The GLCM is a parametric description of the spatial arrangement ofpixel values presented in
a complex matrix form which is essentially a probability density function of all possible co-occurring pixel values within
the processing window. The main parameter in its computation is the orientation at which the GLCM is to be calculated.
The conjecture is that, ifthe GLCM-derived statistics are able to discriminate between textural features such that the best
results are obtained for most remote sensing applications, then the same method must be sufficient to measure the
similarity of texture features between real and synthetic textures in a quantifiable manner. Based on past studies
assessing the most effective combinations of GLCM-derived Haralick features and orientation parameters for remotely
sensed imagery it was found that the use of the Contrast and Correlation features with a diagonal displacement

vector ((Ax, Ay)= (1,1)) provided the most complete description of each texture test region to be measured. The

For pixel #1, superposition of D1F1,
B2F2, and B3F3 >>

For pixel #1 ofDIRSIG image, mixture of
B1FI + B2F2 + B3F3 creates texture
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GLCM, SCR, and SCM metrics have been applied to fifteen texture test regions consisting of homogeneous textures
exhibiting within-material class variability and transition textures between material class regions ranging from lOxlO to
35x35 pixels in dimension from the corresponding real and synthetic imagery for each texture model result (see Fig.
6(a)). For the GLCM metric, the Contrast and Correlation texture images for each region were directly compared
through the calculation ofthe absolute difference image and an acceptable variance-threholded difference image. The
variance threshold image was defined by performing repeated measurements in the vicinity of each texture test region.
Any disparity between the real and DIRSIG texture signatures would therefore be evident in the difference images, and
would be indicative ofthe location and the magnitude of deviation of spatial correlation within each region. This metric
offers the advantage of a compact representation of spatial texture signatures for both homogeneous and transition region
textures ofreal and synthetic imagery in order to assess the spatial fidelity ofthe output DIRSIG imagery on a band-by-
band basis. A subset ofeight representative spectral bands was selected for the application ofall three performance
metrics in this work.

2.2.2 Spectral 5CR Metric

Researchers in the field of target and anomaly detection in hyperspectral imagery (HSI) commonly employ a measure of
the SCR as a threshold for reliable detection of signal patterns in Gaussian clutter.'2 This same measure has been used as
an assessment of the similarity of spectral clutter content and complexity within the selected counterpart real and
synthetic texture regions in this research. The SCR metric will provide the means to determine if the overall clutter
statistics are correct in the synthetic texture in relation to the real image for a given texture type sample. The advantage
of this comparison is that the 5CR metric generates a single numerical value that will serve as a preliminary measure of
how well the overall spectral structure is characterized in the synthetic rendition of the image, before delving into much
more detailed spectral analysis involved with the SCM metric. Lastly, many HSI algorithms exploit the measure of 5CR
in several contexts, so it is essential that this metric is conect for synthesized texture regions if DIRSIG is to support the
testing and development of these algorithms.
In its traditional form, the 5CR is defined as follows:

SCR = [bTM-1b]h'2 (1)
where M is the spectral interference (background plus noise) covariance matrix, and b is the spectral signature of the
"target", which in this case will be the central pixel of the region being examined. In the case of L spectral bands, b is a
column vector ofdimension (lxL), while M is given by:

M = x(n)xT(n) XTX (2)

where the matrix XT represents the set of N de-meaneci pixels in the image window under study, and therefore has
dimension (LxN), i.e.,

xT [x(1) x(2) x(3) . . .x(N)] (3)
since each entry x(n) is itself a column vector representing the de-meaned spectral signature for a given pixel n. This
metric has been applied to each of the fifteen texture regions and for all four texture models. In order to determine the
acceptable variance for each of the texture test regions to be studied, the 5CR metric has been applied to the same
repeated samples as used for the GLCM metric.

2.2.3 Spatial-spectral SCM Metric

The concept of a Generalized Spectral Co-Occurrence Matrix (GSCM) representation has been proposed by Hauta-
Kasari et. 13 inorder to improve texture segmentation results for multispectral imagery. This algorithm generates a co-
occurrence matrix that describes the spatial dependency of a quantized spectral domain. Since the GSCM method offers
no guarantee that the Self-Organized Mapping (SOM) method of quantization would be carried out in the same manner
in the real and synthetic corresponding imagery due to ordering concerns, it has not been adopted for use in this work.
However, this concept of using both spatial and spectral information simultaneously was the motivation for the SCM
metric that has been used as the third synthetic texture fidelity measure for the HYDICE ARM rendered imagery. The
SCM is a novel, simpler yet equally valuable approach to spatial-spectral texture description that has never been used
before in the literature on co-occurrence matrices for classification and feature extraction models. The SCM follows a
completely analogous process as the GLCM between two user-spec/iec1 spectral bands. The result is a matrix containing
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cross-band spatial and spectral co-occurrence information. This tool has been incorporated into the ENVI processing
environment such that the user can choose base and comparison spectral bands, which are used as the base and shift
windows shown in Figure 4. The parameters of direction vector orientation, Haralick co-occurrence texture features and
processing window size are also still available to the user for the SCM and the same parameters as used for the GLCM
metric were employed for the application of the SCM.

Base 435I 3j5l6spectraico_
and shift

_________________ _________________ Matrix:
(bandA)

3 56 563'
Occurrence

(bandB) 6 4 3 4 3 6
windows: ________________ ________________

CL 3 4 5 6

3 0 0 2 1

4 2 0 0
5 0 0 0 2
6 1 1 0 0

Figure 4: Sample ENVI SCM Computation with parameters Ax = 1, Ay = 0.

For the HYDICE ARM data, four band pairs were chosen on which the SCM metric would be performed, with 95%, 5%,
-10%, and -40% spectral correlation values. This choice ofband pairs was used in order to determine ifthe spectral
correlation in the DIRSIG imagery was preserved in relation to the corresponding real imagery. This sampling of band
pairs is considered to be sufficiently representative since it encompasses well-correlated, ill-correlated, negatively ill-
correlated, and negatively "well"-correlated spectral structure. An identical testing methodology was used for the SCM
as for the GLCM metric, such as the same texture test regions, and the absolute and variance-thresholded difference
images were investigated for the Contrast, and Correlation features. The spatial GLCM, spectral 5CR, and spatial-
spectral SCM metrics will be used in combination to assess the relative performance ofthe SBP, MBP, TS, and FM
texture models in section 4.

3. SCENE SIMULATION RESULTS

The following subsections will present the DIRSIG imagery resulting from the incorporation of the four texture
characterization models to be tested in this work. For the sake of brevity, a sampling of only three spectral bands of each
image cube will be shown. The corresponding real HYDICE Atmospheric Radiation Measurement (ARM) imagery was
originally acquired over the ARM calibration site in Lamont, OK on June 24, 1997. The data was collected using the
airborne HYDICE imaging spectrometer flown at an altitude of 3.475 km. which has spectral coverage between 400 —
2,500nm in 210 spectral bands and GSD of 1.7375 m. A 320x320 pixel subset ofRun 29 ofthe image data was used for
the analysis in this paper. Figure 5(a) shows samples of the real HYDICE ARM imagery for comparison purposes with
the SIC data. As discussed earlier, the SBP and MBP models rely heavily on accurate and thorough ground truth data in
order to generate realistic levels of spatial and spectral clutter. Since we do not intend to test the quality of ground truth
data measurements in this work, it was decided to create image-derived "ground truth" reflectance spectra to represent
the best-case scenario in which hundreds ofreflectance spectra can be produced to characterize a given material class.

I

,
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Figure 5(a) — (e): Fig. 5(a) (top row of3 images) shows 3 sample bands ofreal HYDICE ARM imagery. Spectral bands 20, 95, and
184 (left to right) with spectral band centers of 0.466, 1.23, and 2.27 microns respectively are shown. Band 20 shows the 9

homogeneous texture test regions, while band 95 shows the 6 transitions regions that have been used for each ofthe metrics. Fig. 5(b)
(second row) shows the DIRSIG image results for the same 3 bands using the SBP texture model. Figs. 5(c), (d), and (e) show the

results using the MBP, TS, and FM models respectively.

3.1 SBP Texture Model

The effect of using a single bandpass texture map for rendering an image with broad spectral coverage is evident in
Figure 5(b). The later spectral bands all tend toward noise, while the band nearest that of the texture image (band 20,
left) has the overall best appearance. This is because the curve selections that were appropriate in the band 20 region
were not the correct choices for the non-conelated IR bands. A more detailed discussion is best left until after the MBP
model results are presented in the next section.

3.2 MBP Texture Model

The results of using the MBP Z-Score Selection texture characterization model are shown in Figure 5(c). In this case,
three bandpasses were used: bands 20 (FWHM = 0.4661 microns), 65 (see Table 3), and 185 (FWHM 2.2802
microns). There is an obvious improvement made using the MBP model over the SBP model. None of the bands
contain noisy structures in the MBP DIRSIG imagery. This is because the composite weighted z-score that is used in the
MBP algorithm considers the spectral behavior in multiple bandpasses, and therefore tends to more correctly choose
spectral reflectance curves for all pixels in the output image. A precursory visual inspection of especially the later
spectral bands of the SBP and MBP results reveals the powerful capabilities of the MBP model over the SBP model, and
the quantitative analysis in Section 4 will further demonstrate how much better the MBP model performs for imagery
with larger spectral dimension.

3.3 Texture Synthesis (TS) Model

The reader will undoubtedly notice the poorer spatial fidelity of this imagery as compared with the MBP model results.
However, it is not as dismal as it may initially appear since the local mean and standard deviation statistics for each
material class region in the real and synthetic imagery matched to within 3 %. One must also keep in mind that the very
nature of the Texture Synthesis model guarantees that the spectral covanance statistics of the synthetic textures will
agree with that of the real image textures. This aspect will be tested in more detail in Section 4 with the 5CR and SCM
metrics. The uncut pasture and wheat regions are better represented than the plowed field regions, in which the large-
scale oriented structural patterns have not been captured. The TS model also had difficulty characterizing within-
material transition regions such as the sharp uncut pasture-dirt transition on the right side of the real imagery. One of the
fundamental limitations of this model is evident especially in the lower road region. Since the minimum input texture
sample size required by the model is 64x64 pixels and the road region is quite narrow, it was difficult to obtain a sample
of sufficient size. Therefore, a minoring utility had to be used in order to grow this region to generate a texture image of
sufficient size. This caused repetitive artifacts to appear in the form of dark banding, as shown in Figure 5(d).

3.4 Fraction Map (FM) Texture Model

The FM model produces the most visually pleasing imagery of all four models. In fact, the real and synthetic imagery
are almost indistinguishable if one compares Figure 5(e) with the real HYDICE imagery. This re-mixing of fractional
abundance planes has produced a very impressive result in the spatial domain and although it appears as though the
spectral correlation has been preserved based on a band-by-band visual analysis, the true test will be to determine how
well the performance metrics deem this model to be in both spatial and spectral domains in Section 4.

4. TEXTURE MODEL PERFORMANCE ANALYSIS

All synthetic imagery has been rendered such that it is perfectly registered with the real HYDICE ARM data, with
identical GSD. This is a strict requirement for the application of the texture model performance metrics since the
corresponding pixel data of the real and synthetic imagery have been directly compared in the fifteen texture test regions.
Regions 1-9 are homogeneous (within-material class) textures, while regions 10-15 represent transition region textures.
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4.1 Spatial GLCM Metric

Due to space limitations, the very detailed performance analysis of the GLCM metric cannot be presented here in its
entirety. Further, if the band-by-band analysis had been replaced by synopsis tables consisting of the averaged
performance values over the tested spectral band subset then the differential performance between bands would not be
captured. Since this presentation of raw data would not be useful, the performance of each model is not presented in
table format as in the parent paper to this work14 but is summarized here in text. The FM model contains the lowest
range and average values within the absolute difference images. It also typically possesses the smallest number of
outliers from the threshold image. The corresponding pixel values of the absolute difference images are all lower than
those of the MBP, SBP, and TS models. This result makes sense intuitively since the spatial appearance of the FM
model result is the most visually identical to the real HYDICE ARM image, for all spectral bands. It is therefore clear
that the FM model out-performs all of the other models in the spatial domain, for all fifteen of the texture test regions,
across all spectral bands. The MBP model results of the GLCM Contrast metric indicate the second best performance
spatially. Although the SBP model shows comparable performance for spectral bands 20 and 32, the spatial structure
begins to deteriorate for the later spectral bands of the SBP image cube. Therefore, the MBP model performs much
better overall, which is also not a surprising result since the MBP model attained the second best ranking through a
visual analysis. The SBP and TS models exhibit oscillating behavior in the GLCM Contrast metric result. This is
evident even through a visual analysis of the resultant imagery; the earlier spectral bands of the SBP model appear
comparable to the result of the MBP model, while the TS model appears to lack the spatial structure present in the real
HYDICE imagery. However, the spatial structure is similarly lacking in both the TS and SBP models from band 65
onward. The road region in the TS image tends to suffer spatially due to the artifacts discussed earlier, while that of the
SBP model performs somewhat better. The plowed region of the TS model does not capture the oriented structure of the
plowed patterns, but nonetheless contains more patterns than the SBP model for the later spectral bands. These results
are reflected in regions 1 and 4 (plowed fields) and for regions 12, 14 and 15, which are transition regions including the
road. At this point it is suitable to rank the models based on spatial performance in the following manner: 1 . FM model;
2. MBP model; 3. SBP model; and 4. TS model. Since the results are very similar in terms of spatial content, the
spectral texture analysis of the 5CR and SCM metrics will prove to be crucial in distinguishing between the overall
performance of the TS and SBP models. The number of outliers from the threshold image for each of the models using
the GLCM Correlation metric also indicated the same rank order, although this feature had less discriminatory power
than the Contrast metric.

4.2 Spectral 5CR Metric

Ifthe spectral structure and complexity is captured in the synthetic image, then its SCR value (for the given region being
tested) should theoretically be within an acceptable variance threshold of the corresponding value for the real HYDICE
ARM image. The same fifteen texture test regions have been used to obtain 5CR values from the SBP, MBP, TS, and
FM model DIRSIG images. These values were then compared with the corresponding real image 5CR values. The
threshold was defined by taking repeated measurements of the SCR from the same regions of the real image that were
used to construct acceptable variance threshold images for the GLCM and SCM metrics. This value is the rightmost
column ofthe below table, which indicates the (1 sigma) standard deviation ofthe repeated 5CR measurements from the
real image.

Re2ion SBP MBP TS FM Real S.D.
1 56.95 85.36* 91.58* 97.78* 90.50 25.94
2 58.28 82.12 9597* 139.66 104.74 15.19

76.90 188.47 276.90* 225.29 411.95 176.03
4 26.25 68.05* 81.79* 117.19 77.21 16.15

5 198.09 106.49* 119.04* 158.92* 120.25 39.16

6 464.34 254.69* 200.91* 235.27* 196.06 72.86
7 33.19 163.71 297.16* 176.39 504.28 237.99

8 773.24 897.42 4,469.35* 943.44 6,222.54 2,258.74
9 192.91 274.19 663.82* 297.29 1.004.99 486.53
10 103.53 145.25* 147.31* 126.60 172.51 43.30

11 110.23 133.75* 142.37* 118.99* 153.82 35.32
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•
13 28.94 86.95* 123.45* 195.37* 119.29 74.10
14 32.14 73.85* 60.43* 75.01* 58.90 18.96
15 145.97 103.46 62.94* 110.35 72.74 12.47

Table 1 : SCR metric values for SBP, MBP, TS, and FM models for HYDICE ARM imagery. (* = value is within +1- 1 sigma SD).

The TS model has the closest SCR values to the SCR values of the real HYDICE ARM image. In each case, the TS
model image regions have an SCR value within 1 sigma standard deviation of the real corresponding value. This is an
intuitive result, since the very nature of the TS model guarantees that the spectral statistics will be correct due to its
spectral covariance enforcement methodology in creating synthetic texture. Another consistent observation is that the
SBP model has SCR values farthest from the corresponding real image SCR values. In fact, none of its SCR values lie
within the standard deviation threshold, although some values are quite close to the threshold. This result is not
surprising since the Single-Bandpass z-score curve selection algorithm has only utilized a single narrow band in the
visible region of the spectrum, and thus it has tended to select curves for scene materials from the ground truth
measurement database that were not optimal for non-correlated spectral bands. The MBP and FM models both perform
quite well for this metric; however their relative performance is not consistent. Despite this oscillatory behavior, it is
possible to rank one over the other if the results are carefully analyzed. For instance, the MBP model has 9 of its 15
vales within the threshold value, while the FM model has 6. It is also worthy to note that for the three cases in which the
FM model SCR values lie outside of the threshold, they were extremely close to the threshold value, as one can infer
from the above table. Further, the MBP model attained the second-best performance metric value (next to the TS model)
for 10 of the 15 regions, while the FM model did so for the other 5 regions, which incidentally are all homogeneous
texture regions. Therefore, since the rankings of each region for the SCR metric are consistent 66.6% of the time, and
because the SCR values are so close between the FM and MBP models, the following ranking based solely on the SCR
metric result can be concluded: 1. TS model; 2. MBP model; 3. FM model; and 4. SBP model. It is important to note the
potential for bias in the SCR results for the TS model since the input texture samples were extracted from the real image
in the vicinity of the test region used for SCR measurement. Therefore, the SCR values are certain to be correct for this
model. Meanwhile, the performance of the MBP model has great potential for improvement since the image derived
"ground truth" spectra used to characterize spectral texture was obtained from much smaller sample regions. Although
the use of more complete spectral samples for the MBP model would increase computational requirements, it would
likely provide SCR values very close to those of the TS model and of the original image.

4.3 Spatial-Spectral SCM Metric

Both the Contrast and Correlation features of the SCM metric are able to distinguish the performance of each of the
texture models quite well in terms of both spatial and spectral structure. As with the other spatial metrics, the best
performance values belong to the FM model. This is evident by the average and range of values of each region's
absolute difference image, since the entries are much lower than those of the other three models. In order to verify this
result (since the average and range are not themselves sufficient to confirm that overall performance is better for this
metric), the absolute difference images were compared directly for each model result, and for each texture test region for
the Contrast feature of the SCM metric. In all cases, when the FM model metric images were subtracted from the
corresponding images of the other models, the result was greater than zero. This indicates that all pixel values were
smaller for the FM model, and thus performed the best of all models. Further, the magnitude of the deviation from the
threshold was also investigated in order to supplement the information provided by the number of outliers for each
texture region. The deviation from the threshold was smallest for the FM model, and second to smallest for the MBP
model, despite the fact that the actual percentage of outliers for the FM and MBP models were very close for all 4
spectral band pairs. This indicates that the best overall spatial-spectral performance was achieved by the FM model for
the rendering of the HYDICE ARM imagery. It has been shown already that the FM model performs quite well spatially
through the application of the GLCM metric. However, since the SCR metric indicated that the spectral performance of
the FM model was not as good as for the IS model, and extremely close to the performance of the MBP model, its
spatial-spectral overall performance had the potential to suffer. The results of the SCM metric clearly show that by
weighting both spatial and spectral dimensions, the FM model performs better than the other models. This means that
what the FM models lacks spectrally (compared to the TS model), it makes up for in the spatial domain. Further, the
very good results of the SCM metric also shows that the weighting of the end member spectra according to their
fractional abundance maps generally creates an adequate level of spectral structure and clutter that is comparable to the
real counterpart image. That is, despite the fact that the spectral covariance statistics are not as close to the real image as
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the TS model is, the spectral correlation is preserved in the FM model image for this sampling of spectral band pairs, and
it is reasonable to infer that this conelation is maintained throughout the spectral extent of the image. This means that
the various linear combinations of end member spectra assigned to each mixed pixel is sufficient to represent the spectral
clutter present in the real HYDICE ARM image. The number of outliers in the SCM Correlation metric further
substantiates the best overall performance of the FM model. The SCM performance metric values that come closest to
the FM model belong to the MBP model. There is very clear separation between the MBP model and the FM model, as
well as between the MBP model and the SBP and TS models. The range and average values for the MBP imagery are all
greater than that of the FM model, but less than those of the TS and SBP models. This is also true for the corresponding
pixel values of the absolute difference images; that is, there is no oscillatory behavior between the MBP model and any
other model. Although the percentage ofoutliers ofthe SCM Contrast metric are relatively close between all models, the
magnitude of the deviation from the acceptable variance threshold image is much smaller for the regions of the MBP
image than for the SBP and TS models. Therefore, the MBP model has secured the second-best ranking for the SCM
metric alone, which is once again reinforced by the results of the number of outliers for the SCM Correlation metric.

The relative performance of the TS and SBP models was the most difficult to discern. For the 95%-correlated band pair
(bands 22 and 32), the SBP model performs better than the TS model in general, although the difference tended to be
subtle, since the values were lower for the SBP model for 60% of the regions, of which all but one were homogeneous
texture regions. However, for the remaining three band pairs, the TS model achieved better performance values. This is
an intuitive result since the SBP and TS models shared similar spatial performance metric values for the later spectral
bands, while the SBP model performed better spatially for band 20 and often for band 32. Since the SBP model uses
only one bandpass for spectral reflectance curve selection, it was able to choose spectra for each pixel that were
optimized for that region of the spectrum. It therefore was able to maintain the spatial-spectral correlation between
bands 22 and 32 better than the TS model because these bands are so well correlated. This broke down for the band pairs
that involved later spectral bands due to the lack of adequate spatial structure in those bands (as observed with the
GLCM metric), and due to the poor spectral performance in those bands (as evidenced by the performance of the SBP
model with the 5CR metric). Since the spectral performance is much better for the TS model than the SBP model, and
because the spatial performance for the later spectral bands of the SBP and TS models are comparable, the SCM metric
is able to account for both of these aspects and provide metric values that weight spatial and spectral performance
simultaneously. In general then, it is reasonable to rank the overall performance of the TS model higher than the SBP
model for the HYDICE ARM imagery despite the fact that the SBP model performs slightly better for bands well-
correlated with the visible region of the spectrum. Further, for the SCM metric alone (both Contrast and Correlation
features), the TS model out-performs the SBP model for 75% of the tested band pairs. Therefore, the ranking based on
the SCM metric alone is: l.FM model; 2. MBP model; 3. TS model; and 4. SBP model. The SCM metric is therefore
successful as a simultaneous measure of spatial and spectral fidelity of synthetic image texture, although it tends to
weight spatial more than spectral structure since each measure only involves two spectral bands, and not the entire
spectral extent of the image. This is an important result since this metric provides the initial mechanics for summarizing
the relative performance of all four models for the HYDICE ARM imagery. This is true because the separate analyses of
the GLCM and 5CR metrics suggested that the FM model always performed the best spatially, and the MBP model
performed second-best. Also, the oscillatory behavior observed with the GLCM metric made it very difficult to
conclusively rank the relative performance ofthe SBP and TS models. This was designed to be alleviated by considering
the spectral domain as well in order to diagnose the overall performance of each model. The 5CR metric verified that
the TS model performed extremely well spectrally, while the SBP model performed the worst of all four models. The
result was two quite different rank orders from separate spatial and spectral analyses. The question then became, "how
much does one weight the spatial and spectral performance metrics?" There are many approaches to an objective
weighting of each metric result. One possibility is to apply a weight of 1 to each of the3 metrics and sum the rank orders
prescribed by each metric for each texture model so that the lowest number represents the best performance. In this case,
the result is: 1. FM model (5); 2. MBP model (6); 3. TS model (8); and 4. SBP model (11). Following the same process,
but applying weights of 1, 1, and 0.5respectively to the GLCM, 5CR, and SCM metrics produces an overall ranking of:
1. FM model (4.5); 2. MBP model (5); 3. TS model (6.5); and 4. SBP model (9). In both cases the order is identical, and
shows that the performance of the FM and MBP models were very close, while there is more separation between these
models and the TS and SBP models. Other ranking techniques have be employed to reflect varying combinations of
metric weights and the differential spatial-spectral weighting of the SCM metric, all of which suggest the same overall
rank order.
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5. CONCLUSIONS

The DIRSIG imagery and associated metric results clearly demonstrate the conditions that must be met and the
limitations that must be overcome in order to achieve optimal model performance. Each of the texture models requires
accurate and thorough ground truth data in order to realistically capture the spatial and spectral variability of scene
material classes, especially for the SBP and MBP models. The advantage of the use of the MBP model over the SBP
model has been clearly established. The FM model requires adequate ground tmth measurements, distinct fraction maps,
and robust end member selection processes in order to confidently assign single end member spectra to each fraction
plane. These requirements were met in this research, thereby demonstrating that the simple mixing of end member
spectra in accordance with their pixel-by-pixel fractional abundances is able to represent realistic levels of spatial and
spectral clutter. Although the TS model did not perform as well as the FM, MBP, and SBP models in the spatial domain,
its spectral texture was extremely well characterized due simply to the nature of constraint enforcement of the model.
The margin of improvement between the SBP and TS models is larger for the SCM than the GLCM metric, which
indicates a better overall performance by the TS model. The overall ranking of texture model performance for both
homogeneous and transition region textures is: 1 . FM model; 2. MBP model; 3. TS model; and 4. SBP model. In terms
of a choice of texture models to use, it depends on the specific application, since each model has varying requirements on
availability of input imagery. For instance, while the TS model requires minimum input texture image sizes and is
computationally expensive, the SBP and MBP models require ground truth reflectance data that adequately represents
the spatial and spectral variability of scene materials. Further, the MBP model requires the availability of a few spectral
bands whereas the unmixing process involved with the FM model necessitates accessibility to real image data of higher
spectral dimension in order to produce enough fractional abundance maps to represent the spatial and spectral clutter
present in the scene to be rendered. The choice of model may also depend on the nature of hyperspectral algorithms to
be run on the synthetic imagery. For instance, if 5CR is an important measure then one may choose the texture model
based on the 5CR metric ranking alone, subject to availability ofreal image data and run time considerations.
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